• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antenna selection based on large-scale fading for distributed MIMO systems①

    2016-12-05 06:38:57ShiRonghua施榮華YuanZexiDongJianLeiWentaiPengChunhua
    High Technology Letters 2016年3期
    關(guān)鍵詞:榮華

    Shi Ronghua (施榮華):Yuan Zexi:Dong Jian:Lei Wentai:Peng Chunhua

    (School of Information Science and Engineering:Central South University:Changsha 410083:P.R.China)

    ?

    Antenna selection based on large-scale fading for distributed MIMO systems①

    Shi Ronghua (施榮華):Yuan Zexi:Dong Jian*To whom correspondence should be addressed.E-mail:dongjian@csu.edu.cnReceived on June 6,2015:Lei Wentai:Peng Chunhua

    (School of Information Science and Engineering:Central South University:Changsha 410083:P.R.China)

    An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output (D-MIMO) systems.By utilizing the radio access units (RAU) selection based on large-scale fading:the proposed algorithm decreases enormously the computational complexity.Based on the characteristics of distributed systems:an improved particle swarm optimization (PSO) has been proposed for the antenna selection after the RAU selection.In order to apply the improved PSO algorithm better in antenna selection:a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity.The proposed algorithm can make full use of the advantages of D-MIMO systems:and achieve near-optimal performance in terms of channel capacity with low computational complexity.

    distributed MIMO systems:antenna selection:particle swarm optimization:large-scale fading

    0 Introduction

    Multi-input multi-output (MIMO) technique can improve the reliability of transmission and channel capacity exponentially without extra bandwidth[1].For traditional centralized antenna systems:due to the inter-cell interference:the spectral and energy efficiencies remain low:especially at the cell edges.Recently:a distributed antenna system (DAS) as a promising candidate for future wireless communications has got wide attention for the reason that it can provide power saving:extend coverage and increase system capacity[2].Distributed MIMO (D-MIMO) systems:which combine the advantages of MIMO systems and DAS:can obtain better performance than traditional co-located MIMO (C-MIMO) systems[3,4].In a typical D-MIMO system:radio access units (RAUs) equipped with a number of antennas are deployed on the distributed system over a large area and connected to a central unit (CU).Relying on its distributed construction:D-MIMO systems can not only inherit the advantages of DAS which decreases path loss and overcomes shadow effect:but also improve capacity performance remarkably.

    Generally:MIMO systems should have the same number of radio frequency chains as the number of antennas at both transmitter and receiver:which dramatically increases additional hardware costs and system complexity.In order to solve this problem:antenna selection technologies have been proposed at the right moment:which only use a subset of transmit and/or receive antennas with the best channel condition to communicate and it achieves excellent performance with fewer radio frequency chains and decreases the complexity and hardware cost of MIMO systems.In recent years:a number of studies have been done on antenna selection techniques and several antenna selection algorithms have been proposed[5-10].The optimal antenna selection algorithm:namely exhaustive search algorithm (ESA):is an exhaustive search of all possible combinations for locating the best antenna subset[5].However:the required computational complexity grows exponentially with the number of antennas:which is unaffordable for antenna selection problem in practical scenarios.In view of this:several suboptimal antenna selection algorithms are proposed:such as the norm-based selection algorithm (NBS)[6]:norm and correlation based algorithm (NCBA)[10].These algorithms used in traditional C-MIMO systems can be applied directly into D-MIMO systems.However:in the C-MIMO systems:the antenna distance between the user terminal (UT) and the base station (BS) are equal so that path losses in the large-scale fading are not considered.On the contrary:the antenna distance between the UT and the RAUs are unequal in the D-MIMO systems so that path loss becomes an important factor to be considered.

    In order to make use of the full advantages of D-MIMO systems:a near-optimal antenna selection algorithm is proposed in this paper based on large-scale fading for D-MIMO systems:which combines improved particle swarm optimization (PSO) algorithm with large-scale fading based RAU selection.Taking account of the large-scale fading:the proposed algorithm shows remarkable capacity performance and low computational complexity.Simulation results confirm that its capacity performance approaches that of the exhaustive search algorithm and is better than the previous algorithms.

    The rest of paper is organized as follows.In Section 1:the D-MIMO system model is illustrated.In Section 2:a binary expression of channel capacity is introduced and a near-optimal antenna selection algorithm based on large-scale fading is presented to optimize the binary expression of channel capacity.Simulation results are presented in Section 3 and final conclusions are given in Section 4.

    Notation.Throughout this paper:for matrix A:AT:AH:and det(A) denote the transpose:complex conjugate transpose:and the determinant of A:respectively.The termsa×brepresent the (a×b)-dimensional space with complex valued elements.

    1 Distributed MIMO system models

    It is considered that a (M:N:L) D-MIMO system where a central unit (CU) connects toN= 5 RAUs via high-speed:less-delay and error-free channels such as optical fiber links.Each RAU is equipped withLantennas that serve UT withMantennas:shown in Fig.1.The signal information is transmitted between CU and RAUs.Assume all processes are perfectly synchronized.

    It is assumed that the communication band is narrow enough to have a flat response across the frequency band:and signal model is linear time-invariant.The received signal parameterized by the distance vector d is given as Ref.[2]

    Fig.1 Distributed MIMO system model

    r(t,d)=H(d)·s(t)+z(t)

    (1)

    (2)

    where Hn(dn)∈M×Lis the channel matrix from the UT tonth RAU:and can be expressed as

    (3)

    (4)

    2 Antenna selection algorithm

    2.1 Binary expression of channel capacity

    In order to apply the improved PSO algorithm better in antenna selection:the general form of channel capacity is transformed into a binary expression by re-deriving the formula of channel capacity.

    (5)

    Let anNL×NLdiagonal matrix Δ be used for antenna selection atNRAUs:which is represented as

    (6)

    (7)

    As a result:the antenna selection problem becomes a combinatorial optimization problem on obtaining appropriate Δ and maximizing the channel capacity (Eq.(7)).

    2.2 RAU selection based on large-scale fading

    So far:a few schemes have discussed on the RAU selection problem in D-MIMO systems.The scheme in Ref.[11] computes the Euclidean norms of channel matrix:and selects all antennas from the RAU which contains the maximal Euclidean norm as the optimal transmission antennas.This scheme ignores the possibility that some antennas in other RAUs have better performance than those in RAU with the maximal Euclidean norm.

    In this paper:a more effective RAU selection scheme has been proposed for the characteristic of distribution in D-MIMO systems.In this scheme:Poptimal RAUs are selected from theNavailable ones to reduce the number of selectable antennas greatly so as to decrease the computational complexity of selection.SinceNavailable RAUs with a number of antennas have been distributed into the small cells:the total antennas in all RAUs can be decreased by the large-scale fading between different RAUs and UT.So the following antenna selection will be performed with onlyP×Lcandidate antennas.

    The RAU selection is a norm-based approach:which compares the norm of all antennas and picks out theKmaximal values one by one:whereKdenotes the number of the required optimal antennas.Then:Poptimal RAUs is found out that theseKantennas are involved inNavailable RAUs to build a new candidate set and the channel matrix H(d)∈NL×Mcan be transformed as Hp∈PL×M.Generally:since the large-scale fading has a significant effect on the composite fading channel coefficient(dn) in Eq.(4) under differentdn:the antennas will obtain better CSI with a better large-scale fading coefficient:and vice versa.So theseKantennas will hardly be involved in every RAU at the same time:i.e.:P

    Table 1 Antenna RAU selection algorithm.The complexity corresponding to each part of the algorithm is shown in the right column

    StepManipulationComplexity1RAUSelection(M,N,L,K,h1,h2,…,hNL) 2Ω:={1,2,…,NL} 3χ:={1,2,…,N} 4H:=[h1,h2,…,hNL]H 5S:=Ω 6forj:=1toNL 7 αj:=hHjhjO(MNL)8end 9forn:=1toK 10 J:=argmaxj∈ΩαjO(MNK)11 Q:=?JL」 12 ifQ∈χ 13 χ:=χ-{Q} 14 end 15 Ω:=Ω-{J} 16end 17fori:=1tolength[χ] 18r:=χ[i] 19S:=S-{r,r+1,…,r+L} 20end 21returnS

    2.3 Particle swarm optimization algorithm based on large-scale fading

    In this section:an antenna selection scheme that utilizes particle swarm optimization (PSO) has been presented.PSO is a collaborative computational technique derived from the social behavior of bird flocking and fish schooling[12].PSO is found that it has a huge advantage in solving global optimization problems:thus it can be applied to solve the antenna selection problem[13].

    (8)

    where W is aD×Ddiagonal matrix of large-scale fading,

    (9)

    where wi∈(0,1):i=1,2,…,D:widenotes the large-scale fading on thei-th antenna:which is normalized by the maximum of large-scale fading coefficient.

    Secondly:the selection of antennas is represented by a binary diagonal matrix

    (10)

    where Δiis associated with an available antenna.According to the priority of each antenna:Kantennas with the highest priority are picked out one by one without replacement:and the corresponding Δiis set to 1 while others are set to 0.As a result:by using Eq.(7):the fitness function of thek-th particle is represented as

    (11)

    where IDis aD×Didentity matrix:HPis the channel matrix after the RAU selection.

    The last modification over the conventional PSO is an improvement in updating velocity.Velocity updating formula in conventional PSO is represented as

    (12)

    (13)

    The main steps are as follows.

    Step 4 If the convergence criteria is satisfied:then terminate.Otherwise go to step 5.

    3 Simulation results and discussion

    For performance comparison:simulation results of the proposed PSO antenna selection scheme in D-MIMO systems are presented and all the results are compared with other antenna selection schemes.The channels are assumed to be quasi-static and statistically independent in the MIMO systems.All the simulations are performed using Monte Carlo runs and each result is an average value with 5000 independent simulation runs.

    For performance comparison:a D-MIMO system with (M:N:L) set to be (4:6:2) is presented:and the number of uplink receive antennas needed to be selected optimally isK=4.The population sizeQof PSO is 30 and the number of iterationsGis 30.The radius of the circular cell is 1000m:and the distances between the UT and 6 antenna RAUs are 1000m:1500m:2000m:500m:2500m:700m in the coordinate system respectively.In order to show the performance of the proposed algorithm:it is compared with exhausting search algorithm (ESA)[5]:RAU-selection norm-based algorithm (PNBA)[11]:norm and correlation based antenna selection algorithm (NCBA)[10]and norm-based antenna selection algorithm (NBS)[6].Fig.2 shows that 10% outage capacities achieved by these algorithms increase remarkably as SNR increases:while the achievable capacity of the proposed algorithm approaches that of ESA and better than other algorithms for a wide range SNR.

    Fig.2 Capacity versus SNR with M=4:N=6:L=2, K=4:Q=30:G=30

    Moreover:another larger D-MIMO system with (M:N:L) set to be (10:7:4) is considered:and the number of uplink receive antennas needed to be selected optimally isK= 10.The population sizeQof PSO is 30 and the number of iterationsGis 30.The radius of the circular cell is 1000m:and the distances between the UT and 7 antenna RAUs are 1000m:1500m:2000m:500m:2500m:1800m:700m in the coordinate system respectively.Fig.3 shows that 10% outage capacities achieved by these algorithms increase remarkably as SNR increases:while the achievable capacity of the proposed algorithm approaches that of ESA and much better than other algorithms for a wide range SNR.

    Fig.4 illustrates the performance of the proposed algorithm with PNBA:NCBA:and NBS for different numbers of selected antennas as a function of selected antennasKforM=12:N=7:L=3:Q=30:G=30.SNR is set to 25dB.The radius of the circular cell is 1000m:the distances between UT and 7 antenna RAUs are also 1000m:1500m:2000m:500m:2500m:1800m:700m in the coordinate system respectively.As can be seen from Fig.4:the outage capacity achieved by each algorithm increases substantially with the number of antennasK.The capacity achieved by the proposed algorithm is better than other algorithms for all values ofK.In particular:the advantage of the proposed algorithm will increase continuously with the value ofKcompared with the other algorithms.

    Fig.3 Capacity versus SNR with M=10:N=7:L=4, K=10:Q=30:G=30

    Fig.4 Capacity versus number of antennas K with M=12, N=7:L=3:SNR=25dB:Q=30:G=30.

    Fig.5 provides some interesting data regarding the performance improvement by applying proposed methods of optimizing population in PSO:withM=11:N=8:L=3:K=11:Q=40.The SNR is fixed at 20dB.It is assumed that the radius of the circular cell is 1000m:the distances between the UT and 8 antenna RAUs are 1000m:800m:1500m:2000m:1200m:500m:2500m:1800m in the coordinate system respectively.The conventional PSO with arbitrary population randomly choses initial population:and updates the population with constant inertia weight.The improved PSO not only optimizes the population initialization with large-scale fading coefficient but also improves the updating of population by utilizing inertia weight based on large-scale fading coefficient.It is observed from the simulation results that the conventional PSO finds its global optimum early and this global optimum is obviously worse than the global optimum obtained by improved PSO.Moreover:the channel capacity obtained by the proposed algorithm is larger than that of conventional PSO.It can be seen that the exploration ability of the proposed algorithm is better than that of conventional PSO with the inertia weightWbased on large-scale fading.Therefore:it can be concluded that the performance of the proposed algorithm generates a considerable improvement over that of conventional PSO.

    Fig.5 Capacity versus G with M=11:N=8:L=3, K=11:Q=40:SNR=20dB

    In order to intuitively compare the computational complexity of the aforementioned five antenna selection schemes:the parameters of their computational time (In Table 2) are evaluated by using practical hardware:say the Texas Instruments digital signal processing (DSP) chip C6711:which possesses computational capability of 500 million of multiplications and additions per second (MMACS)[15].It is clear from Table 2 that the proposed algorithm is better in terms of computational complexity than ESA and Gorokhov algorithm:especially with the increase of the antennas.NBS and NCBA require less computation than the proposed algorithm:but their performances of the channel capacity are much worse than that of our proposed algorithm.In such a scenario:except for ESA:the aforementioned four schemes are all suitable to the MIMO system in Ref.[15]:as the computational time of these antenna selection schemes is all lower than the elapsed time of 80ms between two channel matrix measurements.However:as the time between two channel matrix measurements decreases or other antenna selection scenarios are considered:the aforementioned schemes with higher computational time such as the optimum algorithm may encounter some difficulties.Therefore:the proposed algorithm provides a viable alternative to previous work by striking a better tradeoff between performance and computational complexity.

    Table 2 Comparisons of computational complexity with 500 million multiplications and additions per second

    4 Conclusions

    In this paper:based on large-scale fading:a modified PSO algorithm is presented combined with norm-based RAU selection for antenna selection in D-MIMO system.The proposed algorithm for the antenna selection requires low computational complexity and the performance approaches that of the exhaustive search algorithm:which makes the best use of the large-scale fading in D-MIMO systems to simplify the antenna selection problem by reducing the number of candidate antennas remarkably.This paper indicates that the proposed algorithm is a suitable candidate for solving complex communication problems in D-MIMO system.

    [1] Paulraj A J:Gore D A:Nabar R U:et al.An overview of MIMO communications:a key to gigabit wireless.ProceedingsoftheIEEE:2004:92:198-218

    [2] Choi W:Andrews J.Downlink performance and capacity of distributed antenna systems in a multicell environment.IEEETransactionsonWirelessCommunications:2007:6:69-73

    [3] Sawahashi M:Kishiyama Y:Morimoto A:et al.Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO].IEEEWirelessCommunications: 2010:17:26-34

    [4] Ibernon-Fernandez R:Molina-Garcia-Pardo J M:Juan-Llacer L.Comparison between measurements and simulations of conventional and distributed MIMO system.IEEEAntennasandWirelessPropagationLetters:2008:7:546-549

    [5] Sanayei S:Nosratinia A.Antenna selection in MIMO systems.IEEECommunicationsMagazine:2004:42:68-73

    [6] Molisch A F:Win M Z:Yang-seok C:et al.Capacity of MIMO systems with antenna selection.IEEETransactionsonWirelessCommunications:2005:4:1759-1772

    [7] Gorokhov A:Gore D A:Paulraj A J.Receive antenna selection for mimo spatial multiplexing:theory and algorithms.IEEETransactionsonSignalProcessing:2003:51:2796-2807

    [8] Gore D A:Paulraj A J.MIMO antenna subset selection with space-time coding.IEEETransactionsonSignalProcessing:2002:50:2580-2588

    [9] Gharavi-Alkhansari M:Gershman A B.Fast antenna subset selection in MIMO systems.IEEETransactionsonSignalProcessing:2004:52:339-347

    [10] Liu S:He Z:Wu W:et al.A fast sub-optimal antenna selection algorithm in mimo systems.In:Proceedings of the Wireless Communications and Networking Conference:Las Vegas:USA:2006.734-739

    [11] Su Y Z:Feng G Z.A novel fast antenna selection algorithm in distributed MIMO systems.In:Proceedings of the 12th IEEE International Conference on Communication Technology:Nanjing:China:2010.275-280

    [12] Clerc M:Kennedy J.The particle swarm - explosion:stability:and convergence in a multidimensional complex space.IEEETransactionsonEvolutionaryComputation:2002:6:58-73

    [13] Naeem M:Lee D C.Near-optimal joint selection of transmit and receive antennas for MIMO systems.In:Proceedings of the 9th IEEE International Symposium on Communications and Information Technology:Icheon:2009.572-577

    [14] Porto V W:Saravanan N:Waagen D:et al.Parameter Selection in Particle Swarm Optimization.In:Evolutionary Programming VII:Porto V W:Saravanan N:Waagen D:et al.Springer Berlin Heidelberg:1998.591-600

    [15] Wallace J W:Jensen M A:Swindlehurst A L:et al.Experimental characterization of the MIMO wireless channel:data acquisition and analysis.IEEETransactionsonWirelessCommunications:2003:2:335-343

    Shi Ronghua:received his B.S.degree in Computer Software from Changsha Railway University in 1986:and his M.S.degree in computer science from Central South University of Technology in 1989.He has been working in the Changsha Railway University since 1989:and is currently a Professor of the Department of Electronic Engineering.His current research interests include computer networks:algorithm and system:broadband ISDN.

    10.3772/j.issn.1006-6748.2016.03.001

    ①Supported by the National Natural Science Foundation of China (No.61201086:61272495):the China Scholarship Council (No.201506375060):the Planned Science and Technology Project of Guangdong Province (No.2013B090500007) and the Dongguan Project on the Integration of Industry:Education and Research (No.2014509102205).

    猜你喜歡
    榮華
    熊榮華
    香墨
    圓明園300年 半生榮華半生殤
    主持專家:熊榮華
    “自主+創(chuàng)新”譜寫綠色造紙工業(yè)新未來(lái)
    造紙信息(2019年7期)2019-09-10 11:33:18
    弱夫“起義”后危機(jī)叢生,還債路上讓愛(ài)重來(lái)
    Effect of mesoscale wind stress-SST coupling on the Kuroshio extension jet*
    媽媽生氣了
    一起出去玩
    趙國(guó)榮先勝徐榮華
    棋藝(2016年4期)2016-09-20 05:22:07
    91九色精品人成在线观看| 国产男女超爽视频在线观看| 精品一区二区三卡| 999久久久国产精品视频| 欧美激情久久久久久爽电影 | 亚洲精品成人av观看孕妇| 免费一级毛片在线播放高清视频 | 女人高潮潮喷娇喘18禁视频| 在线观看免费视频日本深夜| 日日爽夜夜爽网站| 精品欧美一区二区三区在线| 午夜老司机福利片| 69av精品久久久久久| 香蕉丝袜av| 18禁国产床啪视频网站| 色婷婷久久久亚洲欧美| 高清av免费在线| 男女免费视频国产| 99久久人妻综合| 女性被躁到高潮视频| 久久久久久久久免费视频了| av网站在线播放免费| 中文字幕人妻熟女乱码| 视频区图区小说| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品 欧美亚洲| 久久久久久久久免费视频了| 精品久久久久久久久久免费视频 | 国产精品免费一区二区三区在线 | 久久久久精品人妻al黑| 99精品欧美一区二区三区四区| 老汉色av国产亚洲站长工具| 啦啦啦 在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 99精国产麻豆久久婷婷| tocl精华| 性少妇av在线| 很黄的视频免费| 大码成人一级视频| 亚洲第一欧美日韩一区二区三区| 精品熟女少妇八av免费久了| 免费不卡黄色视频| 老司机午夜福利在线观看视频| 91老司机精品| 国产在视频线精品| 久久青草综合色| av网站在线播放免费| 超色免费av| 老司机影院毛片| 宅男免费午夜| 男人舔女人的私密视频| 下体分泌物呈黄色| 看黄色毛片网站| 成人18禁在线播放| 老司机福利观看| 大码成人一级视频| 免费在线观看黄色视频的| 欧美日韩亚洲综合一区二区三区_| 国产91精品成人一区二区三区| 黄色女人牲交| 国产精品国产av在线观看| 好男人电影高清在线观看| 老司机在亚洲福利影院| 欧美乱色亚洲激情| 午夜91福利影院| 欧美大码av| 黑人猛操日本美女一级片| 黄色a级毛片大全视频| 日韩有码中文字幕| 成年人黄色毛片网站| 香蕉丝袜av| 中文字幕制服av| 亚洲中文日韩欧美视频| 久久久国产一区二区| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美精品济南到| 久久这里只有精品19| 久久精品国产99精品国产亚洲性色 | 日韩制服丝袜自拍偷拍| 亚洲欧美激情在线| 国产精品1区2区在线观看. | 亚洲全国av大片| 国产乱人伦免费视频| 在线观看免费视频日本深夜| 亚洲色图av天堂| 嫩草影视91久久| 久久精品国产亚洲av香蕉五月 | 精品熟女少妇八av免费久了| 中亚洲国语对白在线视频| 丝袜人妻中文字幕| 99香蕉大伊视频| 国产精品美女特级片免费视频播放器 | 天天操日日干夜夜撸| 国产伦人伦偷精品视频| 69av精品久久久久久| 18在线观看网站| 免费看十八禁软件| tocl精华| 久99久视频精品免费| 国产单亲对白刺激| 国产精品久久电影中文字幕 | 日韩免费高清中文字幕av| av电影中文网址| 亚洲专区字幕在线| 中文字幕高清在线视频| 又紧又爽又黄一区二区| 变态另类成人亚洲欧美熟女 | 男女高潮啪啪啪动态图| 叶爱在线成人免费视频播放| 大香蕉久久网| 午夜亚洲福利在线播放| 男女免费视频国产| 91av网站免费观看| 久久久久久久久久久久大奶| 日韩大码丰满熟妇| e午夜精品久久久久久久| 久久影院123| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 国产精品二区激情视频| 免费女性裸体啪啪无遮挡网站| 欧美乱妇无乱码| 欧美中文综合在线视频| 丝袜美足系列| 久久婷婷成人综合色麻豆| 精品一区二区三卡| 黄片小视频在线播放| 成人亚洲精品一区在线观看| 成年人黄色毛片网站| 欧美成人免费av一区二区三区 | 亚洲色图av天堂| 久久久国产欧美日韩av| 精品人妻熟女毛片av久久网站| 视频在线观看一区二区三区| 欧美一级毛片孕妇| 精品高清国产在线一区| 亚洲精品国产区一区二| 国产av一区二区精品久久| 大型av网站在线播放| e午夜精品久久久久久久| 免费观看精品视频网站| 又紧又爽又黄一区二区| 亚洲国产看品久久| 久久中文字幕一级| 女警被强在线播放| 欧美最黄视频在线播放免费 | 欧美乱码精品一区二区三区| 少妇粗大呻吟视频| 亚洲男人天堂网一区| 国产精品 国内视频| 亚洲第一青青草原| 欧美日韩乱码在线| 美女 人体艺术 gogo| 黄色a级毛片大全视频| 亚洲欧美日韩另类电影网站| 国产真人三级小视频在线观看| 香蕉丝袜av| e午夜精品久久久久久久| 中文字幕高清在线视频| 12—13女人毛片做爰片一| 天堂动漫精品| a在线观看视频网站| 黄色丝袜av网址大全| 热99国产精品久久久久久7| 亚洲专区中文字幕在线| 深夜精品福利| 亚洲一区二区三区欧美精品| 成人18禁在线播放| 欧美日韩av久久| tube8黄色片| 黑丝袜美女国产一区| 黄色片一级片一级黄色片| 免费在线观看日本一区| 妹子高潮喷水视频| 热99久久久久精品小说推荐| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色 | 变态另类成人亚洲欧美熟女 | 午夜福利影视在线免费观看| 日本五十路高清| 色94色欧美一区二区| 人人妻人人澡人人看| 国精品久久久久久国模美| 午夜视频精品福利| 久久久久精品人妻al黑| 久久久国产成人免费| 黄色a级毛片大全视频| 超碰97精品在线观看| 美女高潮喷水抽搐中文字幕| 最新的欧美精品一区二区| 国产aⅴ精品一区二区三区波| 九色亚洲精品在线播放| 亚洲第一av免费看| 黄频高清免费视频| 两人在一起打扑克的视频| 美女福利国产在线| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 国产99久久九九免费精品| 久久久久久人人人人人| 国产一区二区三区综合在线观看| 国产av又大| 精品一区二区三区av网在线观看| 老司机靠b影院| 久久久久精品人妻al黑| 国产麻豆69| 精品国产国语对白av| 老熟女久久久| 成人免费观看视频高清| 制服诱惑二区| 精品国内亚洲2022精品成人 | 亚洲人成77777在线视频| 日本一区二区免费在线视频| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 成人免费观看视频高清| x7x7x7水蜜桃| 日日爽夜夜爽网站| 乱人伦中国视频| 香蕉丝袜av| 色综合欧美亚洲国产小说| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 国产精品一区二区精品视频观看| 午夜免费观看网址| 国产色视频综合| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 亚洲人成77777在线视频| 精品久久久久久电影网| 好看av亚洲va欧美ⅴa在| 国产又爽黄色视频| 国产精品久久久久久人妻精品电影| 免费久久久久久久精品成人欧美视频| 亚洲色图av天堂| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 国产单亲对白刺激| 久热爱精品视频在线9| 久久中文看片网| 99精品久久久久人妻精品| 看黄色毛片网站| 精品人妻1区二区| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 国产1区2区3区精品| 亚洲 国产 在线| 国产精品.久久久| 国产熟女午夜一区二区三区| 国产在线精品亚洲第一网站| 精品一区二区三区视频在线观看免费 | 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 99久久人妻综合| 国产午夜精品久久久久久| 69精品国产乱码久久久| 国精品久久久久久国模美| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| av网站在线播放免费| 亚洲成人免费电影在线观看| 国产午夜精品久久久久久| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 久久久精品免费免费高清| 国产精品偷伦视频观看了| 窝窝影院91人妻| 精品人妻1区二区| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 午夜日韩欧美国产| 亚洲第一av免费看| a在线观看视频网站| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| svipshipincom国产片| 国产成人欧美| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 亚洲精品一卡2卡三卡4卡5卡| 99热只有精品国产| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产97色在线日韩免费| 国产成人精品久久二区二区免费| ponron亚洲| 色94色欧美一区二区| 久久久久国产一级毛片高清牌| 国产亚洲av高清不卡| 日韩熟女老妇一区二区性免费视频| 777米奇影视久久| 中文亚洲av片在线观看爽 | 一级毛片高清免费大全| 久久国产精品男人的天堂亚洲| 成人手机av| 成人精品一区二区免费| 国产又爽黄色视频| 青草久久国产| 咕卡用的链子| 两个人免费观看高清视频| 欧美日韩视频精品一区| 一本综合久久免费| 一区二区日韩欧美中文字幕| 69精品国产乱码久久久| 国产精品久久久久成人av| 精品国产美女av久久久久小说| 99热国产这里只有精品6| 99国产精品一区二区三区| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 精品欧美一区二区三区在线| 婷婷成人精品国产| 亚洲精品中文字幕一二三四区| 国产精品一区二区在线不卡| 飞空精品影院首页| 国产亚洲精品久久久久5区| 亚洲欧洲精品一区二区精品久久久| 老熟妇仑乱视频hdxx| av网站免费在线观看视频| 中文字幕av电影在线播放| 午夜福利欧美成人| 国产av又大| 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美丝袜亚洲另类 | 韩国精品一区二区三区| 天堂中文最新版在线下载| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 亚洲五月婷婷丁香| 国产在视频线精品| 国产一卡二卡三卡精品| 日韩一卡2卡3卡4卡2021年| 午夜激情av网站| 久久久久久久午夜电影 | 啦啦啦视频在线资源免费观看| 一a级毛片在线观看| 91国产中文字幕| 欧美乱码精品一区二区三区| 丰满的人妻完整版| 亚洲人成电影观看| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 在线观看免费午夜福利视频| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 亚洲成国产人片在线观看| 亚洲欧美日韩另类电影网站| 男女床上黄色一级片免费看| 精品无人区乱码1区二区| 曰老女人黄片| 精品一品国产午夜福利视频| 国产男女超爽视频在线观看| 国产亚洲欧美98| 国产成+人综合+亚洲专区| 黄色 视频免费看| 亚洲性夜色夜夜综合| 欧美国产精品一级二级三级| 久久久精品区二区三区| 99热只有精品国产| 欧美日韩视频精品一区| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 精品国产亚洲在线| 交换朋友夫妻互换小说| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 成年人黄色毛片网站| 欧美性长视频在线观看| 在线天堂中文资源库| 多毛熟女@视频| 亚洲伊人色综图| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 午夜激情av网站| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 精品福利观看| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 超碰成人久久| 波多野结衣av一区二区av| 这个男人来自地球电影免费观看| 国产激情欧美一区二区| 国产欧美日韩一区二区三区在线| 大型av网站在线播放| 精品高清国产在线一区| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 午夜视频精品福利| a级毛片在线看网站| 亚洲午夜理论影院| www.999成人在线观看| 免费久久久久久久精品成人欧美视频| videos熟女内射| 久99久视频精品免费| 水蜜桃什么品种好| 一个人免费在线观看的高清视频| 国产高清国产精品国产三级| 日韩成人在线观看一区二区三区| 亚洲熟女精品中文字幕| 午夜激情av网站| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 丰满的人妻完整版| 精品午夜福利视频在线观看一区| 18禁观看日本| av一本久久久久| 18禁观看日本| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 亚洲精品国产精品久久久不卡| 夫妻午夜视频| 啦啦啦免费观看视频1| 在线观看免费午夜福利视频| 天堂俺去俺来也www色官网| 啪啪无遮挡十八禁网站| 欧美日韩国产mv在线观看视频| 99在线人妻在线中文字幕 | 午夜福利欧美成人| 69精品国产乱码久久久| 一级a爱视频在线免费观看| 天堂动漫精品| 正在播放国产对白刺激| 国产在线观看jvid| 午夜老司机福利片| 久久久久久人人人人人| 一区二区三区精品91| 国产精品99久久99久久久不卡| 久久中文字幕一级| 丝袜美足系列| 久久久久精品人妻al黑| 久久国产精品人妻蜜桃| 国产av一区二区精品久久| 人妻久久中文字幕网| 91成人精品电影| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 嫁个100分男人电影在线观看| 欧美不卡视频在线免费观看 | 精品久久久久久,| 如日韩欧美国产精品一区二区三区| 高清欧美精品videossex| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 午夜福利一区二区在线看| aaaaa片日本免费| 不卡一级毛片| a在线观看视频网站| 亚洲色图av天堂| 高清黄色对白视频在线免费看| 91九色精品人成在线观看| 女人久久www免费人成看片| 最新美女视频免费是黄的| 欧美另类亚洲清纯唯美| 国产在线观看jvid| 女人被狂操c到高潮| 国产欧美日韩一区二区三区在线| 国产亚洲精品久久久久5区| 亚洲av成人一区二区三| 国产三级黄色录像| 9色porny在线观看| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 国产又色又爽无遮挡免费看| 91麻豆av在线| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看 | 后天国语完整版免费观看| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 成人亚洲精品一区在线观看| 看片在线看免费视频| av有码第一页| 免费一级毛片在线播放高清视频 | 亚洲五月色婷婷综合| 久久亚洲真实| 亚洲国产精品合色在线| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| videosex国产| 亚洲av成人一区二区三| 一个人免费在线观看的高清视频| 亚洲成人手机| 91成年电影在线观看| 啦啦啦在线免费观看视频4| 一二三四社区在线视频社区8| 怎么达到女性高潮| 99在线人妻在线中文字幕 | 国产三级黄色录像| 国产1区2区3区精品| 久久久国产精品麻豆| 精品高清国产在线一区| 国产精品一区二区在线观看99| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| av一本久久久久| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线 | 国产精品98久久久久久宅男小说| 国产精品 国内视频| 国产精品免费视频内射| 又大又爽又粗| 热re99久久精品国产66热6| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| 亚洲精品在线美女| tocl精华| 黄色 视频免费看| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 精品熟女少妇八av免费久了| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 精品久久蜜臀av无| 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 国产精品国产av在线观看| 久久热在线av| 另类亚洲欧美激情| 国产精品一区二区免费欧美| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 国产精品久久视频播放| 在线观看免费视频日本深夜| 嫁个100分男人电影在线观看| 老司机靠b影院| 精品国产一区二区久久| 乱人伦中国视频| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 最新在线观看一区二区三区| 精品一区二区三卡| 欧美大码av| 精品人妻熟女毛片av久久网站| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 女性被躁到高潮视频| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 国产精品久久视频播放| 中文亚洲av片在线观看爽 | 欧美 日韩 精品 国产| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品一区二区免费欧美| 国产一区在线观看成人免费| 18禁裸乳无遮挡动漫免费视频| 国产深夜福利视频在线观看| 美女 人体艺术 gogo| 亚洲精品中文字幕在线视频| 午夜精品在线福利| 日韩制服丝袜自拍偷拍| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 免费少妇av软件| av网站在线播放免费| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 国产一区二区激情短视频| 看黄色毛片网站| 狠狠婷婷综合久久久久久88av| 国产亚洲精品一区二区www | 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 超碰成人久久| 电影成人av| 欧美成人午夜精品| 久久九九热精品免费| 亚洲专区中文字幕在线| 色婷婷av一区二区三区视频| 一区福利在线观看| 黄色怎么调成土黄色| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 人人妻人人澡人人爽人人夜夜| 免费在线观看视频国产中文字幕亚洲| 交换朋友夫妻互换小说| 妹子高潮喷水视频| 久久这里只有精品19| 成人av一区二区三区在线看| 国产麻豆69| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 亚洲,欧美精品.| 免费在线观看日本一区| 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av在线 | 精品视频人人做人人爽| 久久久久精品国产欧美久久久| 天堂动漫精品| 一本大道久久a久久精品| 1024视频免费在线观看| 一区二区三区激情视频|