• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of trotting controller for the position-controlled quadruped robot①

    2016-12-05 06:39:03ZhangGuoteng張國騰LiuJinchangRongXuewenLiYibinChaiHuiLiBinZhangHuiZhangShuaishuai
    High Technology Letters 2016年3期

    Zhang Guoteng (張國騰):Liu Jinchang,Rong Xuewen:Li Yibin:Chai Hui,Li Bin:Zhang Hui:Zhang Shuaishuai

    (*School of Control Science and Engineering:Shandong University:Jinan 250061:P.R.China)(**High Technology Research Development Center:Ministry of Science and Technology of the People’s Republic of China:Beijing 100044:P.R.China)

    ?

    Design of trotting controller for the position-controlled quadruped robot①

    Zhang Guoteng (張國騰)*:Liu Jinchang*To whom correspondence should be addressed.E-mail:liujc@htrdc.comReceived on Apr.1,2015**,Rong Xuewen*:Li Yibin*:Chai Hui*,Li Bin*:Zhang Hui*:Zhang Shuaishuai*

    (*School of Control Science and Engineering:Shandong University:Jinan 250061:P.R.China)(**High Technology Research Development Center:Ministry of Science and Technology of the People’s Republic of China:Beijing 100044:P.R.China)

    This work presents a controller designed for position-controlled quadrupedal dynamic locomotion:aiming at simple and robust trotting control.The controller takes the torso attitude angles and velocities into planning foot trajectories.Firstly design of the servo motor actuated quadruped robot is introduced and the kinematic equations are deduced.Then a scheme is presented for controlling the robot torso attitude based on the virtual leg model.Furthermore:it demonstrates the design of the controller which enables the robot to have a wide range of trotting gaits and omni-directional motions.Finally:results of robust trotting in various speeds:path tracking and push recovery in simulation are reported:and results of trotting on real quadruped robots will be studied.

    quadruped robot:position control:torso attitude:foot trajectory:trotting locomotion

    0 Introduction

    Legged robots have shown great superiority in terms of agility and versatility compared to their wheeled or tracked counterparts.They are able to navigate on much more uneven and rough terrains.These capabilities of legged robots have made it a new hot spot in robots research.Nevertheless:legged robots are more complicated in structure and difficult to control than wheeled or tracked robots.The theories concerned with legged robots are still in the development stage[1].

    Legged animals in nature could keep balance during motions even after they suffer from unexpected disturbances.To date:lots of research have been made towards bridging the gap between locomotivity and balancing skills of legged robotic systems and that of real animals.The most well-known intuitive method for controlling legged robots is the three part locomotion algorithms developed by Raibert[2,3].The most famous quadruped robots built by Boston Dynamics:BigDog[4]and LS3[5]are believed being developed by Raibert’s three-part locomotion algorithms[6]though no details about the control methods have been published.Besides:quadruped robots like TITAN-VIII[7]or LittleDog[8]took the ZMP (zero moment point) method in their locomotion control.The CPG-based neural network with reflex feedbacks and interconnections qualified the Tekken robot with impressive trotting skills[9].The robot HyQ was controlled by a reactive controller consisting of a CPG-based trajectory generator and an attitude controller[10].And the Autonomous Systems Laboratory combined with virtual model control:PD controller and virtual forces in controlling their quadruped robot StarlETH[11].

    Though some achievements have been got in the locomotion and balance control of legged robots:there is still a long way to go.The algorithms mentioned above generally need precise sensors:sophisticated computing:advanced actuators and possess force-control sections.These qualifications are unavailable for the ”civilian-style” robots.

    In 2012:Center for Robotics of Shandong University developed a servo motor actuated small mammal bionic quadruped robot called LittleCalf.The robot was designed to serve as a platform to study not only its gaits and joint action:the generate and switch of gaits as well as the ability to keep balance:but also the bionic kinematics.

    Owning to the limitation of the servo motors in LittleCalf:only position control is available for the robot joints.Traditional position-controlled quadruped robots introduce foot trajectory planning in controlling the motion of the robots.Refs[1,12-15] show some kinds of control strategies for position-controlled quadruped robots.Yet those works paid great attention on the motion of the robot feet instead of the overall attitude.And the robust of the robots to external disturbances are not verified.

    In this study:considering the peculiarity of the LittleCalf platform:a novel trotting controller for position-controlled quadruped robots is demonstrated.The controller takes the attitude angles and velocities of the torso into planning the foot trajectories and drive the robot to move with trotting gait as well as to maintain the torso attitude.

    This paper is organized as follows:Section 1 gives an overview about the LittleCalf robot.Kinematics of the robot are deduced in Section 2.Section 3 gives the torso attitude control algorithm.Section 4 demonstrates the trotting controller designed for the LittleCalf robotic platform and Section 5 reports the experimental results obtained from simulation as well as the physical prototype.Finally:Section 6 contains the conclusions and further work.

    1 Overview of LittleCalf

    1.1 Mechanism design

    As shown in Fig.1:the robot consists of one torso and four legs.Each leg has a rolling rotary joint in the hip:a pitching rotary joint in the hip and a pitching rotary joint in the knee:which allows the foot to move in a three dimensional workspace around the hip.This reduces the complexity of the quadruped machine:but still enables static walking over rough terrain:robot balance and robust dynamic gaits[16].The joints are configurated to be centrosymmetric with knees of the front and hind legs pointing to each other:since Zhang et al.have concluded that this kind of configuration is beneficial for slipping-inhibition:and can improve the stability of motion[17].

    The joints topology is shown in Fig.2.

    Fig.1 Three dimensional prototype of LittleCalf

    Fig.2 Joints topology and D-H coordinate frames of LittleCalf

    1.2 Control system

    Servo motor MG995 is chosen as the actuator of the robot’s joint.This kind of servo motor has the advantage of high torque:short response time:light weight and easy to control.A high capacity lithium-ion battery is fixed under the torso to supply the whole system.Onboard control circuit is based on the single chip computer (SCM) MC9S12XS128 from Freescale:coupled with the power management module:motor drive module:environmental perception module (IMU to detect attitude of the torso:and foot switch to detect whether the foot touches the ground) and communication module.

    Fig.3 Block diagram of control system

    SpecificationsValuesWeight(withbattery)1.6kgDimensions(fullystretchedlegs)230mm×160mm×190mm(Length×Width×Height)Torsosize2l=200mm2w=110mmh=10mmLegLengtha0=30mma1=50mma2=60mmDOFsperleg3active(rotary)Jointrangeofmotion90degreesMaxrotatespeedofjoint0.13s/60degreesMaxtorqueofjoint1.3N·m

    Block diagram of the control system is shown in Fig.3.Table 1 shows the major technical specifications of LittleCalf.

    2 Kinematic equations

    2.1 D-H coordinate frames and link parameters

    As shown in Fig.2:the origin of the body fixed coordinate frame {Ob} locates in the geometric center of the torso:andxbpoints to the forward direction:zbpoints opposite to the gravity direction.Andybaxis is confirmed using right-hand rule.There are four coordinate frames noted as {Oi0}(i=0:1:2:3) fixed on the four corners of the torso respectively.The coordinate frames fixed on linkknoted as {Oik} of four legs are established according to D-H rules[14].Fig.2 shows coordinate frames of leg 0.Coordinate frames of the other three legs are establish accordingly.Since the mechanical configurations of the four legs are extremely identical:the coordinate frames and transformation matrices of four legs are identical too.The only difference is the posture between fore legs and rear legs.The link parameters of LittleCalf are illustrated in Fig.2 and listed in Table 2.

    Table 2 Link parameters of LittleCalf

    2.2 Forward kinematic equations

    Since the four legs of LittleCalf have the same D-H coordinate frames and link parameters:they have same forward kinematic equations from {Oi4} to {Oi0}.The transformations from {Oi0} to {Ob} for four legs can be expressed by the following transformation matrix with different values ofδandλ:

    (1)

    wherel:wandhare geometry parameters of the torso specified in Fig.2:δandλare sign flags which are defined as

    (2)

    (3)

    The coordinates of one foot with respect to {Oi0} corresponding to the same leg can be obtained easily through homogeneous transformations.It is given by

    (4)

    whereck=cosθik:sk=sinθik:s12=sin(θi1+θi2):c12=cos(θi1+θi2).

    Eq.(4) is the forward kinematic equation for four legs.The coordinates of four feet in {Oi0} can be solved respectively from it.Furthermore:the coordinates of four feet in {Ob} can be obtained by premultiplying transformation matrixi0Ti4withbTi0respectively.And the coordinate {xi:yi:zi}Tof one foot in {Ob} can be gained by

    (5)

    And the jacobian matrix for the leg is

    (6)

    2.3 Inverse kinematic equations

    The inverse kinematic analysis is necessary for motion planning and controlling.Although the forward kinematic equations for four legs from {Oi4} to {Oi0} are identical:the inverse kinematic equations of joint variablesθi1andθi2are not the same since the fore legs and the rear legs are indifferent postures.The feet of LittleCalf are simplified to four points in this paper.If given the coordinates of one foot with {xi:yi:zi}Tin {Ob}:the corresponding joint variablesθikcan be resolved from the inverse kinematic equations.Moreover:its coordinates in other frames can be obtained by forward and inverse homogenous transformation.Ref.[18] gives the detailed derivation for inverse kinematic equations of a quadruped robot.This study gives the results directly as

    (7)

    Among them

    (8)

    (9)

    2.4 Workspace of the foot

    Given the mechanical parameters of LittleCalf and rotation range of the joints:using Eq.(5):the foot workspaces of the robot could be got.The workspace can help us in the motion planning of each foot.Take leg 0 as example:the foot workspace could be got show in Fig.4.And the trajectory of left front foot in this workspace could be planned.

    Fig.4 Workspace of the foot of leg 0 with respect to torso fixed frame {Ob}:(a):(b) and (c) show the projection of the workspace on thex-yplane:x-zplane andy-zplane:(d) shows foot workspace in 3D view

    Point {x0:ini:y0:ini:z0:ini}T={100:55:-130}Tis chosen as the initial foot position of leg 0:since there are rather big space for the foot to move near this point.Initial position of the other three feet are confirmed similarly.

    3 Control torso attitude

    In nature:quadruped animals employ different kinds of gaits to move.The trotting is the kind of gait that the diagonal legs move together:which exhibits good energy efficiency over a wide range of running speed:showing no significant pitch or roll motion during each stride and therefore is often seen in nature[19].Many famous quadruped robots such as HyQ[20]:BigDog[4]:LS3[5]:have selected trotting gait as their primary gait.Thus this work majors in controlling the trotting gait of the robot.

    The trot is a kind of dynamic gait and in support phase the diagonal standing legs synchronously support the body.Thus the torso would easily rotate about the body diagonal line in trotting.And attention must be paid on controlling the torso attitude.

    The concept of the virtual leg is invoked to simplify the control algorithms of the quadruped running.Since the trotting gait pairs their diagonal legs:and the diagonal feet will move almost the same way from their hips and exert equal forces on the ground:their behavior is precisely equivalent to the behavior of the virtual leg[3,21].

    Fig.5 shows the correspondences between the trot gait and the equivalent virtual model.The motion of the trotting quadruped robot can be simplified to a virtual biped one and further to the one with single leg.Then the motion of one-leg model are furthers simplified to the two-dimensional plane.Fig.6 shows the planar graph of the simplified robot model and the coordinate system built.All the model variables in Fig.6 are defined in Table 3.

    Since LittleCalf is a position-controlled robot:the joint torques can not be directly regulated to control the torso attitude.But the foot velocity can be programmed so as to make the hip exert equivalent torque.

    Fig.6 Planar graph of the simplified robot model

    VariablesDescriptionsOgcoordinateframeattachedtothegroundObcoordinateframeattachedtotheCOMofthetorsoggravitationalaccelerationMtorsomassItorsoinertiaθleganglew.r.t.vertical?torsoattitudeangle?ddesiredtorsoattitudeanglehheightbetweenthetorsoCOMandthehiprleglengthτtorqueexertedbythehipFt,FnforcesactingatthehipbetweenthelegandtorsoFtactstangenttotheleg,andFnactsperpendiculartotheleg(gxh,gzh)hippositioninframeOg(gxm,gzm)positionofthetorsoCOMinframeOg(bxs,bzs)positionofthesupportfootinframeOb

    This model makes the simplifying assumptions of negligible frictional losses:zero leg mass:and a total center of mass (COM) located at the torso.Dynamic equations for the model are derived as

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    τ=-Fnr

    (17)

    Assume the controller could maintain the robot torso relatively level andφis closed to 0.The simplification that sinφ≈0:cosφ≈1:sin(φ-θ)≈sin(-θ) and cos(φ-θ)≈cos(-θ) can be got.Then Eqs(12) (13) and (16) can translate to

    (18)

    (19)

    (20)

    (21)

    (22)

    Since Eq.(22) is a nonlinear differential equation:it is difficult to obtain the universal analytic solutions.But the qualitative analysis of it can be taken.Integrate Eq.(22) with respect to time:yields:

    (23)

    where subscribe 0 indicates the initial value:and

    (24)

    (25)

    Note thatAis always positive.So if given the desired torso attitude angleφdand

    (26)

    Under the assumption of negligible frictional losses:the feet do not move with respect to the ground during the stance phase and the backward motion of a support foot with respect to the body coordinate is equal to the forward motion of the body with respect to the ground.That is

    (27)

    4 Trotting controller

    The control of the rectilinear motion of the robot is divided into the support phase control and flight phase control.Both of them are designed based on the virtual leg model and later on translated to the quadruped model.Then the yaw controller is involved to modify the foot position and enable the robot to rotate around the yaw axis.

    For simplicity:all of the following coordinates in this paper are defined in the body frame unless noted otherwise.

    4.1 Support Phase

    For the foot in the support phase:thezcoordinate of the foot should remain unchanged as mentioned before.Meanwhile thexcoordinate would customarily be function of the starting point:the velocity and time.See

    (28)

    where

    xsandzsare the coordinates of the support foot.

    xs0is thexcoordinate of the starting point:i.e.:the vertical position of the support foot at time 0.

    tis the current time.

    z0is the initial vertical coordinate of support foot.

    (29)

    And the foot trajectory of the support phase will change to

    (30)

    4.2 Flight Phase

    Motion trajectory of the flight foot should go through the lift-off point (xf0:z0):and the touch-down point (xfT:z0).Obviously the lift-off point is the final status of the last support phase:and the touch-down point will be the initial status of the next support phase.

    (31)

    In order to minimize the contact forces between ground and the foot:it is generally considered that the foot trajectory should meet the demand that the vertical velocity becomes zero at the time of touch-down:lift-off and maximum foot height.

    In addition:it is hoped that there are no steps with the position curve and velocity curve of the foot.According to Eq.(29):the velocity of the support foot (also velocity of the torso) would not be a constant value and the coordinate of the foot while lifting off would be variable.Thus the foot trajectory of the flight phase should be state based.

    The requirements for the flight phase trajectory can be summarized as

    (32)

    where

    xfandzfare the coordinates of the flight foot.

    Hfindicates the step height.

    Tfis the length of the flight phase time.For trotting gait with duty factorβ=0.5:Tf=Ts.

    Thus the equations for the flight phase foot trajectory are

    (33)

    (34)

    The next step is to transform the virtual leg model back to the quadruped robot.In the derivation mentioned above trajectories that lie in thex-zplane of the virtual leg model are generated:but this can be easily extended to any orientation and eventually to the quadruped robot.Equations for the foot of the real quadruped robot are given in Appendix A.

    4.3 Yaw Control

    The control algorithm discussed earlier can drive the robot to move in longitudinal or lateral directions:while yaw control would enable it to spin or make turns.

    In our controller:foot placement is used to generate a yaw motion of the robot.As shown in Fig.7:if the feet are positioned to rotate the line connecting the feet about the center of mass:the robot body will spin around the yaw axis (zbaxis in Fig.2).The resulting couple is used to manipulate the yaw orientation of the quadruped without disturbing its rectilinear motions.Coordinates for the feet will be

    (35)

    where

    (xi:yi:zi) are the coordinates of footiin {Ob} programmed for the rectilinear motions.

    (Xi,Yi,Zi) are the modified coordinates of footi.

    ψ(t) is the angle between the line through the hips and the line through the diagonal feet:as shown in Fig.7.

    Fig.7 Control of turning about the yaw axis.The diagram shows the quadruped viewed from above:indicating how the placement of the feet can be used to generate a spinning motion of the robot.The filled circles indicate the location of the hips.Tile open circles indicate the placement of the feet

    Similar to the previous part:ψ(t) of the support feet and flight feet are programmed separately with the desired yaw rate.For the support feet:

    (36)

    And for the flight feet:

    (37)

    BlockdiagramofthetrottingcontrollerisshowninFig.8.

    5 Experiments

    Forthesakeofverifyingkinematicequationsandtheperformanceofthetrottingcontroller:andgettingsomeimportantparameters:experimentsareconductedbothinsimulationandontherealrobot.ThemobileroboticssimulatesoftwareWebotsisusedforthesimulationtests.ThissectiondemonstratessuccessfultrottinginsimulationandontherealLittleCalfrobotwiththe same controller:while it also shows how the system responds to unexpected perturbations in simulation.

    Fig.8 Block diagram of the trotting controller

    Some parameters used in the simulation and the physical prototype test are listed in Appendix B.

    5.1 Trotting in simulation

    The initial implementation and testing cycle have been performed in simulation.There it is able to test and tune a number of different controller parameter sets and obtain exhaustive data about the motions.

    The trotting controller is capable of trotting in place where it maintains the body attitude very close to zero.The desired forward velocity of the robot is ramped up to 0.05m/s and then to 0.1m/s and finally ramp down to zero.In Fig.10:a run of this procedure is presented.Fig.9(a) and Fig.9(b) present the robot velocity while Fig.9(c) and Fig.9(d) show the torso attitude throughout this simulation trial.Example snapshots of the robot trotting in simulation are available in Fig.10.And the leg motions during the 0.1m/s trot in world frame are plotted by stick sequence for two gait cycles in Fig.11.

    (a) Forward velocity of the robot torso through the simulation run

    (b) Lateral velocity of the robot torso through the simulation run

    (c) Roll angle of the robot torso through the simulation run

    (d) Pitch angle of the robot torso through the simulation run

    Fig.9 Plots of the velocity and attitude of the robot throughout the simulation run.The robot was trotting at place at first and then the desired forward velocity ramped up to 0.05m/s and then to 0.1m/s and finally ramped down to zero

    Fig.10 Snapshots showing the robot trotting in simulation.From left to right:trotting at a forward velocity of 0m/s:at 0.05m/s and 0.1m/s

    Moreover:to test the superiority of the controller compared with traditional position-controlled gait planning method:the composite cycloid foot trajectory in Ref.[1] on our robot is applied.Fig.12 shows the torso attitude of the robot while the robot trotting forward with velocity of 0.1m/s using the composite cycloid foot trajectory in Ref.[1] as well as using the trotting controller proposed in this paper.Obviously the controller could maintain the body attitude much more close to zero.

    Fig.11 Stick figure sequence of leg 0 (right) and leg 2 (left) for two gait cycles (from left to right):described in sagittal plane of world frame.The desired forward speed of the robot is 0.1 m/s

    (a) Roll angles of the robot torso

    (b) Pitch angles of the robot torso

    Fig.12 Comparison of the torso attitude angles collected in the simulator while the robot trotting with the composite cycloid foot trajectory and with the trotting controller.Dashed lines:trotting with the composite cycloid foot trajectory.Solid line:trotting with the trotting controller.The desired forward velocity are all set to 0.1m/s

    5.2 Path tracking test

    If the robot has the ability to actively move forward or sideward:spin or make turns:it can effectively avoid large obstacles in front or track a complex path.In the simulation:the robot is dictated to track a desired path as shown in Fig.13(a) (dashed line).The starting point isOand the robot moves forward to pointA.AtAit spins for 90° to right and then move forward to pointB.After that:the robot is dictated to make a right turn and draw a semicircle path to pointC.Finally it moves right-sideward and arrives atD.

    The simulation results for this task are shown in Fig.13.The solid line in Fig.13(a) indicates the desired and actual trajectory of the robot’s COM.It seems that the robot tracks the desired path quite well.Fig.13(b):Fig.13(c) and Fig.13(d) show the roll:pitch and yaw angles of the torso during the motion.The vertical dashed lines labelledA:B:CandDindicate the moments when the robot arrives at pointA:B:CandDof the path.And the dates between timeAandA’ show the spinning motion of the robot at pointA.The snapshots of this simulation are exhibited in Fig.14.

    (a) Desired and actual path of the robot

    (b) Roll angle of the robot torso

    (c) Pitch angle of the robot torso

    (d) Yaw angle of the robot torso

    Fig.13 Simulation results of path tracking test.In (a):the solid and dashed lines indicate the actual and desired paths:respectively.(b)(c)(d) shows the torso attitude angles and the vertical dashed lines indicate the moments when the robot arrives at the corresponding points

    Fig.14 Snapshots showing the path tracking simulation

    5.3 Impact recovery

    A showcase of the controller robustness is the ability to recover from unexpected perturbations.Due to the morphology of the robot:perturbations along the coronal plane are much harder to accommodate[22].the response of the controller is tested while trotting in place and while trotting at a constant velocity.

    Unexpected impacts are exerted on the broadside of the robot by a pendulum bob in simulation.The impulse acting on the robot’s torso is 0.3kg·m/s.When trotting in place and when trotting in the specified velocity range the robot can successfully recover from perturbations.Fig.15 shows how the controller responds to the impact by presenting the attitude and the velocity of the robot body as it is impacted laterally by the pendulum bob:and how the disturbances are dissipated.

    5.4 Test on LittleCalf

    The trotting controller is tested on the real quadruped robot with similar success including experiment with the robot trotting in place:trotting forward and backward.Fig.17 shows a photo of the LittleCalf robot trotting forward with the forward velocity of 0.1m/s.In the same way:the composite cycloid foot trajectory proposed in Ref.[1] is also applied on LittleCalf as comparison.The pitch and roll angles of the torso in these experiments are presented in Fig.18.And similarly:LittleCalf also demonstrates the ability of omni-directional moving and the path tracking test is shown in Fig.19.

    Snapshots from this test are presented in Fig.16.

    (a) Forward velocity of the robot torso through the lateral impact test

    (b) Lateral velocity of the robot torso through the lateral impact test

    (c) Roll angle of the robot torso through the lateral impact test

    (d) Pitch angle of the robot torso through the lateral impact test

    Fig.15 Plots of the velocity and attitude of the robot collected from the lateral impact test.Vertical dashed line shows the time that the robot torso being impacted laterally by the pendulum bob.The bob is 0.15kg weight and moves at speed of 2m/s before knocking on the robot

    Fig.16 Snapshots showing the impact recovery of the quadruped robot

    Fig.17 Photo of the LittleCalf trotting with forward velocity of 0.1m/s

    (a) Roll angles of the robot torso

    (b) Pitch angles of the robot torso

    Fig.18 Comparison of the torso attitude angles collected through LittleCalf while the robot trotting with the composite cycloid foot trajectory and with the trotting controller.Dashed lines:trotting with the composite cycloid foot trajectory.Solid line:trotting with the trotting controller.The desired forward velocity are all set to 0.1m/s

    Fig.19 Snapshots showing the path tracking test on LittleCalf

    Objectively speaking:the test done on LittleCalf is less than perfect compared to that in simulation on account of the limitations of the hardware platform.That is the shortcoming of position control which requires high motion precision and accurate sensor values[23].And in simulation it is possible to decouple the control laws from the limitations of specific hardware platforms.Nonetheless:the controller is still quite effective on LittleCalf and shows superiority in maintaining the torso attitude.

    6 Conclusion

    Based on the actuation mode and sensors of the robot LittleCalf:this paper elaborates a trotting controller for the position controlled quadruped robot:which utilizes the torso attitude control:moving velocity control and yaw control.It has shown how the controller is organized and how the different tasks are implemented.Main advantage of the controller is that the complex dynamic calculation of the robot and complicated force control are avoided yet the robot could move steadily and stably.How this trotting controller is able to trot at varying speeds and varying directions and how it can robustly dissipate unexpected perturbations in simulation are presented.Moreover:Effectiveness of the trotting controller is also verified by experiments on LittleCalf.

    However:every coin has two sides.Shortcomings of our trotting controller are quite obvious:which requires high motion precision and accurate attitude sensor values.And collision between the feet and the ground may be strong since it does not employ force control thus this method may not be suitable to be directly applied to some large robots.Nevertheless:our controller is still quite effective in improving the stability and robustness of quadruped trotting and it is believed it will provide a new idea for the quadruped researchers.

    In the future work:the controller should be improved so as to enable the robot to move on different types of terrain.There would be more simulations and experiments.

    Appendix A:Correspondence between the virtual leg model and the quadruped robot

    If legiis in support phase:the coordinate of the foot in {Ob} should be

    (38)

    (39)

    zi,s=zi,ini

    (40)

    where (xi,ini:yi,ini:zi,ini) indicates the initial point of footideclared in the last part of Section 2.φpandφrare the pitch and roll angles of the robot torso:φpdandφrdare the desired values.

    If legiis in flight phase:the coordinate of the foot in in {Ob} is

    (41)

    (42)

    (43)

    (44)

    (45)

    Note that Eqs(38)(39)(40)(42)(44)(45) do not involve the yaw control.

    Appendix B:Experiments parameters

    Table 4 Control parameters of the simulated model and LittleCalf

    Reference

    [1] Rong X:Li Y:Ruan J:et al.Design and simulation for a hydraulic actuated quadruped robot.Journalofmechanicalscienceandtechnology:2012:26(4):1171-1177

    [2] Raibert M H.Legged robots that balance.Cambridge:MA:MIT press:1986

    [3] Raibert M H.Trotting:pacing and bounding by a quadruped robot.Journalofbiomechanics:1990:23:79-98

    [4] Raibert M:Blankespoor K:Nelson G:et al.Bigdog:the rough-terrain quadruped robot.In:Proceedings of the 17th World Congress The International Federation of Automatic Control:Seoul:Korea:2008.10822-10825

    [5] Michael K.Meet Boston dynamics’ LS3-the latest robotic war machine.ResearchOnline:2012

    [6] Xie H:Ahmadi M:Shang J:et al.An intuitive approach for quadruped robot trotting based on virtual model control.ProceedingsoftheInstitutionofMechanicalEngineers:PartI:JournalofSystemsandControlEngineering:2015:229(4):342-355

    [7] Kurazume R:Yoneda K:Hirose S.Feedforward and feedback dynamic trot gait control for quadruped walking vehicle.AutonomousRobots:2002:12(2):157-172

    [8] Kalakrishnan M:Buchli J:Pastor P:et al.Learning:planning:and control for quadruped locomotion over challenging terrain.TheInternationalJournalofRoboticsResearch:2011:30(2):236-258

    [9] Fukuoka Y:Kimura H:Cohen A H.Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts.TheInternationalJournalofRoboticsResearch:2003:22(3-4):187-202

    [10] Barasuol V:Buchli J:Semini C:et al.A reactive controller framework for quadrupedal locomotion on challenging terrain.In:Proceedings of the IEEE International Conference on Robotics and Automation:Karlsruhe:Germany:2013.2554-2561

    [11] Gehring C:Coros S:Hutter M:et al.Control of dynamic gaits for a quadrupedal robot.In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation:Karlsruhe:Germany:2013.3287-3292

    [12] Yi S.Reliable gait planning and control for miniaturized quadruped robot pet.Mechatronics:2010:20(4):485-495

    [13] Kim H:Kang T:Loc V G:et al.Gait planning of quadruped walking and climbing robot for locomotion in 3D environment.In:Proceedings of the IEEE International Conference on Robotics and Automation:Barcelona:Spain:2005.2733-2738

    [14] Sakakibara Y:Kan K:Hosoda Y:et al.Foot trajectory for a quadruped walking machine.In:Proceedings of the IEEE International Workshop on Intelligent Robots and Systems:IROS ’90:Ibaraki:Japan:1990.315-322

    [15] Dong H:Zhao M:Zhang J:et al.Gait planning of quadruped robot based on third-order spline interpolation.In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems:Beijing:China:2006.5756-5761

    [16] Semini C:Tsagarakis N G:Guglielmino E:et al.Design of HyQCa hydraulically and electrically actuated quadruped robot.Proceedings of the Institution of Mechanical Engineers:Part I:Journal of Systems and Control Engineering:2011:831-849

    [17] Zhang X:Zheng H:Guan X:et al.A biological inspired quadruped robot:structure and control.In:Proceedings of the IEEE International Conference on Robotics and Biomimetics:Hong Kong:China:2005.387- 392

    [18] Rong X:Li Y:Ruan J:et al.Kinematics analysis and simulation of a quadruped robot.AppliedMechanicsandMaterials:2010:26:517-522

    [19] Nanua P:Waldron K J.Energy comparison between trot:bound:and gallop using a simple model.Journalofbiomechanicalengineering:1995:117(4):466-473

    [20] Semini C.HyQIDesign and development of a hydraulically actuated quadruped robot:[Ph.D dissertation].Genoa:University of Genoa:2010.45-86

    [21] Raibert M:Chepponis M:Brown Jr H B.Running on four legs as though they were one.IEEEJournalofRoboticsandAutomation:1986:2(2):70-82

    [22] Havoutis I:Semini C:Buchli J:et al.Quadrupedal trotting with active compliance.In:Proceedings of the 2013 IEEE International Conference on Mechatronics:Vicenza:Italy:2013.610-616

    [23] Zhang G:Chai H:Rong X:et al.An impact recovery approach for quadruped robot with trotting gait.In:Proceedings of the 2014 IEEE International Conference on Information and Automation:Hailar:China:2014.819-824

    Zhang Guoteng:born in 1989.He is currently a PhD student in Shandong University:China.He received his B.S degree from Shandong University in 2007.His research interests include robotics:intelligent control:etc.

    10.3772/j.issn.1006-6748.2016.03.012

    ①Supported by the National Natural Science Foundation of China (No.61233014:61305130):China Postdoctoral Science Foundation (No.2013M541912) and the Shandong Provincial Natural Science Foundation (No.ZR2013FQ003:ZR2013EEM027).

    99国产精品一区二区蜜桃av| 久久国产乱子伦精品免费另类| 久久精品aⅴ一区二区三区四区| 午夜免费观看网址| 亚洲国产精品久久男人天堂| 日韩 欧美 亚洲 中文字幕| 国产高清视频在线播放一区| 美女大奶头视频| 99久久久亚洲精品蜜臀av| 亚洲国产欧美日韩在线播放| 午夜视频精品福利| 亚洲专区中文字幕在线| 神马国产精品三级电影在线观看 | 可以在线观看的亚洲视频| 一卡2卡三卡四卡精品乱码亚洲| 久久国产亚洲av麻豆专区| 动漫黄色视频在线观看| 亚洲男人天堂网一区| 亚洲五月天丁香| 久久久国产成人精品二区| 窝窝影院91人妻| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 俺也久久电影网| 亚洲国产中文字幕在线视频| 777久久人妻少妇嫩草av网站| 国产成人系列免费观看| 大型av网站在线播放| 首页视频小说图片口味搜索| 亚洲欧洲精品一区二区精品久久久| 黄色片一级片一级黄色片| 精品免费久久久久久久清纯| 搞女人的毛片| 国产成人啪精品午夜网站| or卡值多少钱| 欧美精品啪啪一区二区三区| 国产精品亚洲av一区麻豆| 亚洲av成人av| 黄色a级毛片大全视频| 亚洲av日韩精品久久久久久密| 欧美精品亚洲一区二区| 久久人妻av系列| 久久国产精品人妻蜜桃| 免费观看精品视频网站| 可以在线观看毛片的网站| 成人精品一区二区免费| 色播在线永久视频| 成人永久免费在线观看视频| 亚洲一区中文字幕在线| 国产亚洲av高清不卡| 亚洲三区欧美一区| ponron亚洲| 久久久国产欧美日韩av| 91麻豆精品激情在线观看国产| 色综合站精品国产| 狂野欧美激情性xxxx| 久久久久免费精品人妻一区二区 | 丝袜人妻中文字幕| 国产成人av激情在线播放| 麻豆成人av在线观看| 草草在线视频免费看| 久久久久久久精品吃奶| 亚洲国产精品久久男人天堂| 亚洲精品在线美女| 巨乳人妻的诱惑在线观看| 美女午夜性视频免费| 神马国产精品三级电影在线观看 | 欧美久久黑人一区二区| 18美女黄网站色大片免费观看| 亚洲国产看品久久| 国产精品国产高清国产av| 一二三四在线观看免费中文在| 12—13女人毛片做爰片一| avwww免费| 国产亚洲欧美在线一区二区| 精品国产超薄肉色丝袜足j| 亚洲国产中文字幕在线视频| 老鸭窝网址在线观看| av欧美777| 亚洲国产毛片av蜜桃av| 亚洲精品一区av在线观看| 韩国精品一区二区三区| 男女午夜视频在线观看| 亚洲欧美日韩无卡精品| 他把我摸到了高潮在线观看| 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 亚洲男人的天堂狠狠| 91老司机精品| 国产伦一二天堂av在线观看| 国产精品亚洲一级av第二区| 欧美又色又爽又黄视频| 男女下面进入的视频免费午夜 | 女人被狂操c到高潮| 在线十欧美十亚洲十日本专区| 美女免费视频网站| 亚洲一码二码三码区别大吗| 九色国产91popny在线| 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 国产视频内射| 国产精品一区二区精品视频观看| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影| www.999成人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 一级毛片精品| 国产一区在线观看成人免费| 夜夜爽天天搞| 脱女人内裤的视频| 久久欧美精品欧美久久欧美| 少妇裸体淫交视频免费看高清 | 欧美又色又爽又黄视频| 色婷婷久久久亚洲欧美| 成人三级做爰电影| 久久久久久亚洲精品国产蜜桃av| 亚洲av第一区精品v没综合| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看影片大全网站| 亚洲欧美精品综合一区二区三区| 人人澡人人妻人| 禁无遮挡网站| 欧美激情极品国产一区二区三区| 宅男免费午夜| 久久久久久久午夜电影| 色综合站精品国产| a在线观看视频网站| 欧美人与性动交α欧美精品济南到| 婷婷丁香在线五月| 最近最新中文字幕大全电影3 | 美女大奶头视频| 老汉色av国产亚洲站长工具| 大型av网站在线播放| 免费在线观看亚洲国产| 91大片在线观看| www日本在线高清视频| 国产爱豆传媒在线观看 | 国产av一区二区精品久久| av视频在线观看入口| 国产色视频综合| 免费在线观看日本一区| 精品电影一区二区在线| 免费观看人在逋| 99热这里只有精品一区 | 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 亚洲一码二码三码区别大吗| 国产激情偷乱视频一区二区| 国产高清激情床上av| 91国产中文字幕| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 欧美乱妇无乱码| 色播在线永久视频| 精品人妻1区二区| 久久中文看片网| 国产主播在线观看一区二区| 婷婷精品国产亚洲av| 国产成+人综合+亚洲专区| 一卡2卡三卡四卡精品乱码亚洲| 日韩大码丰满熟妇| 长腿黑丝高跟| 久久久久久久午夜电影| 国产精品,欧美在线| 精品久久久久久,| 久久欧美精品欧美久久欧美| 亚洲精品中文字幕在线视频| 男人舔女人下体高潮全视频| 一进一出好大好爽视频| 精品国产乱码久久久久久男人| 国产真实乱freesex| 最近最新中文字幕大全电影3 | 草草在线视频免费看| 丝袜美腿诱惑在线| 亚洲成人久久爱视频| 日韩欧美国产在线观看| 中文字幕精品免费在线观看视频| 夜夜看夜夜爽夜夜摸| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 在线观看午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 久久久久九九精品影院| 在线看三级毛片| a级毛片在线看网站| 国产精品久久久久久人妻精品电影| 岛国视频午夜一区免费看| 免费av毛片视频| 欧美激情极品国产一区二区三区| 丝袜人妻中文字幕| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色丝袜av网址大全| 亚洲午夜理论影院| 亚洲成人精品中文字幕电影| 亚洲,欧美精品.| а√天堂www在线а√下载| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 国产又爽黄色视频| 精品免费久久久久久久清纯| 婷婷丁香在线五月| 成人永久免费在线观看视频| 在线视频色国产色| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人伦免费视频| 亚洲熟女毛片儿| 18禁观看日本| 欧美精品啪啪一区二区三区| 夜夜躁狠狠躁天天躁| av片东京热男人的天堂| 1024视频免费在线观看| 亚洲欧美一区二区三区黑人| 露出奶头的视频| av在线播放免费不卡| 老司机靠b影院| 欧美国产精品va在线观看不卡| 亚洲中文日韩欧美视频| 国产99久久九九免费精品| 一本一本综合久久| 国产黄a三级三级三级人| 国产精品久久久人人做人人爽| 一区二区三区激情视频| 91在线观看av| 波多野结衣巨乳人妻| 啦啦啦韩国在线观看视频| 日本成人三级电影网站| 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 日日爽夜夜爽网站| 国产午夜福利久久久久久| 黄色女人牲交| 亚洲av日韩精品久久久久久密| 热99re8久久精品国产| 美国免费a级毛片| 久久婷婷人人爽人人干人人爱| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 国产精品98久久久久久宅男小说| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费成人在线视频| 亚洲专区字幕在线| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3 | 成人国语在线视频| 久久精品国产99精品国产亚洲性色| 国产99久久九九免费精品| 国产午夜福利久久久久久| 久久国产精品影院| 2021天堂中文幕一二区在线观 | 亚洲av中文字字幕乱码综合 | 久久这里只有精品19| 欧美色欧美亚洲另类二区| 99国产精品99久久久久| 搡老熟女国产l中国老女人| 波多野结衣av一区二区av| 日韩三级视频一区二区三区| 精品免费久久久久久久清纯| 免费在线观看黄色视频的| 国产精品电影一区二区三区| 搞女人的毛片| 午夜影院日韩av| 在线天堂中文资源库| 免费在线观看黄色视频的| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 亚洲国产看品久久| 欧美zozozo另类| 特大巨黑吊av在线直播 | 日本免费a在线| 在线av久久热| 99国产精品一区二区三区| 大型黄色视频在线免费观看| a在线观看视频网站| 免费在线观看视频国产中文字幕亚洲| 男女做爰动态图高潮gif福利片| 午夜免费观看网址| 欧美日韩亚洲综合一区二区三区_| 亚洲中文av在线| 亚洲精品国产精品久久久不卡| 嫩草影视91久久| 精品一区二区三区视频在线观看免费| 老汉色∧v一级毛片| 久久精品国产亚洲av香蕉五月| 日韩 欧美 亚洲 中文字幕| 免费av毛片视频| 亚洲成人国产一区在线观看| 精品乱码久久久久久99久播| 欧美黑人欧美精品刺激| 俺也久久电影网| 日韩大尺度精品在线看网址| 久久久久久人人人人人| 一个人免费在线观看的高清视频| e午夜精品久久久久久久| 欧美乱码精品一区二区三区| 一区二区三区高清视频在线| 国产蜜桃级精品一区二区三区| 欧美色视频一区免费| 久久久久精品国产欧美久久久| 久久国产精品影院| 亚洲av成人av| 欧美日韩福利视频一区二区| 成人欧美大片| 999久久久国产精品视频| 亚洲av电影在线进入| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 国产精品亚洲av一区麻豆| 欧美不卡视频在线免费观看 | 长腿黑丝高跟| 真人一进一出gif抽搐免费| 丁香六月欧美| 草草在线视频免费看| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 免费高清在线观看日韩| www.www免费av| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 亚洲精品av麻豆狂野| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 长腿黑丝高跟| 一级片免费观看大全| 性欧美人与动物交配| 色播在线永久视频| ponron亚洲| 亚洲狠狠婷婷综合久久图片| bbb黄色大片| 一级毛片精品| 成人国产一区最新在线观看| 国产精品日韩av在线免费观看| 久久人妻av系列| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 美女免费视频网站| 国产精华一区二区三区| 色播在线永久视频| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 久久伊人香网站| 国产99白浆流出| 久久狼人影院| 一区二区三区精品91| 成人一区二区视频在线观看| 亚洲国产毛片av蜜桃av| 嫁个100分男人电影在线观看| 精品卡一卡二卡四卡免费| 久久狼人影院| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区| www国产在线视频色| 麻豆成人av在线观看| 久久人妻福利社区极品人妻图片| 青草久久国产| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 一个人观看的视频www高清免费观看 | 国产免费男女视频| 十八禁网站免费在线| 成年女人毛片免费观看观看9| 亚洲全国av大片| 亚洲精华国产精华精| 真人做人爱边吃奶动态| av欧美777| 亚洲成人久久爱视频| 国产视频一区二区在线看| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 白带黄色成豆腐渣| 黄色视频,在线免费观看| 男女那种视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产伦人伦偷精品视频| 国产激情欧美一区二区| 国产一卡二卡三卡精品| bbb黄色大片| 久久久久久九九精品二区国产 | 亚洲av日韩精品久久久久久密| xxx96com| 精品国产一区二区三区四区第35| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 日韩免费av在线播放| 嫁个100分男人电影在线观看| 久久久久免费精品人妻一区二区 | 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 悠悠久久av| 久久中文字幕一级| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 国产精品,欧美在线| 老司机午夜十八禁免费视频| 国产黄片美女视频| 国产三级黄色录像| 国产成人啪精品午夜网站| 亚洲成人精品中文字幕电影| 久久久久国内视频| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 91国产中文字幕| 日本熟妇午夜| 亚洲成av片中文字幕在线观看| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| а√天堂www在线а√下载| 99国产精品99久久久久| 久久狼人影院| 国内精品久久久久久久电影| 亚洲一区二区三区色噜噜| 国产一区二区在线av高清观看| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 正在播放国产对白刺激| 又紧又爽又黄一区二区| 久热这里只有精品99| 亚洲精华国产精华精| 欧美久久黑人一区二区| 亚洲精品一卡2卡三卡4卡5卡| 一区二区日韩欧美中文字幕| 又大又爽又粗| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 久热这里只有精品99| 麻豆av在线久日| 久久国产精品人妻蜜桃| 色在线成人网| 91国产中文字幕| 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 怎么达到女性高潮| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 成人国产综合亚洲| 香蕉丝袜av| 韩国av一区二区三区四区| 变态另类丝袜制服| 人妻丰满熟妇av一区二区三区| 国内揄拍国产精品人妻在线 | 黄色毛片三级朝国网站| 亚洲久久久国产精品| 高清在线国产一区| www日本黄色视频网| 国产视频内射| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区黑人| 国产成+人综合+亚洲专区| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 欧美一级毛片孕妇| 日韩精品青青久久久久久| 午夜老司机福利片| 嫩草影视91久久| 久久精品91无色码中文字幕| 欧美性长视频在线观看| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 免费av毛片视频| 欧美性长视频在线观看| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 色播亚洲综合网| 757午夜福利合集在线观看| 叶爱在线成人免费视频播放| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 免费av毛片视频| 最近最新中文字幕大全电影3 | 亚洲狠狠婷婷综合久久图片| 国产精品亚洲美女久久久| 淫秽高清视频在线观看| 窝窝影院91人妻| 成人亚洲精品一区在线观看| 一级毛片女人18水好多| 国产成年人精品一区二区| 中文字幕久久专区| 国产免费av片在线观看野外av| 99热这里只有精品一区 | 国产激情久久老熟女| 一级a爱片免费观看的视频| 中出人妻视频一区二区| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9| 色在线成人网| 日本一区二区免费在线视频| 久久国产精品影院| 欧美成人一区二区免费高清观看 | 欧美另类亚洲清纯唯美| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 免费看十八禁软件| 成人亚洲精品av一区二区| 亚洲国产精品999在线| 校园春色视频在线观看| 在线观看一区二区三区| √禁漫天堂资源中文www| 色综合亚洲欧美另类图片| www.熟女人妻精品国产| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 香蕉av资源在线| 精品久久久久久久久久免费视频| 91成人精品电影| 欧美丝袜亚洲另类 | 国产精品爽爽va在线观看网站 | 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 91成人精品电影| www.精华液| 香蕉av资源在线| 窝窝影院91人妻| 日韩视频一区二区在线观看| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 亚洲成人免费电影在线观看| 中文字幕人妻熟女乱码| 国产野战对白在线观看| 成人亚洲精品av一区二区| 免费在线观看完整版高清| 亚洲中文日韩欧美视频| 满18在线观看网站| 女同久久另类99精品国产91| 久99久视频精品免费| 国产精品久久久av美女十八| www.精华液| 久久婷婷人人爽人人干人人爱| 国内精品久久久久精免费| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 91国产中文字幕| 97碰自拍视频| 1024手机看黄色片| 侵犯人妻中文字幕一二三四区| 男人的好看免费观看在线视频 | 色在线成人网| 亚洲国产中文字幕在线视频| 99re在线观看精品视频| 欧美中文日本在线观看视频| 亚洲国产毛片av蜜桃av| 精品久久久久久久久久久久久 | 日本免费a在线| 麻豆成人av在线观看| 亚洲成人久久爱视频| 搡老岳熟女国产| 黄色丝袜av网址大全| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 黄色成人免费大全| 丝袜人妻中文字幕| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 日本 av在线| 91老司机精品| 天天添夜夜摸| 99久久99久久久精品蜜桃| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 18禁裸乳无遮挡免费网站照片 | 国产三级黄色录像| 国产激情偷乱视频一区二区| 亚洲成av片中文字幕在线观看| 一级毛片女人18水好多| 久久人妻福利社区极品人妻图片| 精品不卡国产一区二区三区| 中文字幕精品亚洲无线码一区 | 美女高潮喷水抽搐中文字幕| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 大型黄色视频在线免费观看| e午夜精品久久久久久久| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美| 久久久久久久午夜电影| 在线十欧美十亚洲十日本专区| 国产成人影院久久av| 亚洲五月色婷婷综合| 一个人观看的视频www高清免费观看 | 搞女人的毛片| a级毛片a级免费在线| 又黄又爽又免费观看的视频| 男人操女人黄网站|