• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coverless Steganography for Digital Images Based on a Generative Model

    2018-07-12 10:55:04XintaoDuanHaoxianSongChuanQinandMuhammadKhurramKhan
    Computers Materials&Continua 2018年6期

    XintaoDuan,HaoxianSongChuanQinandMuhammadKhurramKhan

    Abstract:In this paper, we propose a novel coverless image steganographic scheme based on a generative model. In our scheme, the secret image is first fed to the generative model database, to generate a meaning-normal and independent image different from the secret image. The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image. Thus, we only need to transmit the meaning-normal image which is not related to the secret image, and we can achieve the same effect as the transmission of the secret image. This is the first time to propose the coverless image information steganographic scheme based on generative model, compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method, therefore, can effectively resist steganalysis tools. Experimental results show that our scheme has high capacity, security and reliability.

    Keywords:Generative model, coverless image steganography, steganalysis, steganographic capacity, security.

    1 Introduction

    Most of current information steganographic techniques [Qin, Ji, Chang et al. (2018); Ma,Luo, Li et al. (2018); Qin, Chang and Hsu (2015); Zhou, Sun, Harit et al. (2015); Zhou,Wu, Yang et al. (2017); Xia, Li and Wu (2017)] apply the cover data (such as digital image, audio and video) as a disguise for the secret data to be transmitted, which embed the secret data into cover data. The popularization of personal computers and the proliferation of digital images on the Internet provide convenient conditions of cover data for conducting information Steganography [Qin, Ji, Zhang et al. (2017); Qin, Chang and Chiu (2014)]. However, on the other hand, the technique for detecting hidden data, also called as steganalysis, has also been rapidly developed, which is mainly based on finding statistical anomaly of cover data caused by data embedding. Hence, steganalysis can be considered as a serious threat to steganography. According to different hiding strategies[Zhang, Qin, Zhang et al. (2018); Qin, Ji, Zhang et al. (2017); Qin, Chang and Hsu(2015)], the commonly used steganographic schemes are classified into two types: Spatial domain schemes and transform domain schemes. The spatial domain hiding method hasthe adaptive LSB hiding method [Yang, Weng, Wang et al. (2008)], the spatial adaptive steganography algorithm S-UNIWARD [Holub, Fridrich and Denemark (2014)], HUGO[Pevny, Filler and Bas (2010)], WOW [Holub and Fridrich (2012)] and so on. The transform domain method is to modify the host image data to change some statistical features to achieve data hiding, such as the hidden method in DFT (discrete Fourier transform) domain [Ruanaidh, Dowling and Boland (1996)], DCT (discrete cosine transform) domain [Cox, Kilian, Leighton et al. (1997)], and DWT (discrete wavelet transform) domain [Lin, Horng, Kao et al. (2008)]. These methods inevitably leave some modifications to the carrier [Yuan, Xia and Sun (2017); Chen, Chen and Wu (2017)]. In order to fundamentally resist the detection of various detection algorithms, this paper presents a new coverless image information hiding method based on generative model.As shown in Fig. 1, we only need to deliver a meaning-normal image which is not related to the secret image to the receiver, so that the receiver can generate an image visually the same as the secret image without worrying about the analysis of the steganography, even less attack.

    Figure 1: The framework of the research content

    As mentioned above, we propose a new scheme to hide image information, which can generate visually the same image as secret image by sending a generated image that is not related to the secret image. The transmitted image is only a normal-meaningful image rather than the image which is embedded any secret information, and also achieve the same effect as transferring the secret image. This method can effectively resist steganalysis tools, and greatly improves the security of the image. To summarize, the major contributions of our work as below:

    (1) We do not need to pass the secret image. On the contrary, we transmit a meaningnormal image which is completely unrelated to the secret image. This method has high security.

    (2) The image we transmit does not embed any secret information, it is a normal image,and the image steganographic analysis does not work.

    (3) As long as the training is enough, this effect can be achieved and the capacity is large.The rest of this paper is organized as follows. Section II reviews the related works about generative models. The proposed coverless steganographic scheme for digital images is described in Section III. Experimental results and analysis are given in Section IV, and Section V concludes the paper.

    2 Related works

    Restricted Boltzmann Machines (RBMs) [Smolensky (1986)], deep Boltzmann machines(DBMs) [Srivastava and Salakhutdinov (2012)] and their numerous variants are undirected graphical models with latent variables. The interactions within such models are represented as the product of unnormalized potential functions, normalized by a global summation or integration over all states of the random variables. This quantity and its gradient are intractable for all but the most trivial instances, although they can be estimated by Markov chain Monte Carlo (MCMC) methods. Mixing poses a significant problem for learning algorithms that rely on MCMC [Bengio, Mesnil, Dauphin et al.(2013); Bengio, Laufer, Alain et al. (2014)]. Deep belief networks (DBNs) [Hinton,Osindero and Teh (2006)] are hybrid models containing a single undirected layer and several directed layers. While a fast approximate layer-wise training criterion exists,DBNs incur the computational difficulties associated with both undirected and directed models. Variational Auto-Encoders (VAEs) [Glorot, Bordes and Bengio (2012)] and Generative Adversarial Networks (GANs) [Bengio, Yao, Alain et al. (2013)] are well known to us. VAEs focus on the approximate likelihood of the examples, and they share the limitation of the standard models and need to fiddle with additional noise terms. Ian Goodfellow put forward GAN [Goodfellow, Pougetabadie, Mirza et al. (2014)] in 2014.Goodfellow theoretically proved the convergence of the algorithm, and when the model converges, the generated data has the same distribution as the real data. GAN provides a new training idea for many generative models and has hastened many subsequent works.GAN takes a random variable (it can be Gauss distribution, or uniform distribution between 0 and 1) to carry on inverse transformation sampling of the probability distribution through the parameterized probability generative model (it is usually parameterized by a neural network model). Then a generative probability distribution is obtained. The GAN model includes a generative model G and a discriminative model D.The training objective of the discriminative model D is to maximize the accuracy of its own discriminator, and the training objective of generative model G is to minimize the discriminator accuracy of the discriminative model D. The objective function of GAN is a zero-sum game between D and G and also a minimum -maximization problem. GAN adopts a very direct way of alternate optimization, and it can be divided into two stages.In the first stage, the discriminative model D is fixed, the generative model G is optimized to minimize the accuracy of the discriminative model. In the second stage, the generative model G is the fixed in order to improve the accuracy of the discriminative model D. As a generative model, GAN is directly applied to modeling of the real data distribution, including generating images, videos, music and natural sentences, etc.Because of the mechanism of internal confrontation training, GAN can solve the problem of insufficient data in some traditional machine learning. GANs offer much more flexibility in the definition of the objective function, including Jensen-Shannon, and all fdivergences [Hinton, Srivastava, Krizhevsky et al. (2012)] as well as some exotic combinations. Therefore, it can be used in semi-supervised learning, unsupervised learning, multi-view learning and multi-tasking learning. In addition, it has been successfully used in reinforcement learning to improve its learning efficiency. Although GAN is applied widely, there are some problems with GAN, difficulty in training, lack of diversity. Besides, generator and discriminator cannot indicate the training process. Onthe other hand, training GANs is well known for being delicate and unstable. The better discriminator is trained, the more serious gradient of the generator disappears, leading to gradient instability and insufficient diversity. WGAN (Wasserstein Generative Adversarial Networks [Arjovsky and Bottou (2017); Arjovsky, Chintala and Bottou(2017)]) is an improvement to GAN, and it applies Wasserstein distance instead of JS divergence in the GAN. Compared to KL divergence and JS divergence, the advantage of Wasserstein distance is that it can still reflect their distance even if there is no overlap between the two distributions. At the same time, the problem of training stability and process indicating are solved.

    Therefore, this paper chooses Wasserstein GAN so as to guarantee training stability instead of GAN. It is no longer necessary to carefully balance the training extent between generator and discriminator. It basically solves the problem of collapse mode and ensures the diversity of samples.

    3 Proposed scheme

    The WGAN model is applied to generate the handwritten word by feeding the random noisez, but when the random noisezis changed to a secret imageimg, the model can still generate the meaning-normal and independent imageIMG’which is not related to the secret image we want to transmit. These several images taken from the standard set of images were evaluated in the paper, they areLena,Baboon, CameramanandPeppers,and they have the same size as 256 by 256. The feed is the secret image, and we train the generative model database through the WGAN, then it can generate a meaning-normal and independent image which is not related to the secret image. So we transmit the meaning-normal image to the receiver, and this generated image is fed to the generative model database to generate another generated image visually the same as the secret image.The flow charts of the whole experiment are shown in Fig. 2 and Fig. 3.

    Figure 2: The flow chart of WGAN

    Figure 3: The flow chart of generative model

    D andGplay the following two-player minimax game with value functionV(G;D)in WGAN:D(x)represents the probability thatxcame from the data rather thanpg. We trainDto maximize the probability of assigning the correct label to both training examples and samples fromG.We simultaneously trainGto minimize log(1 ?D(G(z))).We first make a gradient ascent step onDand then a gradient descent step onG, then the update rules are:

    Keeping theGfixed, update the modelwith

    Keeping theDfixed, update the modelGbywhere

    Wasserstein distance is also called the EM (Earth-Mover) distance

    Where ∏(Pr,Pg)denotes the set of all joint distributionsγ(x,y)whose marginal are respectivelyPrandPg.Intuitively,γ(x,y)indicates how much “mass” must be transported fromxtoyin order to transform the distributionsPrinto the distributionPg. The EM distance then is the “cost” of the optimal transport plan.

    4 Experimental results and analysis

    In this paper, 5,000 images are randomly selected from the CelebA dataset to experiment,and the results show that the coverless image information steganography based on generative model method can be implemented well. The sender and receiver share the same dataset and the same parameters. As shown in Fig. 4 and Fig. 5, we feed the secret imageimginto the generative model, generating the meaning-normal and independentIMG’which is not related to the secret image we want to transmit.

    Figure 4: Training generative model G1, G2

    Figure 5: Training generative model G3, G4

    As shown above, we chooseLenaas the secret imageimg, it can generate theIMG’visually the same asBaboonwe want to transmit. In the meantime, we also trainedBaboonto generate theIMG’visually the same asLenathrough the WGAN. We save the corresponding generative model G1 and G2 of generating visually the same asBaboonandLenarespectively. Using the same method, we take theCameramanandPeppersas the secret image to experiment respectively, and they can generate correspondingPeppersandCameraman. We also save the corresponding generative model G3 and G4 of generating visually the same asPeppersandCameramanrespectively, and apply them to the next experiment, instead of the WGAN. We put the generative model G1, G2, G3 and G4 of generating visually the same asBaboon,Lena,PeppersandCameramanin a database respectively, so that the generative model database is built. Since both the sender and the receiver train well the generative model database, we perform experiments as shown in Fig. 6 and Fig. 7.

    Figure 6: Training generative model database for sender

    Figure 7: Training generative model database for receiver

    As shown above, when the sender wants to transmit the secret imageLena, the generated imageBabooncan be transmitted to the receiver to generate a generated image visually the same as the secret imageLena, similarly, if you want to transmitBaboon, you can transmit the generated imageLena, if you want to transmitCameraman, you can transmit the generated imagePeppers, if you want to transmitPeppers, you can transmit the generated imageCameraman. In this experiment, we have successfully achieved theeffect of coverless image steganographic scheme based on a generative model by feeding a secret image to generate a meaning-normal and independent image which is not related to the secret image we want to transmit, and when the secret image is given, the transmitted image is unique and specific. Consequently, the image steganographic scheme proposed in this paper is feasible. In practical application, we are more concerned with the content of the image rather than the pixels in addition to professional image workers, this scheme can produce a meaning-normal and independent image which is not related to the secret image we want to transmit, which can satisfy most requirements,thereby, we suppose that if you want to send a secret image, you only need to transmit a meaning-normal and independent image to the receiver, the receiver only need to feed transmitted image to the generative model database, generate an image visually the same as the secret one, no needing direct transmission of the secret image. Besides, the transmitted image does not embed any information of the secret image, so it does not give visual cues to attackers, and the image steganography analysis does not work. This scheme can resist detection of all the existing steganalysis tools, and improve the security of the image.

    The experimental results show that the image is completely different from the secret image based on the method of generative model. The attacker cannot know what the secret image to be transmitted is, and the generated image is visually the same as the secret image, which meet the practical application standard, In addition to the visually qualitative analysis, the histogram of Fig. 8 can also obtain the same quantitative analysis results.

    Figure 8: The histogram of the generated image and secret image distribution

    As shown in Fig. 8, the red portion represents the secret image, and the blue portion represents the generated image. It can be seen from this histogram that the distribution of the generated images and the secret images are almost identical, and the small differences are almost negligible.

    5 Conclusion

    To sum up, the paper proposed the coverless image steganographic scheme based on a generative model. An image visually the same as the secret image is generated by transmitting a normal-meaningful image to the receiver. A fed image corresponds uniquely to a secret image. This method is practical. Therefore, it can be applied to image steganography and image protection.

    Acknowledgement: This paper was supported by the National Natural Science Foundation of China (No. U1204606), the Key Programs for Science and Technology Development of Henan Province (No. 172102210335), Key Scientific Research Projects in Henan Universities (No. 16A520058).

    夜夜躁狠狠躁天天躁| 欧美黄色片欧美黄色片| 日韩免费av在线播放| 色哟哟哟哟哟哟| 好看av亚洲va欧美ⅴa在| av在线老鸭窝| 亚洲国产精品久久男人天堂| 亚洲第一欧美日韩一区二区三区| 中国美女看黄片| 欧美性猛交黑人性爽| 男女做爰动态图高潮gif福利片| 免费av不卡在线播放| 国产精品综合久久久久久久免费| 长腿黑丝高跟| 久99久视频精品免费| 99热这里只有是精品50| 黄色配什么色好看| 男女下面进入的视频免费午夜| 18禁在线播放成人免费| 国产成人欧美在线观看| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 久久人人爽人人爽人人片va | aaaaa片日本免费| 99热精品在线国产| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 欧美日韩黄片免| 亚洲av.av天堂| 亚洲五月天丁香| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 久久精品国产自在天天线| 免费观看人在逋| 久久99热6这里只有精品| 99久久99久久久精品蜜桃| 中文字幕av成人在线电影| 亚洲内射少妇av| 男人和女人高潮做爰伦理| 久久国产精品人妻蜜桃| 国产老妇女一区| 草草在线视频免费看| 欧美激情在线99| 色视频www国产| 9191精品国产免费久久| 久久精品91蜜桃| 亚洲成人久久性| aaaaa片日本免费| 特大巨黑吊av在线直播| 婷婷丁香在线五月| 最近在线观看免费完整版| 麻豆国产av国片精品| 欧美日韩福利视频一区二区| 男人和女人高潮做爰伦理| 午夜福利视频1000在线观看| 欧美激情在线99| 国产精华一区二区三区| 免费观看的影片在线观看| 精品一区二区三区视频在线| 精品一区二区三区视频在线| 欧美色视频一区免费| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 一级av片app| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 成人性生交大片免费视频hd| 中出人妻视频一区二区| 黄色配什么色好看| 国产91精品成人一区二区三区| www.www免费av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品国产三级普通话版| 国产亚洲精品久久久com| 精品一区二区三区av网在线观看| 男人舔奶头视频| 综合色av麻豆| 老司机福利观看| 免费无遮挡裸体视频| 美女大奶头视频| 国产精品,欧美在线| 一夜夜www| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美不卡视频在线免费观看| 天天一区二区日本电影三级| 国产精品98久久久久久宅男小说| 国产精品国产高清国产av| 一级黄色大片毛片| 久久久久免费精品人妻一区二区| 国产伦一二天堂av在线观看| 免费av不卡在线播放| 亚洲中文字幕一区二区三区有码在线看| 成人av一区二区三区在线看| 搡老岳熟女国产| 五月玫瑰六月丁香| 超碰av人人做人人爽久久| 久久天躁狠狠躁夜夜2o2o| 男人的好看免费观看在线视频| 三级毛片av免费| 夜夜夜夜夜久久久久| 中出人妻视频一区二区| 国产精品永久免费网站| 99久久99久久久精品蜜桃| 一个人看的www免费观看视频| 一区二区三区高清视频在线| 两个人的视频大全免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲第一电影网av| 亚洲国产精品合色在线| 国产三级在线视频| 亚洲片人在线观看| 色综合亚洲欧美另类图片| 美女高潮喷水抽搐中文字幕| 一a级毛片在线观看| 最新中文字幕久久久久| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| a级毛片免费高清观看在线播放| 在线观看美女被高潮喷水网站 | xxxwww97欧美| 级片在线观看| 亚洲三级黄色毛片| 亚洲最大成人中文| 亚洲人成网站在线播放欧美日韩| 国产精品综合久久久久久久免费| 欧美又色又爽又黄视频| 波多野结衣高清作品| 51国产日韩欧美| 国产成+人综合+亚洲专区| 亚洲片人在线观看| 亚洲人与动物交配视频| 看十八女毛片水多多多| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 成人鲁丝片一二三区免费| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 搡老岳熟女国产| 国产欧美日韩精品一区二区| 免费无遮挡裸体视频| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 中亚洲国语对白在线视频| 欧美日韩乱码在线| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 欧美又色又爽又黄视频| 老鸭窝网址在线观看| 久久久精品大字幕| 成人三级黄色视频| 老鸭窝网址在线观看| 日韩大尺度精品在线看网址| 午夜福利欧美成人| 成人性生交大片免费视频hd| 婷婷亚洲欧美| 欧美精品国产亚洲| 最新在线观看一区二区三区| 成年女人看的毛片在线观看| 免费大片18禁| 国产高清三级在线| www日本黄色视频网| www.www免费av| 成人精品一区二区免费| 久久99热这里只有精品18| 真人一进一出gif抽搐免费| 亚洲无线观看免费| 深夜精品福利| 成人亚洲精品av一区二区| 九九在线视频观看精品| 男女之事视频高清在线观看| 欧美最黄视频在线播放免费| www日本黄色视频网| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 午夜a级毛片| 亚洲成av人片免费观看| 老司机深夜福利视频在线观看| 免费av毛片视频| 午夜精品久久久久久毛片777| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 性欧美人与动物交配| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 日本一本二区三区精品| 欧美bdsm另类| 国产中年淑女户外野战色| 午夜福利免费观看在线| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 成年女人永久免费观看视频| 国产大屁股一区二区在线视频| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 91九色精品人成在线观看| 欧美午夜高清在线| 性欧美人与动物交配| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 亚洲中文字幕日韩| 男女之事视频高清在线观看| 国产在线男女| 亚洲成人中文字幕在线播放| 国产成人av教育| 精品福利观看| 国产欧美日韩精品亚洲av| 男插女下体视频免费在线播放| 99精品久久久久人妻精品| 色噜噜av男人的天堂激情| 免费av毛片视频| 2021天堂中文幕一二区在线观| 在线十欧美十亚洲十日本专区| 亚洲第一区二区三区不卡| 亚洲,欧美精品.| 午夜福利视频1000在线观看| av在线老鸭窝| 色哟哟哟哟哟哟| 久久精品影院6| 久久久国产成人免费| 脱女人内裤的视频| 国产精品综合久久久久久久免费| 国产一区二区亚洲精品在线观看| 久99久视频精品免费| av专区在线播放| 亚洲专区中文字幕在线| 国产高清视频在线观看网站| 精品久久久久久久末码| 亚洲欧美激情综合另类| 在线免费观看不下载黄p国产 | 蜜桃久久精品国产亚洲av| 欧美日本视频| 嫩草影视91久久| 美女黄网站色视频| 日本 欧美在线| 99热6这里只有精品| 可以在线观看毛片的网站| 一区二区三区激情视频| 色噜噜av男人的天堂激情| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华精| 99热这里只有是精品50| 国产高清视频在线播放一区| 免费大片18禁| 日韩欧美在线乱码| 精品久久久久久久久av| 国内久久婷婷六月综合欲色啪| 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 久久久久免费精品人妻一区二区| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 久久精品久久久久久噜噜老黄 | 欧美潮喷喷水| 亚洲av美国av| www.熟女人妻精品国产| 午夜a级毛片| 欧美色欧美亚洲另类二区| 国产一区二区三区视频了| 欧美zozozo另类| 99久久99久久久精品蜜桃| 精品午夜福利在线看| 99热这里只有精品一区| 午夜福利18| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 丰满的人妻完整版| 国产黄a三级三级三级人| 大型黄色视频在线免费观看| 久久精品人妻少妇| 久久久久久国产a免费观看| 一本久久中文字幕| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 我要搜黄色片| bbb黄色大片| 国产熟女xx| 亚洲 国产 在线| 淫秽高清视频在线观看| 少妇人妻精品综合一区二区 | 亚洲不卡免费看| 久久久久免费精品人妻一区二区| 最好的美女福利视频网| 精品久久国产蜜桃| 97超级碰碰碰精品色视频在线观看| 欧美+日韩+精品| 欧美在线黄色| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 久久九九热精品免费| 国产乱人伦免费视频| 日本免费a在线| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 男女下面进入的视频免费午夜| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 黄色一级大片看看| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 日韩精品青青久久久久久| 亚洲精华国产精华精| 国产精品人妻久久久久久| 国产野战对白在线观看| 两个人视频免费观看高清| 中文字幕免费在线视频6| 赤兔流量卡办理| 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 91久久精品电影网| 亚洲av免费在线观看| 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 国内揄拍国产精品人妻在线| 久久午夜亚洲精品久久| 国产激情偷乱视频一区二区| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 久久精品影院6| 亚洲人成网站高清观看| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 97人妻精品一区二区三区麻豆| 一级黄片播放器| 亚洲专区中文字幕在线| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 我的老师免费观看完整版| 俺也久久电影网| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 国产黄片美女视频| 欧美成人性av电影在线观看| 夜夜躁狠狠躁天天躁| 亚洲 国产 在线| 国产精品一区二区三区四区免费观看 | 欧美午夜高清在线| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线| 免费观看人在逋| 亚洲一区高清亚洲精品| 日韩精品中文字幕看吧| 欧美午夜高清在线| 久99久视频精品免费| 欧美乱色亚洲激情| 欧美日本亚洲视频在线播放| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片 | 国产一级毛片七仙女欲春2| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 免费看光身美女| 伊人久久精品亚洲午夜| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 韩国av一区二区三区四区| 欧美bdsm另类| 麻豆成人午夜福利视频| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 美女高潮的动态| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区 | 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 亚洲国产高清在线一区二区三| 一夜夜www| 麻豆一二三区av精品| av福利片在线观看| 99视频精品全部免费 在线| 极品教师在线免费播放| 婷婷丁香在线五月| 国产精品综合久久久久久久免费| www.www免费av| .国产精品久久| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 亚洲无线在线观看| 国产探花在线观看一区二区| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 亚洲乱码一区二区免费版| 观看美女的网站| 中文在线观看免费www的网站| .国产精品久久| 久久精品影院6| 亚洲人成网站在线播| av国产免费在线观看| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 国产伦人伦偷精品视频| av在线老鸭窝| 亚洲美女视频黄频| 精品熟女少妇八av免费久了| 成人永久免费在线观看视频| 国产成人福利小说| 亚洲在线观看片| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 99国产综合亚洲精品| 亚洲男人的天堂狠狠| 又紧又爽又黄一区二区| 久久久久久大精品| 99久国产av精品| 国产毛片a区久久久久| 欧美+日韩+精品| 久久精品国产清高在天天线| 午夜激情欧美在线| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 午夜激情欧美在线| 亚洲精品在线美女| 一个人免费在线观看电影| 天堂影院成人在线观看| 999久久久精品免费观看国产| 露出奶头的视频| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 99国产精品一区二区蜜桃av| 天堂av国产一区二区熟女人妻| 亚洲美女视频黄频| 一级作爱视频免费观看| 国产黄片美女视频| 99国产综合亚洲精品| 午夜精品一区二区三区免费看| 色在线成人网| 亚洲欧美日韩高清专用| 伊人久久精品亚洲午夜| 99在线人妻在线中文字幕| 国产欧美日韩精品一区二区| 少妇裸体淫交视频免费看高清| 黄色一级大片看看| 毛片女人毛片| 亚洲精品在线观看二区| 亚洲人成网站在线播| 国产精品,欧美在线| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 亚洲最大成人中文| 日本一二三区视频观看| 此物有八面人人有两片| 色综合欧美亚洲国产小说| 久久久久久久久大av| 高潮久久久久久久久久久不卡| 露出奶头的视频| 免费看光身美女| 成人无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 最新在线观看一区二区三区| 精品一区二区免费观看| 国产av麻豆久久久久久久| 国产精品女同一区二区软件 | 国产精品综合久久久久久久免费| 免费在线观看亚洲国产| 欧美bdsm另类| 亚洲在线观看片| 嫩草影院精品99| 美女免费视频网站| 桃色一区二区三区在线观看| 搡女人真爽免费视频火全软件 | 亚洲精品久久国产高清桃花| ponron亚洲| 国产精品伦人一区二区| 亚洲,欧美精品.| 赤兔流量卡办理| 一区二区三区四区激情视频 | 51国产日韩欧美| 亚洲精品日韩av片在线观看| 精品久久久久久久久久久久久| 九色成人免费人妻av| 国产精品亚洲美女久久久| 精品久久久久久久末码| 日本免费一区二区三区高清不卡| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 一a级毛片在线观看| 99精品久久久久人妻精品| 成人av在线播放网站| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 黄色配什么色好看| 免费观看人在逋| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 免费av观看视频| 国产一区二区三区在线臀色熟女| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 赤兔流量卡办理| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| 69av精品久久久久久| 国产精品1区2区在线观看.| 欧美成人a在线观看| 国产乱人伦免费视频| 欧美成人a在线观看| 小说图片视频综合网站| 最后的刺客免费高清国语| 久久香蕉精品热| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 不卡一级毛片| 久9热在线精品视频| 午夜福利高清视频| 精品熟女少妇八av免费久了| 久久精品人妻少妇| 免费在线观看成人毛片| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 国产成年人精品一区二区| 日日夜夜操网爽| 欧美一区二区亚洲| 国产黄片美女视频| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 久久久国产成人免费| 国产三级在线视频| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| 精品一区二区三区视频在线观看免费| 亚洲一区高清亚洲精品| 精品午夜福利在线看| 内射极品少妇av片p| 久久午夜亚洲精品久久| 婷婷色综合大香蕉| av专区在线播放| 夜夜爽天天搞| 亚洲专区中文字幕在线| 亚洲第一电影网av| 听说在线观看完整版免费高清| 国产亚洲精品久久久久久毛片| 97超级碰碰碰精品色视频在线观看| 91麻豆精品激情在线观看国产| 搡老熟女国产l中国老女人| 亚洲欧美清纯卡通| 91av网一区二区| 欧美最黄视频在线播放免费| 亚洲黑人精品在线| 久久精品人妻少妇| 99久久成人亚洲精品观看| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址| 久久草成人影院| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 热99re8久久精品国产| 一进一出好大好爽视频| 一本综合久久免费| 99在线视频只有这里精品首页| 一a级毛片在线观看| 赤兔流量卡办理| 99riav亚洲国产免费| 久久国产乱子伦精品免费另类| 久久久精品大字幕| 日韩av在线大香蕉| 我的老师免费观看完整版| 免费黄网站久久成人精品 | 脱女人内裤的视频| 欧美黑人巨大hd| 国产精品久久久久久亚洲av鲁大| 亚洲天堂国产精品一区在线| 一个人免费在线观看电影| 日韩欧美 国产精品| 久久伊人香网站| 舔av片在线| 不卡一级毛片| 国产成人啪精品午夜网站| 最近视频中文字幕2019在线8| 夜夜看夜夜爽夜夜摸| 婷婷丁香在线五月| 久久久久久大精品| 成人特级黄色片久久久久久久| 亚洲精品456在线播放app | 精品一区二区三区视频在线| 国产主播在线观看一区二区| 欧美日本视频| 99在线视频只有这里精品首页| 亚洲美女视频黄频| 欧美日韩国产亚洲二区| 午夜精品久久久久久毛片777| 久久99热这里只有精品18| 欧美+日韩+精品| 亚洲人成电影免费在线| 国产欧美日韩一区二区三| 国产伦在线观看视频一区| 午夜福利视频1000在线观看| 一a级毛片在线观看| 欧美日本视频| 麻豆国产av国片精品| 丰满的人妻完整版| 国产探花极品一区二区| 18禁黄网站禁片午夜丰满| 黄片小视频在线播放| 少妇高潮的动态图| 亚洲成a人片在线一区二区| 哪里可以看免费的av片| 亚洲专区国产一区二区| 男人狂女人下面高潮的视频| 少妇的逼好多水| 国产视频一区二区在线看|