• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antenna selection based on large-scale fading for distributed MIMO systems①

    2016-12-05 06:38:57ShiRonghua施榮華YuanZexiDongJianLeiWentaiPengChunhua
    High Technology Letters 2016年3期
    關(guān)鍵詞:榮華

    Shi Ronghua (施榮華):Yuan Zexi:Dong Jian:Lei Wentai:Peng Chunhua

    (School of Information Science and Engineering:Central South University:Changsha 410083:P.R.China)

    ?

    Antenna selection based on large-scale fading for distributed MIMO systems①

    Shi Ronghua (施榮華):Yuan Zexi:Dong Jian*To whom correspondence should be addressed.E-mail:dongjian@csu.edu.cnReceived on June 6,2015:Lei Wentai:Peng Chunhua

    (School of Information Science and Engineering:Central South University:Changsha 410083:P.R.China)

    An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output (D-MIMO) systems.By utilizing the radio access units (RAU) selection based on large-scale fading:the proposed algorithm decreases enormously the computational complexity.Based on the characteristics of distributed systems:an improved particle swarm optimization (PSO) has been proposed for the antenna selection after the RAU selection.In order to apply the improved PSO algorithm better in antenna selection:a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity.The proposed algorithm can make full use of the advantages of D-MIMO systems:and achieve near-optimal performance in terms of channel capacity with low computational complexity.

    distributed MIMO systems:antenna selection:particle swarm optimization:large-scale fading

    0 Introduction

    Multi-input multi-output (MIMO) technique can improve the reliability of transmission and channel capacity exponentially without extra bandwidth[1].For traditional centralized antenna systems:due to the inter-cell interference:the spectral and energy efficiencies remain low:especially at the cell edges.Recently:a distributed antenna system (DAS) as a promising candidate for future wireless communications has got wide attention for the reason that it can provide power saving:extend coverage and increase system capacity[2].Distributed MIMO (D-MIMO) systems:which combine the advantages of MIMO systems and DAS:can obtain better performance than traditional co-located MIMO (C-MIMO) systems[3,4].In a typical D-MIMO system:radio access units (RAUs) equipped with a number of antennas are deployed on the distributed system over a large area and connected to a central unit (CU).Relying on its distributed construction:D-MIMO systems can not only inherit the advantages of DAS which decreases path loss and overcomes shadow effect:but also improve capacity performance remarkably.

    Generally:MIMO systems should have the same number of radio frequency chains as the number of antennas at both transmitter and receiver:which dramatically increases additional hardware costs and system complexity.In order to solve this problem:antenna selection technologies have been proposed at the right moment:which only use a subset of transmit and/or receive antennas with the best channel condition to communicate and it achieves excellent performance with fewer radio frequency chains and decreases the complexity and hardware cost of MIMO systems.In recent years:a number of studies have been done on antenna selection techniques and several antenna selection algorithms have been proposed[5-10].The optimal antenna selection algorithm:namely exhaustive search algorithm (ESA):is an exhaustive search of all possible combinations for locating the best antenna subset[5].However:the required computational complexity grows exponentially with the number of antennas:which is unaffordable for antenna selection problem in practical scenarios.In view of this:several suboptimal antenna selection algorithms are proposed:such as the norm-based selection algorithm (NBS)[6]:norm and correlation based algorithm (NCBA)[10].These algorithms used in traditional C-MIMO systems can be applied directly into D-MIMO systems.However:in the C-MIMO systems:the antenna distance between the user terminal (UT) and the base station (BS) are equal so that path losses in the large-scale fading are not considered.On the contrary:the antenna distance between the UT and the RAUs are unequal in the D-MIMO systems so that path loss becomes an important factor to be considered.

    In order to make use of the full advantages of D-MIMO systems:a near-optimal antenna selection algorithm is proposed in this paper based on large-scale fading for D-MIMO systems:which combines improved particle swarm optimization (PSO) algorithm with large-scale fading based RAU selection.Taking account of the large-scale fading:the proposed algorithm shows remarkable capacity performance and low computational complexity.Simulation results confirm that its capacity performance approaches that of the exhaustive search algorithm and is better than the previous algorithms.

    The rest of paper is organized as follows.In Section 1:the D-MIMO system model is illustrated.In Section 2:a binary expression of channel capacity is introduced and a near-optimal antenna selection algorithm based on large-scale fading is presented to optimize the binary expression of channel capacity.Simulation results are presented in Section 3 and final conclusions are given in Section 4.

    Notation.Throughout this paper:for matrix A:AT:AH:and det(A) denote the transpose:complex conjugate transpose:and the determinant of A:respectively.The termsa×brepresent the (a×b)-dimensional space with complex valued elements.

    1 Distributed MIMO system models

    It is considered that a (M:N:L) D-MIMO system where a central unit (CU) connects toN= 5 RAUs via high-speed:less-delay and error-free channels such as optical fiber links.Each RAU is equipped withLantennas that serve UT withMantennas:shown in Fig.1.The signal information is transmitted between CU and RAUs.Assume all processes are perfectly synchronized.

    It is assumed that the communication band is narrow enough to have a flat response across the frequency band:and signal model is linear time-invariant.The received signal parameterized by the distance vector d is given as Ref.[2]

    Fig.1 Distributed MIMO system model

    r(t,d)=H(d)·s(t)+z(t)

    (1)

    (2)

    where Hn(dn)∈M×Lis the channel matrix from the UT tonth RAU:and can be expressed as

    (3)

    (4)

    2 Antenna selection algorithm

    2.1 Binary expression of channel capacity

    In order to apply the improved PSO algorithm better in antenna selection:the general form of channel capacity is transformed into a binary expression by re-deriving the formula of channel capacity.

    (5)

    Let anNL×NLdiagonal matrix Δ be used for antenna selection atNRAUs:which is represented as

    (6)

    (7)

    As a result:the antenna selection problem becomes a combinatorial optimization problem on obtaining appropriate Δ and maximizing the channel capacity (Eq.(7)).

    2.2 RAU selection based on large-scale fading

    So far:a few schemes have discussed on the RAU selection problem in D-MIMO systems.The scheme in Ref.[11] computes the Euclidean norms of channel matrix:and selects all antennas from the RAU which contains the maximal Euclidean norm as the optimal transmission antennas.This scheme ignores the possibility that some antennas in other RAUs have better performance than those in RAU with the maximal Euclidean norm.

    In this paper:a more effective RAU selection scheme has been proposed for the characteristic of distribution in D-MIMO systems.In this scheme:Poptimal RAUs are selected from theNavailable ones to reduce the number of selectable antennas greatly so as to decrease the computational complexity of selection.SinceNavailable RAUs with a number of antennas have been distributed into the small cells:the total antennas in all RAUs can be decreased by the large-scale fading between different RAUs and UT.So the following antenna selection will be performed with onlyP×Lcandidate antennas.

    The RAU selection is a norm-based approach:which compares the norm of all antennas and picks out theKmaximal values one by one:whereKdenotes the number of the required optimal antennas.Then:Poptimal RAUs is found out that theseKantennas are involved inNavailable RAUs to build a new candidate set and the channel matrix H(d)∈NL×Mcan be transformed as Hp∈PL×M.Generally:since the large-scale fading has a significant effect on the composite fading channel coefficient(dn) in Eq.(4) under differentdn:the antennas will obtain better CSI with a better large-scale fading coefficient:and vice versa.So theseKantennas will hardly be involved in every RAU at the same time:i.e.:P

    Table 1 Antenna RAU selection algorithm.The complexity corresponding to each part of the algorithm is shown in the right column

    StepManipulationComplexity1RAUSelection(M,N,L,K,h1,h2,…,hNL) 2Ω:={1,2,…,NL} 3χ:={1,2,…,N} 4H:=[h1,h2,…,hNL]H 5S:=Ω 6forj:=1toNL 7 αj:=hHjhjO(MNL)8end 9forn:=1toK 10 J:=argmaxj∈ΩαjO(MNK)11 Q:=?JL」 12 ifQ∈χ 13 χ:=χ-{Q} 14 end 15 Ω:=Ω-{J} 16end 17fori:=1tolength[χ] 18r:=χ[i] 19S:=S-{r,r+1,…,r+L} 20end 21returnS

    2.3 Particle swarm optimization algorithm based on large-scale fading

    In this section:an antenna selection scheme that utilizes particle swarm optimization (PSO) has been presented.PSO is a collaborative computational technique derived from the social behavior of bird flocking and fish schooling[12].PSO is found that it has a huge advantage in solving global optimization problems:thus it can be applied to solve the antenna selection problem[13].

    (8)

    where W is aD×Ddiagonal matrix of large-scale fading,

    (9)

    where wi∈(0,1):i=1,2,…,D:widenotes the large-scale fading on thei-th antenna:which is normalized by the maximum of large-scale fading coefficient.

    Secondly:the selection of antennas is represented by a binary diagonal matrix

    (10)

    where Δiis associated with an available antenna.According to the priority of each antenna:Kantennas with the highest priority are picked out one by one without replacement:and the corresponding Δiis set to 1 while others are set to 0.As a result:by using Eq.(7):the fitness function of thek-th particle is represented as

    (11)

    where IDis aD×Didentity matrix:HPis the channel matrix after the RAU selection.

    The last modification over the conventional PSO is an improvement in updating velocity.Velocity updating formula in conventional PSO is represented as

    (12)

    (13)

    The main steps are as follows.

    Step 4 If the convergence criteria is satisfied:then terminate.Otherwise go to step 5.

    3 Simulation results and discussion

    For performance comparison:simulation results of the proposed PSO antenna selection scheme in D-MIMO systems are presented and all the results are compared with other antenna selection schemes.The channels are assumed to be quasi-static and statistically independent in the MIMO systems.All the simulations are performed using Monte Carlo runs and each result is an average value with 5000 independent simulation runs.

    For performance comparison:a D-MIMO system with (M:N:L) set to be (4:6:2) is presented:and the number of uplink receive antennas needed to be selected optimally isK=4.The population sizeQof PSO is 30 and the number of iterationsGis 30.The radius of the circular cell is 1000m:and the distances between the UT and 6 antenna RAUs are 1000m:1500m:2000m:500m:2500m:700m in the coordinate system respectively.In order to show the performance of the proposed algorithm:it is compared with exhausting search algorithm (ESA)[5]:RAU-selection norm-based algorithm (PNBA)[11]:norm and correlation based antenna selection algorithm (NCBA)[10]and norm-based antenna selection algorithm (NBS)[6].Fig.2 shows that 10% outage capacities achieved by these algorithms increase remarkably as SNR increases:while the achievable capacity of the proposed algorithm approaches that of ESA and better than other algorithms for a wide range SNR.

    Fig.2 Capacity versus SNR with M=4:N=6:L=2, K=4:Q=30:G=30

    Moreover:another larger D-MIMO system with (M:N:L) set to be (10:7:4) is considered:and the number of uplink receive antennas needed to be selected optimally isK= 10.The population sizeQof PSO is 30 and the number of iterationsGis 30.The radius of the circular cell is 1000m:and the distances between the UT and 7 antenna RAUs are 1000m:1500m:2000m:500m:2500m:1800m:700m in the coordinate system respectively.Fig.3 shows that 10% outage capacities achieved by these algorithms increase remarkably as SNR increases:while the achievable capacity of the proposed algorithm approaches that of ESA and much better than other algorithms for a wide range SNR.

    Fig.4 illustrates the performance of the proposed algorithm with PNBA:NCBA:and NBS for different numbers of selected antennas as a function of selected antennasKforM=12:N=7:L=3:Q=30:G=30.SNR is set to 25dB.The radius of the circular cell is 1000m:the distances between UT and 7 antenna RAUs are also 1000m:1500m:2000m:500m:2500m:1800m:700m in the coordinate system respectively.As can be seen from Fig.4:the outage capacity achieved by each algorithm increases substantially with the number of antennasK.The capacity achieved by the proposed algorithm is better than other algorithms for all values ofK.In particular:the advantage of the proposed algorithm will increase continuously with the value ofKcompared with the other algorithms.

    Fig.3 Capacity versus SNR with M=10:N=7:L=4, K=10:Q=30:G=30

    Fig.4 Capacity versus number of antennas K with M=12, N=7:L=3:SNR=25dB:Q=30:G=30.

    Fig.5 provides some interesting data regarding the performance improvement by applying proposed methods of optimizing population in PSO:withM=11:N=8:L=3:K=11:Q=40.The SNR is fixed at 20dB.It is assumed that the radius of the circular cell is 1000m:the distances between the UT and 8 antenna RAUs are 1000m:800m:1500m:2000m:1200m:500m:2500m:1800m in the coordinate system respectively.The conventional PSO with arbitrary population randomly choses initial population:and updates the population with constant inertia weight.The improved PSO not only optimizes the population initialization with large-scale fading coefficient but also improves the updating of population by utilizing inertia weight based on large-scale fading coefficient.It is observed from the simulation results that the conventional PSO finds its global optimum early and this global optimum is obviously worse than the global optimum obtained by improved PSO.Moreover:the channel capacity obtained by the proposed algorithm is larger than that of conventional PSO.It can be seen that the exploration ability of the proposed algorithm is better than that of conventional PSO with the inertia weightWbased on large-scale fading.Therefore:it can be concluded that the performance of the proposed algorithm generates a considerable improvement over that of conventional PSO.

    Fig.5 Capacity versus G with M=11:N=8:L=3, K=11:Q=40:SNR=20dB

    In order to intuitively compare the computational complexity of the aforementioned five antenna selection schemes:the parameters of their computational time (In Table 2) are evaluated by using practical hardware:say the Texas Instruments digital signal processing (DSP) chip C6711:which possesses computational capability of 500 million of multiplications and additions per second (MMACS)[15].It is clear from Table 2 that the proposed algorithm is better in terms of computational complexity than ESA and Gorokhov algorithm:especially with the increase of the antennas.NBS and NCBA require less computation than the proposed algorithm:but their performances of the channel capacity are much worse than that of our proposed algorithm.In such a scenario:except for ESA:the aforementioned four schemes are all suitable to the MIMO system in Ref.[15]:as the computational time of these antenna selection schemes is all lower than the elapsed time of 80ms between two channel matrix measurements.However:as the time between two channel matrix measurements decreases or other antenna selection scenarios are considered:the aforementioned schemes with higher computational time such as the optimum algorithm may encounter some difficulties.Therefore:the proposed algorithm provides a viable alternative to previous work by striking a better tradeoff between performance and computational complexity.

    Table 2 Comparisons of computational complexity with 500 million multiplications and additions per second

    4 Conclusions

    In this paper:based on large-scale fading:a modified PSO algorithm is presented combined with norm-based RAU selection for antenna selection in D-MIMO system.The proposed algorithm for the antenna selection requires low computational complexity and the performance approaches that of the exhaustive search algorithm:which makes the best use of the large-scale fading in D-MIMO systems to simplify the antenna selection problem by reducing the number of candidate antennas remarkably.This paper indicates that the proposed algorithm is a suitable candidate for solving complex communication problems in D-MIMO system.

    [1] Paulraj A J:Gore D A:Nabar R U:et al.An overview of MIMO communications:a key to gigabit wireless.ProceedingsoftheIEEE:2004:92:198-218

    [2] Choi W:Andrews J.Downlink performance and capacity of distributed antenna systems in a multicell environment.IEEETransactionsonWirelessCommunications:2007:6:69-73

    [3] Sawahashi M:Kishiyama Y:Morimoto A:et al.Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO].IEEEWirelessCommunications: 2010:17:26-34

    [4] Ibernon-Fernandez R:Molina-Garcia-Pardo J M:Juan-Llacer L.Comparison between measurements and simulations of conventional and distributed MIMO system.IEEEAntennasandWirelessPropagationLetters:2008:7:546-549

    [5] Sanayei S:Nosratinia A.Antenna selection in MIMO systems.IEEECommunicationsMagazine:2004:42:68-73

    [6] Molisch A F:Win M Z:Yang-seok C:et al.Capacity of MIMO systems with antenna selection.IEEETransactionsonWirelessCommunications:2005:4:1759-1772

    [7] Gorokhov A:Gore D A:Paulraj A J.Receive antenna selection for mimo spatial multiplexing:theory and algorithms.IEEETransactionsonSignalProcessing:2003:51:2796-2807

    [8] Gore D A:Paulraj A J.MIMO antenna subset selection with space-time coding.IEEETransactionsonSignalProcessing:2002:50:2580-2588

    [9] Gharavi-Alkhansari M:Gershman A B.Fast antenna subset selection in MIMO systems.IEEETransactionsonSignalProcessing:2004:52:339-347

    [10] Liu S:He Z:Wu W:et al.A fast sub-optimal antenna selection algorithm in mimo systems.In:Proceedings of the Wireless Communications and Networking Conference:Las Vegas:USA:2006.734-739

    [11] Su Y Z:Feng G Z.A novel fast antenna selection algorithm in distributed MIMO systems.In:Proceedings of the 12th IEEE International Conference on Communication Technology:Nanjing:China:2010.275-280

    [12] Clerc M:Kennedy J.The particle swarm - explosion:stability:and convergence in a multidimensional complex space.IEEETransactionsonEvolutionaryComputation:2002:6:58-73

    [13] Naeem M:Lee D C.Near-optimal joint selection of transmit and receive antennas for MIMO systems.In:Proceedings of the 9th IEEE International Symposium on Communications and Information Technology:Icheon:2009.572-577

    [14] Porto V W:Saravanan N:Waagen D:et al.Parameter Selection in Particle Swarm Optimization.In:Evolutionary Programming VII:Porto V W:Saravanan N:Waagen D:et al.Springer Berlin Heidelberg:1998.591-600

    [15] Wallace J W:Jensen M A:Swindlehurst A L:et al.Experimental characterization of the MIMO wireless channel:data acquisition and analysis.IEEETransactionsonWirelessCommunications:2003:2:335-343

    Shi Ronghua:received his B.S.degree in Computer Software from Changsha Railway University in 1986:and his M.S.degree in computer science from Central South University of Technology in 1989.He has been working in the Changsha Railway University since 1989:and is currently a Professor of the Department of Electronic Engineering.His current research interests include computer networks:algorithm and system:broadband ISDN.

    10.3772/j.issn.1006-6748.2016.03.001

    ①Supported by the National Natural Science Foundation of China (No.61201086:61272495):the China Scholarship Council (No.201506375060):the Planned Science and Technology Project of Guangdong Province (No.2013B090500007) and the Dongguan Project on the Integration of Industry:Education and Research (No.2014509102205).

    猜你喜歡
    榮華
    熊榮華
    香墨
    圓明園300年 半生榮華半生殤
    主持專家:熊榮華
    “自主+創(chuàng)新”譜寫綠色造紙工業(yè)新未來(lái)
    造紙信息(2019年7期)2019-09-10 11:33:18
    弱夫“起義”后危機(jī)叢生,還債路上讓愛(ài)重來(lái)
    Effect of mesoscale wind stress-SST coupling on the Kuroshio extension jet*
    媽媽生氣了
    一起出去玩
    趙國(guó)榮先勝徐榮華
    棋藝(2016年4期)2016-09-20 05:22:07
    动漫黄色视频在线观看| 免费高清视频大片| 777久久人妻少妇嫩草av网站| 中文字幕精品亚洲无线码一区 | 午夜精品久久久久久毛片777| 真人一进一出gif抽搐免费| 夜夜爽天天搞| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品成人综合色| 日本 欧美在线| 欧美成人一区二区免费高清观看 | 此物有八面人人有两片| 伊人久久大香线蕉亚洲五| 亚洲成人精品中文字幕电影| 国产高清视频在线播放一区| av在线播放免费不卡| 亚洲精品av麻豆狂野| 最近在线观看免费完整版| 在线观看免费日韩欧美大片| 日韩av在线大香蕉| 亚洲av熟女| 国产精品久久视频播放| 最近在线观看免费完整版| 国产熟女午夜一区二区三区| 国产亚洲欧美98| 国产一区二区三区视频了| 久热爱精品视频在线9| 好男人电影高清在线观看| 人人妻,人人澡人人爽秒播| 久久久国产欧美日韩av| 深夜精品福利| 啪啪无遮挡十八禁网站| 精品欧美国产一区二区三| 久久久久久久精品吃奶| 十八禁网站免费在线| av欧美777| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 9191精品国产免费久久| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 中文亚洲av片在线观看爽| 午夜影院日韩av| 久久久精品欧美日韩精品| 精品无人区乱码1区二区| 精品久久久久久久久久久久久 | 国产成人系列免费观看| 嫩草影院精品99| 一级作爱视频免费观看| 老司机福利观看| 无人区码免费观看不卡| 国产亚洲精品av在线| 国产精品亚洲av一区麻豆| 欧美黄色淫秽网站| 嫁个100分男人电影在线观看| 一边摸一边抽搐一进一小说| 一个人观看的视频www高清免费观看 | 亚洲国产精品sss在线观看| 国产在线观看jvid| 国产精品久久久久久精品电影 | 国产激情偷乱视频一区二区| 国产激情偷乱视频一区二区| 亚洲色图av天堂| 中文资源天堂在线| 国产精品99久久99久久久不卡| 日韩中文字幕欧美一区二区| 亚洲国产精品999在线| 黑丝袜美女国产一区| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 啦啦啦观看免费观看视频高清| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 国产高清视频在线播放一区| 免费女性裸体啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 在线国产一区二区在线| 亚洲中文字幕一区二区三区有码在线看 | 婷婷亚洲欧美| 国产高清激情床上av| 欧美黑人巨大hd| 日本三级黄在线观看| 在线观看免费视频日本深夜| 岛国视频午夜一区免费看| 久久久久九九精品影院| 99精品在免费线老司机午夜| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产一级毛片七仙女欲春2 | 久久久久国产精品人妻aⅴ院| 精品久久久久久,| 日日干狠狠操夜夜爽| 色av中文字幕| 午夜激情av网站| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 级片在线观看| 一进一出抽搐gif免费好疼| 久久久久久国产a免费观看| 很黄的视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产美女av久久久久小说| 久久精品91无色码中文字幕| 成人三级做爰电影| 午夜免费鲁丝| 久久久久久久久免费视频了| 久久欧美精品欧美久久欧美| 精品电影一区二区在线| 18禁观看日本| 久久婷婷人人爽人人干人人爱| 成人免费观看视频高清| 99久久无色码亚洲精品果冻| 麻豆国产av国片精品| 中文字幕精品亚洲无线码一区 | 不卡av一区二区三区| 国产成人欧美| 欧美黑人精品巨大| 久久精品影院6| 国产精品久久久久久人妻精品电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 亚洲av电影不卡..在线观看| 亚洲精品中文字幕在线视频| 国产高清有码在线观看视频 | 精品第一国产精品| 国产亚洲精品第一综合不卡| 国产精品免费视频内射| 国产成年人精品一区二区| 欧美乱妇无乱码| 亚洲av成人一区二区三| 欧美黑人精品巨大| 99热6这里只有精品| www日本在线高清视频| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 国产亚洲精品综合一区在线观看 | 性色av乱码一区二区三区2| 老司机福利观看| 一区二区三区激情视频| 欧美激情高清一区二区三区| 国产又黄又爽又无遮挡在线| 人人妻,人人澡人人爽秒播| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 天天躁夜夜躁狠狠躁躁| 成人午夜高清在线视频 | 久久香蕉国产精品| 91麻豆av在线| 国产成人欧美| 99久久无色码亚洲精品果冻| 精品高清国产在线一区| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 一区二区三区精品91| 亚洲国产精品久久男人天堂| 国产1区2区3区精品| 午夜激情福利司机影院| 两人在一起打扑克的视频| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 国产av又大| 精品久久蜜臀av无| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧洲综合997久久, | xxx96com| 欧美 亚洲 国产 日韩一| 好男人电影高清在线观看| 国产私拍福利视频在线观看| av在线天堂中文字幕| 后天国语完整版免费观看| 精品久久久久久久久久久久久 | 亚洲精品色激情综合| 国产成人精品无人区| 日本撒尿小便嘘嘘汇集6| 正在播放国产对白刺激| 久久精品国产综合久久久| 亚洲午夜理论影院| 国产午夜福利久久久久久| www日本黄色视频网| 国产一区二区三区在线臀色熟女| 十八禁人妻一区二区| 国产成人欧美在线观看| 波多野结衣巨乳人妻| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人免费av一区二区三区| 亚洲第一电影网av| 日日夜夜操网爽| 亚洲自拍偷在线| 日韩高清综合在线| 老司机深夜福利视频在线观看| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 日韩欧美在线二视频| 一区二区三区高清视频在线| 国产成人影院久久av| 久久国产亚洲av麻豆专区| 日本 av在线| 国产真实乱freesex| 不卡av一区二区三区| 亚洲av成人av| 久久午夜综合久久蜜桃| 国产精品久久久av美女十八| 国产精品美女特级片免费视频播放器 | 在线看三级毛片| 757午夜福利合集在线观看| 亚洲国产看品久久| 无人区码免费观看不卡| 久热爱精品视频在线9| 亚洲国产欧洲综合997久久, | 在线永久观看黄色视频| 十分钟在线观看高清视频www| 国产精品亚洲一级av第二区| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| 国内揄拍国产精品人妻在线 | 色哟哟哟哟哟哟| av有码第一页| 亚洲av熟女| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 在线观看免费午夜福利视频| 欧美国产日韩亚洲一区| 色婷婷久久久亚洲欧美| 国产成人系列免费观看| 性色av乱码一区二区三区2| 狂野欧美激情性xxxx| 国产熟女xx| 在线视频色国产色| 成在线人永久免费视频| 国产区一区二久久| 99国产精品一区二区三区| 丁香欧美五月| 国产亚洲精品久久久久5区| 成人亚洲精品av一区二区| 在线观看66精品国产| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站| 国产成人欧美| 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 精品久久久久久久久久久久久 | 夜夜爽天天搞| 岛国在线观看网站| 叶爱在线成人免费视频播放| 人人妻人人看人人澡| 亚洲精品色激情综合| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 亚洲精品中文字幕一二三四区| 黄色毛片三级朝国网站| 久久精品影院6| 黄色丝袜av网址大全| 国产成人系列免费观看| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 曰老女人黄片| 51午夜福利影视在线观看| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 午夜成年电影在线免费观看| 色在线成人网| 国产97色在线日韩免费| 一进一出抽搐gif免费好疼| 又大又爽又粗| 美女国产高潮福利片在线看| 最近最新中文字幕大全免费视频| 国产成人精品久久二区二区免费| 岛国视频午夜一区免费看| www.精华液| 免费看a级黄色片| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 一级黄色大片毛片| 51午夜福利影视在线观看| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 丰满人妻熟妇乱又伦精品不卡| 美女免费视频网站| 成人国语在线视频| 久久久国产欧美日韩av| 在线av久久热| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 又大又爽又粗| 熟女电影av网| 国产精华一区二区三区| 国产视频一区二区在线看| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看 | 国产国语露脸激情在线看| 亚洲中文字幕日韩| 色播亚洲综合网| 国产精品亚洲美女久久久| 90打野战视频偷拍视频| 国产亚洲精品综合一区在线观看 | 国产国语露脸激情在线看| 国产99白浆流出| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三 | 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 91在线观看av| 免费高清在线观看日韩| 搡老熟女国产l中国老女人| 啦啦啦 在线观看视频| 精品第一国产精品| 在线永久观看黄色视频| 日韩欧美国产在线观看| 国产精品久久久人人做人人爽| 久久久久久亚洲精品国产蜜桃av| 精品福利观看| 哪里可以看免费的av片| 黄色女人牲交| 一二三四社区在线视频社区8| 可以在线观看的亚洲视频| 伦理电影免费视频| 精品久久久久久成人av| 国产午夜福利久久久久久| 视频区欧美日本亚洲| 国产区一区二久久| 黑人巨大精品欧美一区二区mp4| 变态另类丝袜制服| 特大巨黑吊av在线直播 | 国产一区二区三区在线臀色熟女| 国产精品 欧美亚洲| ponron亚洲| 欧美黑人巨大hd| 亚洲中文日韩欧美视频| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片 | 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 人妻久久中文字幕网| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 禁无遮挡网站| 亚洲国产欧美日韩在线播放| 一本一本综合久久| 免费在线观看影片大全网站| 在线观看日韩欧美| 久久欧美精品欧美久久欧美| 国产日本99.免费观看| av天堂在线播放| 国产成人av教育| www.自偷自拍.com| 亚洲一区高清亚洲精品| 亚洲国产毛片av蜜桃av| 精品午夜福利视频在线观看一区| 国产主播在线观看一区二区| 中文字幕最新亚洲高清| 宅男免费午夜| 久久青草综合色| 亚洲熟妇熟女久久| 亚洲国产欧美网| 99国产综合亚洲精品| av电影中文网址| 日本免费a在线| 国产伦在线观看视频一区| 免费观看人在逋| 一本综合久久免费| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| www日本在线高清视频| 亚洲一码二码三码区别大吗| 久久国产精品影院| 国产亚洲av嫩草精品影院| 亚洲精品中文字幕在线视频| 无人区码免费观看不卡| 久久国产乱子伦精品免费另类| 精品久久蜜臀av无| 午夜福利一区二区在线看| www.精华液| 国产精品久久久久久精品电影 | 久久久精品欧美日韩精品| 香蕉久久夜色| 人成视频在线观看免费观看| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 国产成人欧美| 在线看三级毛片| 国产成人系列免费观看| 国产精品永久免费网站| 国产精品一区二区三区四区久久 | 精品乱码久久久久久99久播| 窝窝影院91人妻| 91成年电影在线观看| 看黄色毛片网站| 久久中文字幕一级| 午夜激情av网站| 日韩大码丰满熟妇| 国产精品综合久久久久久久免费| 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 性欧美人与动物交配| 亚洲国产看品久久| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕| 人人妻人人看人人澡| 91av网站免费观看| 亚洲欧美精品综合一区二区三区| 亚洲成av人片免费观看| 国产精品久久久久久亚洲av鲁大| 婷婷丁香在线五月| 亚洲国产精品999在线| 国产精品久久电影中文字幕| 亚洲男人天堂网一区| 中文字幕久久专区| or卡值多少钱| 国产精品乱码一区二三区的特点| 国产精品 国内视频| 在线观看www视频免费| 日韩有码中文字幕| 亚洲国产精品sss在线观看| 2021天堂中文幕一二区在线观 | 国产又爽黄色视频| 中文字幕最新亚洲高清| av有码第一页| 超碰成人久久| 高清毛片免费观看视频网站| 999久久久国产精品视频| 夜夜夜夜夜久久久久| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 91在线观看av| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 男人操女人黄网站| 神马国产精品三级电影在线观看 | 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 亚洲欧洲精品一区二区精品久久久| 长腿黑丝高跟| 欧美乱色亚洲激情| 99riav亚洲国产免费| 久久婷婷成人综合色麻豆| aaaaa片日本免费| av在线播放免费不卡| 欧美久久黑人一区二区| 天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| tocl精华| 精品久久久久久,| 在线播放国产精品三级| 啦啦啦 在线观看视频| 久久精品亚洲精品国产色婷小说| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 亚洲av美国av| 好看av亚洲va欧美ⅴa在| 亚洲精华国产精华精| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 欧美黑人精品巨大| 成人一区二区视频在线观看| 欧美激情高清一区二区三区| 一边摸一边做爽爽视频免费| 一进一出抽搐动态| avwww免费| 中文字幕久久专区| 18禁美女被吸乳视频| 亚洲熟女毛片儿| 精品无人区乱码1区二区| 久久狼人影院| 成人一区二区视频在线观看| 欧美成人性av电影在线观看| 亚洲精品中文字幕在线视频| 久久精品国产99精品国产亚洲性色| 午夜免费观看网址| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 国产99白浆流出| 夜夜夜夜夜久久久久| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 丝袜美腿诱惑在线| 又紧又爽又黄一区二区| 中文字幕精品亚洲无线码一区 | 久久精品国产99精品国产亚洲性色| 亚洲激情在线av| 日日摸夜夜添夜夜添小说| 满18在线观看网站| 不卡一级毛片| 老司机午夜福利在线观看视频| 在线免费观看的www视频| 欧美日本视频| 免费看十八禁软件| 国产av在哪里看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 天堂影院成人在线观看| 国产免费av片在线观看野外av| 在线播放国产精品三级| 午夜福利一区二区在线看| 麻豆国产av国片精品| 欧美日韩黄片免| 国内毛片毛片毛片毛片毛片| netflix在线观看网站| 亚洲熟妇熟女久久| 久久 成人 亚洲| 91成年电影在线观看| 久久久久免费精品人妻一区二区 | 人妻久久中文字幕网| av欧美777| 欧美大码av| 免费高清视频大片| 亚洲av中文字字幕乱码综合 | 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 国产伦人伦偷精品视频| 婷婷亚洲欧美| 又大又爽又粗| 亚洲精品中文字幕在线视频| 欧美日韩一级在线毛片| 久久精品人妻少妇| 成年免费大片在线观看| 国产在线观看jvid| 法律面前人人平等表现在哪些方面| 亚洲精品久久成人aⅴ小说| 级片在线观看| av有码第一页| 在线观看66精品国产| aaaaa片日本免费| 在线视频色国产色| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 精品国产美女av久久久久小说| 日本三级黄在线观看| 国产欧美日韩一区二区三| 高清在线国产一区| 日韩精品免费视频一区二区三区| 国产成人啪精品午夜网站| 国产高清激情床上av| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看| 日韩欧美在线二视频| 国产私拍福利视频在线观看| 国产99久久九九免费精品| a级毛片a级免费在线| 不卡av一区二区三区| 18美女黄网站色大片免费观看| 色哟哟哟哟哟哟| 国内精品久久久久久久电影| 丁香欧美五月| 黄色丝袜av网址大全| 国产av不卡久久| 中文资源天堂在线| 人成视频在线观看免费观看| 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 校园春色视频在线观看| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 久久久久九九精品影院| 亚洲 国产 在线| 精品欧美一区二区三区在线| 亚洲激情在线av| 免费一级毛片在线播放高清视频| 日韩视频一区二区在线观看| 美女国产高潮福利片在线看| 日韩大码丰满熟妇| 国产三级在线视频| 99精品在免费线老司机午夜| 免费看十八禁软件| 丁香欧美五月| 久久久久久久久中文| 给我免费播放毛片高清在线观看| 丁香欧美五月| 国产成人精品久久二区二区免费| 成人手机av| 国产高清激情床上av| 国产精品亚洲美女久久久| 在线观看日韩欧美| 亚洲成人国产一区在线观看| 色老头精品视频在线观看| 亚洲欧美激情综合另类| 免费高清视频大片| 一级黄色大片毛片| 91麻豆av在线| 免费高清在线观看日韩| 丝袜在线中文字幕| 级片在线观看| 国产成人精品无人区|