• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Lossless Data Hiding for JPEG Images Based on Histogram Modification

    2018-07-12 11:06:36YangDuZhaoxiaYinandXinpengZhang
    Computers Materials&Continua 2018年6期

    YangDu,ZhaoxiaYin,andXinpengZhang

    Abstract:This paper proposes a lossless and high payload data hiding scheme for JPEG images by histogram modification. The most in JPEG bitstream consists of a sequence of VLCs (variable length codes) and the appended bits. Each VLC has a corresponding RLV(run/length value) to record the AC/DC coefficients. To achieve lossless data hiding with high payload, we shift the histogram of VLCs and modify the DHT segment to embed data. Since we sort the histogram of VLCs in descending order, the filesize expansion is limited. The paper’s key contribution includes: Lossless data hiding, less filesize expansion in identical pay-load and higher embedding efficiency.

    Keywords:Lossless, data hiding, histogram, VLC, JPEG.

    1 Introduction

    Data hiding is a technique for hiding secret message into digital cover, which can serve as authentication watermarking, annotation, and secret data for covert transmission.

    With the rapid development of computer technology, data hiding is widely used in military, commercial, medical, financial, etc. As a branch of data hiding, there are many new steganography algorithms proposed in recent years [Zhang, Qin, Zhang et al. (2018);Ma, Luo, Li et al. (2018); Wang, Li, Shi et al. (2017)]. In some applications, like medical image system, military documents and multimedia archive management, any distortion is intolerable after data embedding. Therefore, the reversible data hiding (RDH) methods are proposed. Recently some reversible data hiding algorithms have been proposed, such as the difference expansion scheme [Tian (2003)] and the histogram shifting (HS)algorithm [Ni, Shi, Ansari et al. (2006)]. As a significant branch in RDH, recently more and more HS-based data hiding methods are proposed [Li, Yang and Zeng (2011); Wang,Li, Shi et al. (2017); Li, Zhang, Gui et al. (2017)]. For example, Li et al. [Li, Yang and Zeng (2011)] can exactly classify the smooth and rough pixels by using the local complexity parameter, and then adaptively embed the data bits into them. Since the smooth pixels can be embedded with more data on average, a better performance can be obtained at the very high capacity. Wang et al. [Wang, Ni, Zhang et al. (2017)] furtherimproved the optimal bin-selection mechanism by using a developed rate and distortion model and can give a good embedding performance with low complexity by narrowing down the solution space. Li et al. [Li, Zhang, Gui et al. (2017)] proposed the multiple histograms modification (MHM) technique and took the expansion bins of histograms as parameters. Since the modification manner on each histogram can be different, the overall modifications could be optimized by adapting the parameters to the statistical properties of histograms. However, all of these HS-based methods [Ni, Shi, Ansari et al.(2006); Li, Yang and Zeng (2011); Wang, Li, Shi et al. (2017); Li, Zhang, Gui et al.(2017)] introduced above are designed for spatial domain and cannot be applied to compressed images directly.

    JPEG is the most popular file format in relation to digital images, which compress the image data effectively. Therefore, we focus on lossless data hiding based on histogram shifting for JPEG images. However, above HS-based methods cannot be applied to JPEG images directly. Consider the less redundancy, modification-sensitive and increased filesize, RDH for JPEG images is more difficult than uncompressed images. Xuan et al.[Xuan, Shi, Ni et al. (2007)] proposed a HS-based method for JPEG images by embedding data into the JPEG quantized 8×8 block DCT coefficients. Xuan et al.’s method can obtain high-payload and unnoticeable filesize extension but the stego image is distorted. Huang et al. proposed a new HS-based method [Huang, Qu, Kim et al.(2016)] that zero coefficients remain unchanged and only coefficients with values 1 and -1 are expanded to carry message bits in.

    Recently, Qian and Zhang proposed a lossless and filesize preserved scheme [Qian and Zhang (2012)] in JPEG bitstream by VLC-mapping. They achieved the goal of lossless embedding by replacing the original VLC by a new VLC and mapping the new VLC to the same RLV. Since the original VLC and the new VLC corresponding to the same RLV,the decoded image quality is no distortion entirely. To embed high capacity secret data,inspired by Qian and Zhang’s method [Qian and Zhang (2012)], Liu et al. [Liu, Chang,Lin et al. (2016)] proposed a HS-based method for JPEG images, which modify the VLCs in JPEG bitstream directly. They count all the VLCs usage and generate the histogram of the RLVs which corresponding to the VLCs. Then modify the original VLC according to the secret data directly.

    Although the embedding capacity is expanded, there are two problems exist in Liu et al.’s method [Liu, Chang, Lin et al. (2016)]. The first problem is that only modifying the VLC directly in the entropy-coded data will cause the decoded results occur error. Another problem is the X-axis of histogram generated according to Liu et al.’s method [Liu,Chang, Lin et al. (2016)] is not logical. In other words, the adjacentX-values of histogram are no correlation.

    To solve the two problems, we propose a novel HS-based method and modify the JPEG file header to preserve the image quality with no distortion as Qian et al.’s method [Qian and Zhang (2012)]. In addition, since we sort the RLVs in terms of the corresponding VLCs’ frequency in the entropy-coded data, the stego image filesize is closer to cover image than Liu et al.’s method [Liu, Chang, Lin et al. (2016)]. The rest of this paper is organized as follows. Section 2 briefly introduces the structure of JPEG images and Liu et al.’s method [Liu, Chang, Lin et al. (2016)]. Section 3 presents the proposed scheme indetail. Detail experimental results with analysis and comparisons are given in Section 4.Section 5 concludes the paper.

    2 Related works

    Since the proposed method works on JPEG bitstream, the knowledge of JPEG image structure is required. Furthermore, inspired by Liu et al.’s method [Liu, Chang, Lin et al.(2016)], we proposed a lossless and reversible data hiding method. Thus, we introduce the structure of JPEG image at first and Liu et al.’s method [Liu, Chang, Lin et al.(2016)].

    2.1 The structure of JPEG bitstream

    A JPEG image consists of a sequence of segments, each beginning with a marker. Each marker begins with a 0xFF byte followed by a byte indicating what kind of marker it is.For example, the DHT (Define Huffman Table) segment begins with 0xFFD8 and the SOS (Start of Scan) segment begins with 0xFFDA. The structure of JPEG image is shown in Fig. 1.

    Figure 1: The structure of the JPEG bitstream

    According to the JPEG guideline, after some preprocessing works, the pixels in the image are transformed into AC/DC coefficients. To compress the image filesize, the AC coefficients are encoded in Run-Length encoding format as intermediate symbols, (Run,Length) and (Amplitude). Further, to improve the compression rate, (Run, Length) is encoded in the format of VLC, and (Amplitude) is encoded in VLI (Variable Length Integer) format.

    The DHT segment contains the Canonical Huffman table information, which is used for obtaining the VLCs. Each VLC is corresponded to a specific RLV that represents an AC coefficient in entropy-coded data. The VLCs are encoded by Canonical Huffman code,for instance, if the run/length value is “0/4”, the corresponding VLC is “1011”. For AC coefficients of luminance component, 162 different VLCs are corresponded to the run/length value from “0/1” to “F/A” accompanied with “0/0” (End of Block) and “F/0”(Zero Run Length). The length of VLC is between 2 to 16 bits.

    According to JPEG guideline, if only change the VLC, the decoded results would be different compared with the cover image’s decoded results. This is due to the VLC’s corresponding RLV has changed, which affects the decoded results. To preserve the run/size not changed after the replacement of the corresponding VLC, we modify the DHT segment.

    2.2 Liu et al.’s method

    To obtain high embedding capacity for JPEG images, Liu et al. [Liu, Chang, Lin et al.(2016)] proposed a data embedding method based on histogram modification in entropycoded data, which different from VLC mapping-based proposed by Qian et al. [Qian and Zhang (2012)]. The detail embedding steps can be summarized as follows:

    Input: An origin JPEG bitstream and a secret bitstream.

    Output: A stego JPEG bitstream,pandz.

    Step 1: Parse the JPEG image and extract all the used-VLCs and unused-VLCs. Generate the histogram of run/size which begins with “0/0” and ends with “F/A”. TheY-axis in the histogram represents the occurrence number of each run/size’s corresponding VLC in the entropy-coded data.

    Step 2: Find a peak pointpand a zero pointzand save the values ofpandzas overhead information. The zero pointzis the nearest zero point top.

    Step 3: Scan all of the VLCs in the entropy-coded data sequentially. Shift all the run/length values to right by one unit betweenpandz(not includingpandz). For instance, the run/length “0/2”, “0/3”, “0/4” and “0/5” are shifted to “0/3”, “0/4”, “0/5”and “0/6”. The corresponding VLC will be changed according to the shifted run/length.For instance, the VLC=“1011” (corresponding run/length value is “0/4”), will be changed to “11010” (corresponding run/length value is “0/5”). Once the VLC that corresponds to run/length value equal topis attained, replace the VLC or not depend to the secret bit that will be embedded. If the secret bit is “0”, the VLC will be maintained and if the secret bit is “1”, the VLC will be replaced by another VLC that corresponds to the run/length value equals top+1.

    Step 4: Generate a stego JPEG bitstream.

    After the above steps, a stego JPEG bitstream is generated. However, the stego JPEG bitstream will cause the results occur error during JPEG decoding. This is because only VLCs in the entropy-coded data are modified. The size value of the modified VLC’s corresponding RLV is not equal to the length of original appended bits. In addition, the RLV sorting manner is also not optimal for the histogram of RLV. Because the VLC uses Huffman coding so sorting by VLC code length order can make the file expansion generated after embedding data effectively reduce. Based on the above analysis, we propose an improved lossless data hiding scheme for JPEG images.

    3 Proposed method

    Inspired by Qian et al.’s scheme [Qian and Zhang (2012)], our method modified the DHT segment of JPEG header based on Liu et al.’s scheme [Liu, Chang, Lin et al. (2016)],resulting in a normal JPEG image decoding and no distortion of image quality. Thus, it isa lossless data hiding scheme. At the same time, the file expansion of the secret JPEG bitstream is significantly reduced from that of Huang et al. [Huang, Qu, Kim et al. (2016)]and Liu et al. [Liu, Chang, Lin et al. (2016)] and the performance is better than the above.The overall framework of the proposed method is depicted in Fig. 2, including the data embedding process and extraction process. The details of the proposed method and the procedures of data embedding and extraction are presented in the following subsections severally.

    Figure 2: The overall framework of the proposed method

    3.1 Lossless data embedding based on histogram modification

    The histogram establishment process of our method is different from that of Liu et al. [Liu,Chang, Lin et al. (2016)]. Before generating the histogram, all VLCs in the entropy-coded data are first extracted and their frequency of occurrence is counted. According to the order of the RLVs in the DHT segment, a histogram of frequency distributions of VLCs is generated. We use the “Baboon” image with a quality factor of 80 as an example and compare it with Liu et al.’s histogram establishment scheme [Liu, Chang, Lin et al.(2016)]. Fig. 3 is a histogram of frequency distribution of VLC.

    Figure 3: The original histogram of VLCs (“Baboon” image, QF=80)

    3.1.1 Optimization of RLV ordering

    Considering that, the encoder default Huffman code table is used in the JPEG file header,which is not the optimal Huffman code table for the current image. Therefore, there are still encoding redundancies that cannot be ignored in JPEG images. To reduce unnecessary encoding redundancies as much as possible, we adjusted the order of the RLVs according to the feature of the Huffman coding before the histogram was modified.The strategy we adopted is as follows:

    1. Find the peak pointp, and then look for the nearest zero pointzfrom the peak pointpaccording to the frequency distribution information of the VLC in the histogram. A large number of statistical results show thatpis generally “0/1”, which is the ranked first RLV in the default Huffman code table. In Fig. 3,pis “0/1” andzis “0/8”.

    2. Adjust the order of the RLVs corresponding to the VLC between the peak pointpand the zero pointz. After bothpandzare determined, theoretically we can already perform histogram modification operations. However, considering that the ranking of the VLC frequency distribution between the peak point and the zero point is not strictly in accordance with the order of the RLVs in the default Huffman code table,the RLV sequence needs to be optimized. In other words, we need to readjust the RLV order in the DHT segment according to the descending order of the current VLC frequency distribution. The theoretical basis for this is that Huffman coding defines a shorter code length for frequently occurring codes, so adjusting the coding sequence based on the current VLC frequency of occurrence is equivalent to optimizing the Huffman coding, which means that we further reduce encoding redundancies. Fig. 4 shows a sorted histogram with the “Baboon” image with a quality factor of 80 as an example.

    Figure 4: The sorted histogram of VLCs (“Baboon” image, QF=80)

    Before optimization, 162 VLCs are divided intoncategories according to code length.The length of thei-th category isLi, that is:Reorder the VLC and the corresponding RLV between the peak pointpand the zero pointzaccording to the descending order, then the VLC betweenpandzcan be recorded as:

    Wherenpis equal to the category number of the category where the peak point is located;nzis equal to the previous category number of the category where the zero point is located;lis the code length ofcorresponding tobefore modification;denotes the frequency of occurrence ofin the entropy-encoded data segment.

    3.1.2 Modification of histogram of VLCs

    After reordering the RLVs, we can embed data by histogram modification. First, the RLV between the peak point and the zero point is shifted rightward, e.g. “0/2” is modified to“0/3”. After the right-shift operation is completed, the frequency of the nearest VLC to the right of the peak pointpis 0, that is, the zero point at this time becomesp+1. The following figure shows the right-shifted histogram of a “Baboon” image with a quality factor of 80.

    Figure 5: The shifted histogram of VLCs (“Baboon” image, QF=80)

    3.1.3 Modification of DHT segment

    In order to ensure that the modified JPEG image generated after data embedding has no distortion compared to the original image, we also modified the RLV sequence in the DHT segment while right-shifting the VLC histogram. Because the RLVs at different positions in the DHT segment correspond to different VLCs, we also shift the RLV in thecorresponding position by one unit at the same time according to the order in which the VLC is shifted right. In this way, the RLV corresponding to each VLC before and after the histogram modification is unchanged, which ensures that the result obtained by the decoding process is consistent with the original image and ensures that the image is free of any distortion. In addition, we modify the RLV with a value ofp+1 topso that when embedding data, regardless of embedding “0” or “1”, the RLV corresponding to VLC isp,ensuring that the decoding result is unchanged.

    3.1.4 Calculation of the total filesize expansion

    During the modification of the histogram, the filesize expansion is unavoidable. Because the length of the VLC may not be equal before and after the right shift of the RLV, if the modified VLC is longer than the original VLC, JPEG file size will increase. However,because we optimized the RLV ordering, the VLCs are sorted in descending order. Only the VLC with the lowest frequency in each category will increase the code length after modification, so it can effectively reduce the file expansion. Formula (4) denotes the file expansion caused by the modification of the histogram:

    Wherejrepresents the category number of the next category ofCi.

    As mentioned in 3.1.1, the RLV sorting optimization is performed before the histogram is modified so the encoding redundancy is reduced. This part of the reduction isR, then the total file expansion (FE) can be represented as:

    3.2 Data embedding & extraction

    Figure 6: Data embedding process

    The process of data embedding is shown in Fig. 6. The main process of the embedding phase is as follows:

    Input: Secret bitstream and original JPEG bitstream.

    Output: Modified JPEG bitstream.

    Step 1: Parse the JPEG entropy-coded segment and the DHT segment and count the frequency of occurrence of each VLC.

    Step 2: The frequency distribution histogram of the VLC is generated according to the order of the RLV values in the DHT segment. The location of the peak point and zero point are determined based on the length of the secret bitstream.

    Step 3: Reorder the order of the RLVs in the DHT segment according to the optimized Huffman encoding operation mentioned in 3.1. Then perform histogram modification operation and DHT segment modification operation.

    Step 4: Scan all the VLCs in the entropy-coded data and modify the VLC in the entropycoded data according to the information that needs to be embedded. When the VLC corresponding to the RLV with the value ofpis scanned, the data embedding operation can be performed. If “0” is embedded, the current VLC remains unchanged; if “1” is embedded, the current VLC is modified to the original VLC that correspond RLV isp+1.The entropy-coded data segment is scanned sequentially until all the data in the secret bitstream are embedded, then generate the modified JPEG bitstream.

    Figure 7: Data extraction process

    The process of data extraction is shown in Fig. 7. The main flow of the secret data extraction and recovery phase is as follows:

    Input: Modified JPEG bitstream.

    Output: Secret bitstream and original JPEG bitstream.

    Step 1: Parse the DHT segment of the JPEG file header and calculate the corresponding VLC value according to the RLV ranking order. Find the first two VLCs that correspond to the same RLV, namely the peak point and the nearest zero point.

    Step 2: Scan all the VLCs in the entropy-coded data segment and extract all secret data according to the peak point and the length of the secret bitstream.

    Step 3: After the secret data extraction is completed, the modified RLV sequence is restored to the original state according to the default Huffman code table and the corresponding VLC is modified to generate a recovered JPEG bitstream.

    4 Experimental results and analysis

    In order to test the performance of the proposed method and compare with other two methods, we have tested all the images from UCID image database. These images are converted to grayscale and further compressed to JPEG files with different quality factors.Fig. 8 shows the comparison of the payload and filesize expansion rate (FER) of the three schemes under different quality factors. Denote the original JPEG stream length asL, the FER can be represented as:

    Figure 8: Comparisons of payload in UCID Image Library with different quality factors.(a) QF=70. (b) QF=80. (c) QF=90. (d) QF=100

    Figure 9: Comparisons of FER in UCID Image Library with different quality factors. (a)QF=70. (b) QF=80. (c) QF=90. (d) QF=100

    According to the results in Fig. 8, Huang et al.’s method [Huang, Qu, Kim et al. (2016)]has the highest embedding capacity in full embedding among the three methods. For the FER, it can be seen from Fig. 9 that the FER of Huang et al.’s method [Huang, Qu, Kim et al. (2016)] is higher than other methods.

    Table 1: Comparison of the three methods (QF=80)

    Table 2: Comparison of the three methods (QF=90)

    Tab. 1 and Tab. 2 respectively list the average values of all the indexes of all three methods when QF=80 and QF=90. The peak signal-to-noise ratio (PSNR) is an objective criterion for evaluating the visual quality of the image between the modified JPEG image and the original JPEG image. The higher the PSNR value, the higher the visual quality of the modified JPEG image. Since our proposed method has no effect on the image quality,i.e. lossless, the PSNR value can be regarded as ∞. However, since Liu et al.’s method[Liu, Chang, Lin et al. (2016)] only modifies the value of VLC in the entropy-coded data segment during histogram modification, while the corresponding RLV has not beenmodified, which means that the additional bit information length after VLC does not correspond to the size value of RLV. The decoder may generate exceptions when decoding. Therefore, PSNR is set to 0.

    The key point of our proposed method is lossless, but our method also can obtain high payload, which is not inferior to Huang et al.’s RDH method [Huang, Qu, Kim et al.(2016)]. In addition, the filesize expansion of our method is acceptable and less than Liu et al.’s method.

    5 Conclusions

    In this paper, a lossless and high-payload data hiding scheme for JPEG images is proposed. After introducing the HS-based method in JPEG bitstream, we propose a novel method that optimize histogram modification and modify the DHT segment to preserve the image quality with no distortion. After sorting the histogram and replace the corresponding VLCs, we obtain less filesize expansion. Key contribution is lossless, less filesize expansion in identical payload.

    Acknowledgement:This research work is partly supported by National Natural Science Foundation of China (61502009, 61525203, 61472235, U1636206, 61572308), CSC Postdoctoral Project (201706505004), Anhui Provincial Natural Science Foundation(1508085SQF216), Key Program for Excellent Young Talents in Colleges and Universities of Anhui Province (gxyqZD2016011), and Anhui university research and innovation training project for undergraduate students.

    久久精品人人爽人人爽视色| 久久国产精品人妻蜜桃| 在线观看免费高清a一片| 欧美精品亚洲一区二区| 午夜福利视频在线观看免费| 日韩熟女老妇一区二区性免费视频| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 国产精品一区二区免费欧美| 不卡av一区二区三区| 亚洲全国av大片| 久热这里只有精品99| 国产一区二区三区在线臀色熟女 | 老司机靠b影院| 日韩视频在线欧美| 久久人妻熟女aⅴ| 欧美乱妇无乱码| 亚洲avbb在线观看| 丝袜美足系列| 国产精品影院久久| 色94色欧美一区二区| 在线观看免费日韩欧美大片| 免费在线观看黄色视频的| 两性夫妻黄色片| 久久精品亚洲av国产电影网| 男女下面插进去视频免费观看| 国产有黄有色有爽视频| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线观看99| 男女床上黄色一级片免费看| 日本欧美视频一区| 亚洲欧美色中文字幕在线| 99riav亚洲国产免费| 欧美一级毛片孕妇| 激情在线观看视频在线高清 | 亚洲综合色网址| 最新美女视频免费是黄的| 久久久久网色| avwww免费| 90打野战视频偷拍视频| 久久国产精品大桥未久av| 国产主播在线观看一区二区| 精品人妻1区二区| 久热这里只有精品99| 国产成人精品在线电影| 夜夜爽天天搞| 久久久精品国产亚洲av高清涩受| 国产极品粉嫩免费观看在线| 午夜久久久在线观看| 国产99久久九九免费精品| 日日夜夜操网爽| www.精华液| 亚洲国产av影院在线观看| 99香蕉大伊视频| 18禁黄网站禁片午夜丰满| 日韩有码中文字幕| 99香蕉大伊视频| 国产精品成人在线| 日本av免费视频播放| 欧美日韩福利视频一区二区| 99精品久久久久人妻精品| e午夜精品久久久久久久| 日韩大片免费观看网站| 国产亚洲欧美精品永久| 老司机福利观看| 精品午夜福利视频在线观看一区 | 9191精品国产免费久久| 不卡av一区二区三区| 丝瓜视频免费看黄片| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 99国产精品99久久久久| 极品少妇高潮喷水抽搐| 日本a在线网址| av片东京热男人的天堂| 亚洲一区中文字幕在线| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 日韩大片免费观看网站| 国产精品一区二区精品视频观看| 欧美老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 免费看a级黄色片| 天天添夜夜摸| 国产97色在线日韩免费| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 国产成人av教育| 精品高清国产在线一区| 国产在线观看jvid| 99riav亚洲国产免费| 久久热在线av| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 女警被强在线播放| 757午夜福利合集在线观看| 国产淫语在线视频| 欧美乱妇无乱码| 国产99久久九九免费精品| 日韩免费av在线播放| 女人久久www免费人成看片| 99热国产这里只有精品6| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| 亚洲av电影在线进入| 精品久久久久久电影网| 在线 av 中文字幕| 国产高清激情床上av| 午夜福利在线观看吧| 国产人伦9x9x在线观看| 三上悠亚av全集在线观看| 久久久水蜜桃国产精品网| 一区在线观看完整版| 看免费av毛片| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 久久热在线av| 欧美+亚洲+日韩+国产| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆| 中文字幕精品免费在线观看视频| 国产主播在线观看一区二区| 成年人黄色毛片网站| 一级毛片女人18水好多| av天堂在线播放| 91成年电影在线观看| 三级毛片av免费| 热re99久久国产66热| 韩国精品一区二区三区| 国产免费现黄频在线看| 久久精品国产99精品国产亚洲性色 | 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av | 满18在线观看网站| 丰满迷人的少妇在线观看| 欧美日韩黄片免| 高清视频免费观看一区二区| 精品国产一区二区久久| 在线 av 中文字幕| 深夜精品福利| 国产一区二区在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 亚洲欧洲日产国产| 亚洲精品在线美女| 老司机影院毛片| 成年女人毛片免费观看观看9 | 建设人人有责人人尽责人人享有的| 久久中文看片网| 日本av免费视频播放| 91精品国产国语对白视频| 久久精品国产a三级三级三级| 国产av精品麻豆| 日韩中文字幕视频在线看片| 亚洲欧美激情在线| 露出奶头的视频| 国产区一区二久久| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区 | 国产欧美亚洲国产| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| 亚洲精品美女久久av网站| 一进一出抽搐动态| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| 日本wwww免费看| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看 | 国产成人系列免费观看| 亚洲熟女精品中文字幕| av电影中文网址| av在线播放免费不卡| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 嫁个100分男人电影在线观看| 一级毛片精品| 久久国产精品男人的天堂亚洲| 最近最新免费中文字幕在线| 91精品国产国语对白视频| 日韩视频在线欧美| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 国产xxxxx性猛交| 麻豆av在线久日| 99精品在免费线老司机午夜| 波多野结衣av一区二区av| 亚洲国产欧美一区二区综合| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 亚洲伊人久久精品综合| 女同久久另类99精品国产91| 日韩视频一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 亚洲一码二码三码区别大吗| 精品一区二区三区av网在线观看 | 捣出白浆h1v1| aaaaa片日本免费| 色老头精品视频在线观看| 人妻一区二区av| 亚洲国产av新网站| 精品一区二区三区视频在线观看免费 | 国产精品 国内视频| 国产日韩欧美在线精品| 叶爱在线成人免费视频播放| 中文字幕人妻熟女乱码| 一级毛片电影观看| 女性被躁到高潮视频| 精品视频人人做人人爽| 国产极品粉嫩免费观看在线| 亚洲欧美精品综合一区二区三区| 日韩熟女老妇一区二区性免费视频| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 午夜福利免费观看在线| 搡老乐熟女国产| 女人被躁到高潮嗷嗷叫费观| 69av精品久久久久久 | av欧美777| 国产欧美日韩一区二区精品| 国产老妇伦熟女老妇高清| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 在线观看www视频免费| 国产精品av久久久久免费| 欧美国产精品一级二级三级| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 亚洲欧美一区二区三区久久| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 激情在线观看视频在线高清 | bbb黄色大片| 国产精品免费视频内射| 岛国毛片在线播放| 91大片在线观看| 日韩欧美国产一区二区入口| 成人手机av| 成人永久免费在线观看视频 | 午夜91福利影院| 亚洲视频免费观看视频| 操美女的视频在线观看| 婷婷成人精品国产| av超薄肉色丝袜交足视频| 99精品在免费线老司机午夜| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 在线观看66精品国产| 午夜福利在线免费观看网站| 丰满迷人的少妇在线观看| 亚洲成人免费av在线播放| 高清毛片免费观看视频网站 | aaaaa片日本免费| 黄色成人免费大全| 少妇裸体淫交视频免费看高清 | 中亚洲国语对白在线视频| 色综合婷婷激情| 亚洲成人国产一区在线观看| 高清av免费在线| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 精品国产国语对白av| 另类亚洲欧美激情| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| av免费在线观看网站| 国产精品自产拍在线观看55亚洲 | 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 欧美久久黑人一区二区| avwww免费| 日本wwww免费看| 日韩中文字幕欧美一区二区| 天天操日日干夜夜撸| 黄色毛片三级朝国网站| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 十八禁高潮呻吟视频| 日本av免费视频播放| 亚洲午夜精品一区,二区,三区| 岛国毛片在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产一卡二卡三卡精品| 欧美另类亚洲清纯唯美| 日韩成人在线观看一区二区三区| 日本wwww免费看| 天堂俺去俺来也www色官网| 免费观看人在逋| 99精品在免费线老司机午夜| 欧美黄色片欧美黄色片| 国产精品 欧美亚洲| e午夜精品久久久久久久| 欧美日韩av久久| 国产成人精品在线电影| 中文字幕av电影在线播放| 欧美午夜高清在线| svipshipincom国产片| 亚洲精品在线观看二区| 后天国语完整版免费观看| 水蜜桃什么品种好| 一夜夜www| 亚洲色图综合在线观看| 国产精品二区激情视频| 久久久精品94久久精品| 精品一区二区三卡| 在线av久久热| av线在线观看网站| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影 | 国产又爽黄色视频| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 精品卡一卡二卡四卡免费| 久久毛片免费看一区二区三区| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 日韩大片免费观看网站| 色在线成人网| 女人精品久久久久毛片| 亚洲成人免费av在线播放| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 99香蕉大伊视频| 精品一区二区三区视频在线观看免费 | 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 悠悠久久av| 亚洲性夜色夜夜综合| 日本av手机在线免费观看| 丁香六月天网| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 亚洲成人国产一区在线观看| 91麻豆av在线| 午夜视频精品福利| 99riav亚洲国产免费| av不卡在线播放| 国产三级黄色录像| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 国产黄频视频在线观看| 老司机深夜福利视频在线观看| 国产精品二区激情视频| 91麻豆av在线| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 国产精品电影一区二区三区 | 黄色视频不卡| 国产片内射在线| 国产精品久久久av美女十八| 国产精品秋霞免费鲁丝片| 女人爽到高潮嗷嗷叫在线视频| 人妻一区二区av| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 在线观看舔阴道视频| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 女人高潮潮喷娇喘18禁视频| 国产av又大| 老熟妇乱子伦视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产成人av激情在线播放| 国产高清激情床上av| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 亚洲精华国产精华精| 在线观看舔阴道视频| 国产三级黄色录像| 国产片内射在线| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 亚洲专区国产一区二区| 精品免费久久久久久久清纯 | 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 黄色 视频免费看| 交换朋友夫妻互换小说| 久久久久精品国产欧美久久久| 日本五十路高清| 美女主播在线视频| 水蜜桃什么品种好| 久久久水蜜桃国产精品网| 搡老乐熟女国产| h视频一区二区三区| 最黄视频免费看| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| 老司机福利观看| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| 天天躁日日躁夜夜躁夜夜| 久久久欧美国产精品| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 国产真人三级小视频在线观看| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 午夜老司机福利片| 免费日韩欧美在线观看| 国产午夜精品久久久久久| 国产精品久久电影中文字幕 | 国产精品一区二区在线观看99| 欧美中文综合在线视频| av天堂在线播放| 老鸭窝网址在线观看| 老司机福利观看| 亚洲专区国产一区二区| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| kizo精华| 精品久久蜜臀av无| 自线自在国产av| 日韩大码丰满熟妇| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 无人区码免费观看不卡 | 国产高清视频在线播放一区| 国产精品 国内视频| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 久久精品91无色码中文字幕| 中文字幕制服av| 女人久久www免费人成看片| 国产成人免费观看mmmm| 亚洲欧美激情在线| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| 三上悠亚av全集在线观看| 亚洲一码二码三码区别大吗| 日日夜夜操网爽| kizo精华| 一区在线观看完整版| 久久精品国产综合久久久| 日韩 欧美 亚洲 中文字幕| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 一本大道久久a久久精品| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 国产精品久久电影中文字幕 | 色精品久久人妻99蜜桃| 窝窝影院91人妻| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 大片电影免费在线观看免费| 女同久久另类99精品国产91| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 女同久久另类99精品国产91| 两个人免费观看高清视频| 啪啪无遮挡十八禁网站| 久久人妻av系列| 日本五十路高清| 日韩视频一区二区在线观看| 亚洲综合色网址| 在线观看66精品国产| 成年人免费黄色播放视频| 亚洲天堂av无毛| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| 夫妻午夜视频| 日韩一区二区三区影片| 午夜福利在线免费观看网站| 欧美黄色淫秽网站| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 久9热在线精品视频| av一本久久久久| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区精品| 国产高清国产精品国产三级| 12—13女人毛片做爰片一| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 亚洲国产看品久久| 久久久久久久久久久久大奶| 高清在线国产一区| 一个人免费看片子| 亚洲av日韩在线播放| 我的亚洲天堂| 自线自在国产av| 狠狠狠狠99中文字幕| 成人18禁在线播放| 亚洲国产成人一精品久久久| 国产成人精品久久二区二区91| 脱女人内裤的视频| 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 国产免费视频播放在线视频| 超碰97精品在线观看| 亚洲九九香蕉| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 欧美成人免费av一区二区三区 | 亚洲一区二区三区欧美精品| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 99re在线观看精品视频| 国产色视频综合| 成人永久免费在线观看视频 | 亚洲一区二区三区欧美精品| 脱女人内裤的视频| 欧美av亚洲av综合av国产av| 美女主播在线视频| 老司机靠b影院| 久久99一区二区三区| 亚洲欧美日韩高清在线视频 | 国产三级黄色录像| 精品午夜福利视频在线观看一区 | 欧美日韩av久久| 亚洲性夜色夜夜综合| 王馨瑶露胸无遮挡在线观看| 日韩熟女老妇一区二区性免费视频| 黄片播放在线免费| 亚洲av美国av| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 在线观看免费视频网站a站| 99香蕉大伊视频| 女性被躁到高潮视频| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 亚洲国产成人一精品久久久| av福利片在线| 在线观看66精品国产| 狠狠狠狠99中文字幕| 亚洲欧美一区二区三区久久| 90打野战视频偷拍视频| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 757午夜福利合集在线观看| 亚洲一区二区三区欧美精品| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| a级片在线免费高清观看视频| 丝袜美足系列| 亚洲精品中文字幕一二三四区 | a级毛片在线看网站| 黑人巨大精品欧美一区二区mp4| 欧美乱妇无乱码| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 久久久久精品人妻al黑| 国产亚洲精品一区二区www | 中文字幕人妻熟女乱码| 精品视频人人做人人爽| 最新美女视频免费是黄的| 捣出白浆h1v1| 热re99久久国产66热| 欧美精品人与动牲交sv欧美| 91字幕亚洲| av又黄又爽大尺度在线免费看| 国产在线免费精品| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲 | 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 国产精品免费一区二区三区在线 | 国产aⅴ精品一区二区三区波| 日本黄色日本黄色录像| 亚洲一区中文字幕在线| 久久久国产成人免费| 考比视频在线观看| 精品国内亚洲2022精品成人 | 国产在线视频一区二区| 老司机在亚洲福利影院| 欧美日韩视频精品一区| 国产又爽黄色视频| 久久久久久久久免费视频了| cao死你这个sao货| 欧美亚洲日本最大视频资源| 多毛熟女@视频| 19禁男女啪啪无遮挡网站| 麻豆成人av在线观看| 热99re8久久精品国产| 亚洲第一青青草原| 黑人操中国人逼视频| 后天国语完整版免费观看| 色在线成人网| 中文字幕av电影在线播放| 亚洲七黄色美女视频| 老熟女久久久| 多毛熟女@视频| 国产一区二区 视频在线|