• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of mesoscale wind stress-SST coupling on the Kuroshio extension jet*

    2018-07-11 01:57:56WEIYanzhou魏艷州ZHANGRonghua張榮華WANGHongna王宏娜KANGXianbiao康賢彪
    Journal of Oceanology and Limnology 2018年3期
    關(guān)鍵詞:榮華

    WEI Yanzhou (魏艷州) ZHANG Ronghua (張榮華) WANG Hongna (王宏娜) KANG Xianbiao (康賢彪)

    1Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Qingdao National Laboratory for Marine Science and Technology,Qingdao 266000,China

    4College of Air Traffc Management,Civil Aviation Flight University of China,Guanghan 618307,China

    AbstractEffect of mesoscale wind stress-SST coupling on the Kuroshio extension jet is studied using the Regional Ocean Modeling System. The mesoscale wind stress perturbation (τ MS) is diagnostically determined from modelled mesoscale SST perturbation (SSTMS) by using their empirical relationship derived from corresponding observation. From comparing two experiments with and without theτ MSfeedback, it is found that the interactively representedτ MS-SSTMScoupling can modulate the kinetic energy along the Kuroshio extension jet, with little effect on the Kuroshio pathway. Similar results are also obtained in three additional sensitivity experiments, which consider half strength of theτ MS, and the momentum flux and heat flux effect induced byτ MS, respectively. That means simply taking into account theτ MS-SSTMScoupling has little effect on improving the simulation of the Kuroshio Current system.

    Keyword:mesoscale wind stress-SST coupling; Kuroshio extension; surface kinetic energy; ocean modeling

    1 INTRODUCTION

    significant mesoscale coupling perturbations (at a size of 100-1 000 km) in the ocean and atmosphere are observed in the Kuroshio Extension (e.g., Nonaka and Xie, 2003; Xie, 2004; Chelton et al., 2004;Maloney and Chelton, 2006; Small et al., 2008). For instance, the perturbed sea surface temperature (SST)is accompanied with perturbations in air temperature,cloud fraction, wind stress, and sea level pressure(e.g., Nonaka and Xie, 2003; Minobe et al., 2008;Tokinaga et al., 2009; Bryan et al., 2010). Mesoscale perturbations of SST (SSTMS) and sea surface wind stress (τMS) are positively correlated (e.g., Maloney and Chelton, 2006; Bryan et al., 2010; Chelton and Xie, 2010), suggesting that theτMSare driven by the SSTMS, by means of downward momentum transport and pressure adjustment (e.g., Small et al., 2008;Bryan et al., 2010; Frenger et al., 2013).

    The mesoscale air-sea coupling has significant effect on both the atmosphere and ocean. On one hand, SST perturbations can directly affect the wind stress divergence and cloud fraction in the atmospheric boundary layer, and are hence important for precipitation simulations (e.g., Minobe et al., 2008;Putrasahan et al., 2013). On the other hand, the induced wind stress perturbations can in turn impact the oceanic conditions in the Kuroshio extension(e.g., Wei et al., 2017). Specifically, they can inhibit the mesoscale SST perturbations by means of surface heat flux and affect the local Ekman upwelling by means of momentum flux (e.g., Nonaka and Xie,2003; Maloney and Chelton, 2006; Chelton, 2013;Wei et al., 2017).

    The effect of mesoscale air-sea coupling on the oceanic jet has been previously studied from different methods. Ma et al. (2016) demonstrated that the mesoscale air-sea coupling had an effect ofintensifying the Kuroshio based on the atmosphereocean coupled models. In their work, the effect of mesoscale air-sea coupling was isolated through comparing two experiments with and without the SSTMSbefore being used to force the atmosphere model. Using an idealized high-resolution quasigeostrophic (QG) ocean model, Hogg et al. (2009)demonstrated that the mesoscale wind stress-SST coupling can reduce the strength of the ocean jet.These different results are probably caused by their different experimental settings. For instance, only the effect ofτMS-SSTMScoupling is considered by Hogg et al. (2009), while all the atmospheric responses to SSTMSare taken into account by Ma et al. (2016).Thus, there are uncertainties in the effects of mesoscale air-sea coupling.

    In Wei et al. (2017), we took a simple approach to incorporate theτMS-SSTMScoupling in the ocean model to study its effect on the oceanic conditions in the Kuroshio extension. This study continues to examine the effect ofcoupling on the Kuroshio extension jet.

    2 METHODOLOGY

    2.1 Ocean model

    The Regional Ocean Modeling System (ROMS) is employed to assess the effect ofcoupling on the Kuroshio extension jet. The ROMS is a threedimensional, hydrostatic, free-surface, terrainfollowing numerical model (e.g., Shchepetkin and McWilliams, 2005). The model domain is from 20°S to 60°N in latitude and from 100°E to 70°W in longitude. Longitude resolution is 1/8°, and latitude resolution is 1/8°×cos (latitude), with 50 s-coordinate levels in the vertical direction. The temperature,salinity, velocity, and surface elevation at boundaries are prescribed by spatial interpolation of the WOA2009 datasets. The 3D velocity, temperature,and salinity are nudged to boundary values at these three open lateral boundaries with a 360-day time scale for outf l ow and 3-day for inf l ow. The logical switches of nudging/relaxation are also turned on to nudge the 2D momentum and 3D temperature fi elds to their climatology with a 360-day time scale. The time steps are 30 s and 300 s for the 2-D and 3-Dequations. At each time step, the surface net heat flux sensitivity to SST (dQ/dSST) is calculated and used to introduce thermal feedback to correct net surface heat flux (Barnier et al., 1995). More detailed descriptions of the model settings are given in Wei et al. (2017). After 20 year integration, a quasiequilibrium state is obtained; and the derived oceanic variables in that time are used as initial conditions for experiments as described below.

    Table 1 τMS-induced heat flux and momentum flux effects considered in five experiments

    2.2 Numerical experiments

    In order to assess the effect ofτMS-SSTMScoupling,two experiments with and without theτMSfeedback are carried out. In no-feedback experiment, the model settings are as normal. In the feedback experiment,theτMS-SSTMScoupling is incorporated in the model in the Kuroshio extension region.

    TheτMS-SSTMScoupling is incorporated into the ocean model by interactively determining theτMSfrom SSTMSfollowing their close relationship.τMSis estimated from the equation:τMS=a×SSTMS, whereais regression coeffcient and is taken 0.01 (Wei et al.,2017). The SSTMSsimulated by the ocean model is isolated by using the locally weighted regression(loess) method (e.g., Cleveland and Devlin, 1988). In this study, a 10° latitude ×30° longitude loess spatial high-pass fi lter is used (Wei et al., 2017). The derivedτMSis then used to combine with the climatology wind stress to force the ocean in the feedback experiment,with the amplitude changed from |τ| to |τ|+τMS, and the wind directionθunchanged. The area where theτMSSSTMScoupling is considered is located east of Japan,because theτMSand SSTMSare observed to be active there.

    TheτMSacts to impact the ocean by means of surface momentum flux and heat flux. In order to examine the sensitivity of the results toτMSand understand the way by whichτMSimpacts the ocean,three additional experiments are carried out. They are half-feedback experiment (which uses half strength ofτMS), HF-feedback (τMSis allowed to inf l uence the surface heat flux only) and MF-feedback (τMSis allowed to inf l uence the surface momentum flux only)experiments (Table 1). In order to enhance computational speed,τMSis updated daily instead ofinstantly in all the above experiments. All the experiments are run for 10 years with monthly averaged output.

    Fig.1 A snapshot of the SSTMS(unit: °C) simulated by the ocean model (a), and the zonal (b) and meridional (c) wind stress perturbations (unit: N/m2) derived from it

    3 RESULT

    3.1 The effectiveness of the empirical coupling

    The high resolution model based on ROMS is eddy-permitting, even though wind stress forcing is climatology. As shown in Fig.1a, the simulated SSTMShas a size of about 100-400 km and an amplitude of about 2.5°C, which agree with that found in satellite observation (e.g., Wei et al., 2017). Figure 1b and c show the zonal and meridional mesoscale wind stress perturbations derived from the SSTMS. The spatial distribution of zonal wind stress perturbations agrees with that of SSTMS. The wind stress fi eld perturbations are northwesterly in the area of positive SSTMSwhile southeasterly in the area of negative SSTMS, with the magnitude at about 0.03 N/m2. Therefore, the mesoscale wind stress fi eld perturbations can be derived from the empirical relationship with respect to SSTMS.

    Fig.2 Correlation coeffcients between SSTMSand τMSin no-feedback (a) and feedback (b) experiments Contour interval is 0.1, with small value (<0.4) contours omitted.

    Positive correlation betweenτMSand SSTMSis obtained after incorporation of theτMS-SSTMScoupling(Fig.2). Correlation coeffcient betweenτMSand SSTMSwas often simulated incorrectly in the low resolution climate models (e.g., Maloney and Chelton,2006; Bryan et al., 2010). This problem exists in the no-feedback experiment when theτMSis not incorporated into the ocean model (Fig.2a). The incorporation of the empiricalτMS-SSTMScoupling helps to improve this problem, and enhances the correlation between them (Fig.2b). These results altogether suggest that the empiricalτMS-SSTMScoupling utilized here is effective to capture their inherent relationship.

    3.2 Effect on the Kuroshio extension jet

    TheτMS-SSTMScoupling is interactively incorporated into the model to represent theτMSfeedback on the ocean. In this subsection, the effect ofτMSon the Kuroshio extension jet is isolated through comparing two experiments with and without it.Figure 3a and b show the mean kinetic energy simulated by no-feedback and feedback experiments as averaged from year 21 to 30. The kinetic energy can reach 2.0 m2/s2, suggesting that the Kuroshio velocity can reach 1.4 m/s. significant kinetic energy difference between two experiments is seen along the Kuroshio extension jet (Fig.3c); the largest difference exceeds 0.2 m2/s2, which is about 10% of the mean kinetic energy.

    Figure 3d-f show corresponding distance-depth cross-sections of zonal velocities simulated by nofeedback and feedback experiments averaged from 142°E to 152°E, and their difference. It is seen that the Kuroshio Current can reach to a depth of 1 500 m,with relatively weak counter current on its two fl anks(Fig.3d). The position of the Kuroshio extension jet is almost unchanged compared with that in the nofeedback experiment (Fig.3e). The velocity difference between no-feedback and feedback experiments is negative at the Kuroshio axis, while positive at its two sides (Fig.3f). The difference with the same sign can reach to a depth of 2 000 m. These results suggest that theτMS-SSTMScoupling can modulate the Kuroshio velocity, while has little effect on the position of the Kuroshio pathway (Fig.3d and e).

    Fig.3 The surface kinetic energy (unit: m2/s2) simulated in no-feedback (a) and feedback (b) experiments, and their difference(c); the corresponding zonal velocity (unit: m/s) averaged from 142°E to 152°E are shown in (d), (e), and (f)Thexaxis in d-f denotes the distance from the Kuroshio axis (0), with negative (positive) values indicating distances north (south) of the Kuroshio jet. All results are averaged from the model year 21 to 30.

    The kinetic energy differences in half-feedback,MF-feedback and HF-feedback experiments relative to that in the no-feedback experiment are shown in Fig.4. It is seen that the kinetic energy has substantial changes along the Kuroshio extension jet in these experiments. The results suggest that theτMS-SSTMScoupling acts to affect the Kuroshio surface kinetic energy through either the way of moment flux or heat flux. However, the position of the Kuroshio extension jet is not found to change systematically in these experiments. It can be also found that the magnitude of surface kinetic energy difference in the halffeedback experiment (Fig.4a) is not significantly reduced relative to that in the feedback experiment(Fig.3c), suggesting that the kinetic energy difference might be not linearly related to the strength ofτMS.Moreover, the surface kinetic energy difference in the feedback experiment (Fig.3c) seems to be not a simple combination of the differences caused respectively by the effects of surface heat flux and momentum flux(Fig.4b and c).

    The effects ofτMS-SSTMScoupling are also seen in the SST, wind stress curl and surface heat flux. Figure 5a shows the SST difference between no-feedback and feedback experiments as averaged over the model year 21-30. It is seen that the SST difference can reach 0.3°C, but in a structure that is very patchy.Figure 5b shows the wind stress curl difference between two experiments. The difference in wind stress curl between the two experiments is about 0.5×10-7N/m3, which is a small portion (about 10%)relative to the observed mesoscale wind stress curl perturbations (e.g., Wei et al., 2017). Figure 5c shows the surface net heat flux (downward positive)difference between the two experiments, which has a magnitude of about 15 W/m2.

    Fig.4 The surface kinetic energy differences (relative to no-feedback experiment) in half-feedback (a), MF-feedback (b) and HF-feedback (c) experiments averaged from the model year 21 to 30

    An interesting phenomenon is that theτMSinduced kinetic energy difference is small east of 150°E(Fig.3c), although there are large surface net heat flux,SST, and wind stress curl differences (Fig.5). That means the kinetic energy difference is not simply caused by the differences of these three terms. As the Kuroshio speed is large, a small change in the Kuroshio extension jet (e.g., intrinsic fluctuations)might results in large difference in the surface kinetic energy. For instance, the wind stress curl induced Ekman pumping might interact with the Kuroshio and result in the distinct kinetic energy difference along the Kuroshio pathway.

    4 CONCLUDING REMARKS

    The effect of mesoscale wind stress-SST coupling on the Kuroshio extension jet is investigated by using a high resolution ocean model. The perturbed sea surface wind stress fi eld is estimated empirically from modeled SSTMSand then incorporated into the ocean model. The effect ofτMS-SSTMScoupling on the Kuroshio extension jet is isolated through comparing two experiments with and without this effect. It is found that thecoupling can substantially affect the surface kinetic energy along the Kuroshio extension jet, with little effect on the climatology mean position of the Kuroshio pathway. Further sensitivity analyses suggest that theτMScan affect the surface kinetic energy from either the way of surface heat flux or momentum flux. The interactively representedτMS-SSTMScoupling also affects the climatology mean SST, wind stress curl and surface heat flux, but the induced differences are all very patchy.

    Fig.5 SST (a), wind stress curl (b) and surface heat flux (c) differences between no-feedback and feedback experiments as averaged from year 21 to 30Positive curl value indicates upwelling, while negative value indicates downwelling. Surface heat flux is negative while the ocean loses heat.

    Hogg et al. (2009) pointed out that theτMS-SSTMScoupling can reduce the strength of the ocean jet using a high-resolution quasigeostrophic ocean model. Ma et al. (2016) pointed out that the mesoscale air-sea coupling can enhance the strength of the Kuroshio extension jet and affect the position of the Kuroshio axis. These different results arise from different models and ways used to isolate the effect of mesoscale air-sea coupling. Hogg et al. (2009)examined the effect ofτMS-SSTMScoupling from an idealized ocean model. Ma et al. (2016) isolated the effect of mesoscale air-sea coupling by utilizing the atmosphere-ocean coupled models, by comparing two experiments with and without the SSTMScomponent before being provided to the atmosphere model. The approach used by Ma et al. (2016) is advantageous over many aspects; however, the induced large scale atmospheric changes might also interface in their results. In relative, our current study isolated the effect ofτMS-SSTMScoupling in a cleaner way. This study demonstrates that the kinetic energy difference between no-feedback and feedback experiments is large in vicinity of the Kuroshio, which might be linked to interactions between small scale oceanic disturbances and the Kuroshio. This study shows that there is no change in the Kuroshio pathway(Fig.3a and b) after incorporation ofτMS-SSTMScoupling.

    The results derived in this study have some implications on the climate model biases. The long term mean SST difference induced byτMSis patchy(Fig.5a), so that it could not account for the systematic SST biases appeared in climate models. Moreover,theτMS-SSTMScoupling is not found to affect the position of the long term mean Kuroshio extension jet, so that it has little effect on improving the simulations of the Kuroshio Current system.

    猜你喜歡
    榮華
    熊榮華
    香墨
    圓明園300年 半生榮華半生殤
    主持專家:熊榮華
    “自主+創(chuàng)新”譜寫綠色造紙工業(yè)新未來
    造紙信息(2019年7期)2019-09-10 11:33:18
    弱夫“起義”后危機(jī)叢生,還債路上讓愛重來
    媽媽生氣了
    一起出去玩
    Antenna selection based on large-scale fading for distributed MIMO systems①
    趙國(guó)榮先勝徐榮華
    棋藝(2016年4期)2016-09-20 05:22:07
    av电影中文网址| 天堂8中文在线网| 久久久久精品久久久久真实原创| 欧美亚洲 丝袜 人妻 在线| 老鸭窝网址在线观看| 99国产综合亚洲精品| 看免费成人av毛片| 十八禁网站网址无遮挡| 国产探花极品一区二区| 两性夫妻黄色片| 国产精品欧美亚洲77777| 亚洲综合精品二区| 女人高潮潮喷娇喘18禁视频| 90打野战视频偷拍视频| 一级毛片 在线播放| 美女福利国产在线| 精品亚洲成a人片在线观看| 在线精品无人区一区二区三| 国产精品成人在线| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 黄频高清免费视频| 亚洲精品aⅴ在线观看| 国产国语露脸激情在线看| 桃花免费在线播放| 搡老乐熟女国产| av卡一久久| 看非洲黑人一级黄片| 两个人看的免费小视频| 美女国产高潮福利片在线看| 国产深夜福利视频在线观看| 十八禁网站网址无遮挡| 亚洲精品自拍成人| 免费播放大片免费观看视频在线观看| 亚洲av福利一区| 观看美女的网站| 精品久久久精品久久久| 亚洲五月色婷婷综合| 精品99又大又爽又粗少妇毛片| 男女无遮挡免费网站观看| 欧美人与善性xxx| av.在线天堂| 最黄视频免费看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品一区三区| 美女福利国产在线| 午夜91福利影院| 亚洲av在线观看美女高潮| 日日啪夜夜爽| 欧美97在线视频| 日韩视频在线欧美| 国产免费又黄又爽又色| 国产av一区二区精品久久| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 日韩欧美精品免费久久| 久久狼人影院| 一区二区三区精品91| 制服人妻中文乱码| 亚洲精品在线美女| 亚洲成色77777| 国产一区二区在线观看av| 99九九在线精品视频| 亚洲精品一区蜜桃| 国产av精品麻豆| 99久久中文字幕三级久久日本| 国产在视频线精品| 考比视频在线观看| 日本午夜av视频| 久久人人爽av亚洲精品天堂| 国产在视频线精品| 日产精品乱码卡一卡2卡三| 男女边摸边吃奶| 肉色欧美久久久久久久蜜桃| 亚洲av电影在线进入| 波野结衣二区三区在线| 午夜福利网站1000一区二区三区| av一本久久久久| 韩国av在线不卡| 亚洲国产欧美日韩在线播放| 成年人午夜在线观看视频| 精品卡一卡二卡四卡免费| 天天躁日日躁夜夜躁夜夜| 一二三四在线观看免费中文在| 赤兔流量卡办理| 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 大香蕉久久网| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 一区福利在线观看| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| 乱人伦中国视频| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 少妇 在线观看| 熟女av电影| 亚洲天堂av无毛| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 午夜福利网站1000一区二区三区| 天美传媒精品一区二区| 三上悠亚av全集在线观看| 成年人免费黄色播放视频| 视频区图区小说| av电影中文网址| 久久狼人影院| av免费观看日本| 啦啦啦视频在线资源免费观看| 日韩制服丝袜自拍偷拍| 亚洲av欧美aⅴ国产| 亚洲欧洲精品一区二区精品久久久 | 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 男女午夜视频在线观看| freevideosex欧美| 嫩草影院入口| 另类亚洲欧美激情| 国产国语露脸激情在线看| 天天躁日日躁夜夜躁夜夜| 欧美在线黄色| 最黄视频免费看| 国产在视频线精品| 欧美人与善性xxx| 成人国产麻豆网| 亚洲欧美清纯卡通| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| xxxhd国产人妻xxx| 精品人妻一区二区三区麻豆| 欧美亚洲 丝袜 人妻 在线| 啦啦啦在线免费观看视频4| 女人高潮潮喷娇喘18禁视频| 汤姆久久久久久久影院中文字幕| 看免费av毛片| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 大片免费播放器 马上看| 午夜影院在线不卡| 视频在线观看一区二区三区| 看免费av毛片| 免费少妇av软件| 2022亚洲国产成人精品| av卡一久久| 精品国产一区二区三区四区第35| 五月伊人婷婷丁香| 久久久久精品性色| 免费大片黄手机在线观看| 女人精品久久久久毛片| 久久久久精品性色| 成人亚洲精品一区在线观看| 黑人猛操日本美女一级片| 婷婷成人精品国产| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 伊人久久国产一区二区| 亚洲美女黄色视频免费看| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 久久精品久久久久久噜噜老黄| 99久久精品国产国产毛片| 蜜桃在线观看..| 成人国产麻豆网| 国产片特级美女逼逼视频| 宅男免费午夜| 中文字幕色久视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 色视频在线一区二区三区| 高清在线视频一区二区三区| 香蕉国产在线看| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 色吧在线观看| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 91在线精品国自产拍蜜月| 飞空精品影院首页| 国产成人午夜福利电影在线观看| 精品福利永久在线观看| 国产精品 欧美亚洲| 999精品在线视频| 丝袜美腿诱惑在线| 青青草视频在线视频观看| 97在线人人人人妻| 男人操女人黄网站| 欧美日韩av久久| 亚洲国产日韩一区二区| 国产精品亚洲av一区麻豆 | 少妇被粗大的猛进出69影院| 最黄视频免费看| 亚洲一区中文字幕在线| 亚洲经典国产精华液单| 久久久久久久久免费视频了| 国产淫语在线视频| 少妇人妻久久综合中文| 另类精品久久| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 一级毛片 在线播放| 午夜激情av网站| 免费少妇av软件| 国产精品二区激情视频| av在线老鸭窝| 色94色欧美一区二区| 最黄视频免费看| 丝袜美足系列| 蜜桃国产av成人99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄频高清免费视频| 国产精品无大码| 大码成人一级视频| 99久久综合免费| 欧美亚洲日本最大视频资源| 亚洲,欧美精品.| 2022亚洲国产成人精品| 国产精品三级大全| av电影中文网址| 亚洲av综合色区一区| 国产在线视频一区二区| 日本午夜av视频| 观看美女的网站| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 成年女人毛片免费观看观看9 | 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 精品国产一区二区久久| 另类精品久久| 丝袜人妻中文字幕| 丝袜脚勾引网站| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 成年女人在线观看亚洲视频| 久久久久视频综合| 蜜桃国产av成人99| 亚洲人成77777在线视频| 黑人猛操日本美女一级片| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 精品国产超薄肉色丝袜足j| 日本免费在线观看一区| 国产成人a∨麻豆精品| kizo精华| 18禁裸乳无遮挡动漫免费视频| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 色播在线永久视频| 国产欧美亚洲国产| 一级毛片电影观看| 成年女人在线观看亚洲视频| 中文字幕色久视频| 涩涩av久久男人的天堂| 少妇人妻 视频| 青春草国产在线视频| 欧美最新免费一区二区三区| 制服诱惑二区| 国产免费一区二区三区四区乱码| 国产在线视频一区二区| 黑人欧美特级aaaaaa片| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 女人被躁到高潮嗷嗷叫费观| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 中文字幕另类日韩欧美亚洲嫩草| videossex国产| 亚洲在久久综合| 97在线视频观看| 午夜福利视频在线观看免费| 亚洲国产av新网站| 天堂俺去俺来也www色官网| 欧美+日韩+精品| 午夜精品国产一区二区电影| 老汉色av国产亚洲站长工具| 日韩制服骚丝袜av| 亚洲av免费高清在线观看| 熟女av电影| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 亚洲精品久久成人aⅴ小说| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 午夜影院在线不卡| 亚洲人成电影观看| 久久综合国产亚洲精品| 国产成人欧美| 成人免费观看视频高清| 精品午夜福利在线看| 水蜜桃什么品种好| 考比视频在线观看| 人人妻人人澡人人看| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 久久久久久久大尺度免费视频| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到 | 91aial.com中文字幕在线观看| 色播在线永久视频| 国产xxxxx性猛交| 母亲3免费完整高清在线观看 | 一二三四在线观看免费中文在| 在线精品无人区一区二区三| 亚洲美女视频黄频| 午夜福利影视在线免费观看| 韩国精品一区二区三区| videosex国产| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 亚洲三区欧美一区| 国产免费又黄又爽又色| 欧美精品一区二区大全| 欧美另类一区| 在线免费观看不下载黄p国产| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 美女视频免费永久观看网站| 午夜福利在线免费观看网站| 国产成人免费观看mmmm| a级毛片黄视频| 国产成人一区二区在线| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 国产麻豆69| 亚洲国产欧美日韩在线播放| 少妇被粗大猛烈的视频| 18禁观看日本| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 日本wwww免费看| 久久人人97超碰香蕉20202| 麻豆av在线久日| 丝袜美足系列| 九九爱精品视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲中文av在线| 制服人妻中文乱码| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区久久| a级片在线免费高清观看视频| 国产成人精品婷婷| 亚洲精品在线美女| 老鸭窝网址在线观看| 午夜日韩欧美国产| 伦精品一区二区三区| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 久久久亚洲精品成人影院| xxxhd国产人妻xxx| 日日啪夜夜爽| 男女边摸边吃奶| 午夜日韩欧美国产| 久热这里只有精品99| 日韩制服骚丝袜av| 久久人人爽人人片av| 老司机影院毛片| 激情五月婷婷亚洲| 亚洲少妇的诱惑av| 大香蕉久久成人网| a级毛片黄视频| 日韩熟女老妇一区二区性免费视频| 欧美中文综合在线视频| 成年av动漫网址| 免费女性裸体啪啪无遮挡网站| 热re99久久国产66热| 久久久久久久久久久免费av| 亚洲精品av麻豆狂野| 亚洲在久久综合| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看| 91精品国产国语对白视频| 国产白丝娇喘喷水9色精品| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 永久免费av网站大全| 欧美精品亚洲一区二区| 在线观看免费日韩欧美大片| 中文字幕制服av| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 日韩av免费高清视频| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 欧美激情极品国产一区二区三区| 欧美日韩国产mv在线观看视频| 欧美激情高清一区二区三区 | 在线观看www视频免费| 制服诱惑二区| 丝瓜视频免费看黄片| 性少妇av在线| 午夜影院在线不卡| www.熟女人妻精品国产| 深夜精品福利| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 黄色视频在线播放观看不卡| 久久精品亚洲av国产电影网| 在线亚洲精品国产二区图片欧美| 女人精品久久久久毛片| h视频一区二区三区| av一本久久久久| 人妻一区二区av| 啦啦啦中文免费视频观看日本| 久久久久久久久久久免费av| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 久久久久精品人妻al黑| 国产男女超爽视频在线观看| 天堂8中文在线网| 国产精品香港三级国产av潘金莲 | 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 麻豆精品久久久久久蜜桃| 国产成人精品久久二区二区91 | 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| 91久久精品国产一区二区三区| 久久国产精品男人的天堂亚洲| 大香蕉久久成人网| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 三级国产精品片| 一级片免费观看大全| 久久 成人 亚洲| 亚洲国产精品999| 亚洲欧洲日产国产| 精品一区二区三卡| av网站在线播放免费| 国产精品国产av在线观看| 午夜久久久在线观看| av在线老鸭窝| 午夜激情久久久久久久| 国产av一区二区精品久久| 人人澡人人妻人| 美女高潮到喷水免费观看| 一本久久精品| 亚洲av中文av极速乱| 国产成人欧美| 十分钟在线观看高清视频www| 久久婷婷青草| 精品少妇久久久久久888优播| 久久女婷五月综合色啪小说| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 国产深夜福利视频在线观看| 亚洲内射少妇av| 亚洲男人天堂网一区| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 色哟哟·www| 久久精品国产亚洲av涩爱| 国产精品久久久久久av不卡| 男女下面插进去视频免费观看| 丝袜美足系列| 精品国产乱码久久久久久男人| 欧美精品亚洲一区二区| 欧美日韩精品成人综合77777| 欧美成人午夜免费资源| 最新中文字幕久久久久| 国产欧美日韩一区二区三区在线| 免费观看a级毛片全部| 亚洲精品在线美女| 只有这里有精品99| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 亚洲,欧美精品.| 国产精品久久久久久av不卡| 欧美精品一区二区大全| 晚上一个人看的免费电影| 国产97色在线日韩免费| 国产成人午夜福利电影在线观看| 国产精品久久久久久av不卡| 欧美精品人与动牲交sv欧美| 中文字幕制服av| av又黄又爽大尺度在线免费看| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 满18在线观看网站| 婷婷色av中文字幕| 少妇的丰满在线观看| 亚洲第一青青草原| 久久精品国产综合久久久| 久久免费观看电影| 免费看av在线观看网站| 亚洲精品乱久久久久久| 国产成人一区二区在线| 夜夜骑夜夜射夜夜干| 国产精品国产三级专区第一集| 九九爱精品视频在线观看| 免费久久久久久久精品成人欧美视频| 在线天堂中文资源库| 欧美 亚洲 国产 日韩一| 1024视频免费在线观看| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 国产精品.久久久| 9热在线视频观看99| 五月伊人婷婷丁香| 男女无遮挡免费网站观看| 最近中文字幕高清免费大全6| 天堂中文最新版在线下载| 亚洲精品在线美女| 中文字幕色久视频| 99re6热这里在线精品视频| av电影中文网址| 久久99精品国语久久久| 免费黄频网站在线观看国产| 9色porny在线观看| 中文字幕人妻丝袜制服| 国产无遮挡羞羞视频在线观看| 色吧在线观看| 亚洲成av片中文字幕在线观看 | 美女高潮到喷水免费观看| 成年人午夜在线观看视频| 美女主播在线视频| 一区福利在线观看| 黄色毛片三级朝国网站| a级毛片在线看网站| 久久久久久人妻| 97在线视频观看| 久久女婷五月综合色啪小说| 韩国av在线不卡| 一级毛片 在线播放| 尾随美女入室| 亚洲四区av| 免费观看a级毛片全部| 欧美97在线视频| 高清不卡的av网站| 男的添女的下面高潮视频| 国产爽快片一区二区三区| 免费av中文字幕在线| 久久精品人人爽人人爽视色| 亚洲精品第二区| 日韩制服骚丝袜av| 熟女av电影| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 亚洲欧美精品自产自拍| 美女国产高潮福利片在线看| 69精品国产乱码久久久| 秋霞伦理黄片| av国产久精品久网站免费入址| 丝袜人妻中文字幕| av在线老鸭窝| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 乱人伦中国视频| 亚洲av电影在线观看一区二区三区| 你懂的网址亚洲精品在线观看| 蜜桃国产av成人99| 亚洲内射少妇av| 国产成人精品在线电影| 建设人人有责人人尽责人人享有的| 各种免费的搞黄视频| 欧美日本中文国产一区发布| 欧美精品亚洲一区二区| 日本vs欧美在线观看视频| 国产毛片在线视频| 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 国产在视频线精品| 亚洲天堂av无毛| 久热这里只有精品99| 咕卡用的链子| 国产 一区精品| 秋霞伦理黄片| 日韩欧美精品免费久久| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 午夜日韩欧美国产| 街头女战士在线观看网站| 男女无遮挡免费网站观看| 亚洲国产欧美网| 欧美亚洲 丝袜 人妻 在线| 久久久久久久亚洲中文字幕| 免费观看无遮挡的男女| 丝袜人妻中文字幕| 日本欧美视频一区| 美女福利国产在线| 国产精品偷伦视频观看了| 亚洲第一av免费看| av卡一久久| 两性夫妻黄色片| 久久这里有精品视频免费| 精品久久久精品久久久| 欧美日韩精品成人综合77777| 国产午夜精品一二区理论片| 超碰成人久久| 日韩不卡一区二区三区视频在线| 亚洲国产精品999| 最近手机中文字幕大全| 欧美日韩一级在线毛片| 亚洲欧美成人精品一区二区| www日本在线高清视频| 精品一区二区三区四区五区乱码 | 香蕉精品网在线| 欧美精品av麻豆av| 亚洲国产精品一区二区三区在线|