楊柳燕,陳菁菁,陳年來
?
甜瓜葉片光合產(chǎn)物輸出能力對(duì)弱光的響應(yīng)
楊柳燕,陳菁菁,陳年來
(甘肅農(nóng)業(yè)大學(xué)園藝學(xué)院,蘭州 730070)
【目的】研究甜瓜果實(shí)發(fā)育期坐果節(jié)位葉片光合能力、蔗糖合成能力和水蘇糖裝載能力對(duì)遮光的響應(yīng),分析不同耐弱光性甜瓜品種同化物輸出能力的差異,為進(jìn)一步研究甜瓜耐弱光品種果實(shí)糖分卸載與積累機(jī)理奠定基礎(chǔ)?!痉椒ā恳阅腿豕馓鸸掀贩N‘玉金香’和不耐弱光品種‘鈺雪三號(hào)’為試材,在日光溫室條件下于授粉后進(jìn)行遮光處理,每5 d取樣一次,取坐果節(jié)位葉片測定葉綠素含量、氣體交換參數(shù)、葡萄糖、果糖、蔗糖、肌醇半乳糖苷、棉子糖、水蘇糖和淀粉含量,同時(shí)測定葉片蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)、中性轉(zhuǎn)化酶(NI)、酸性轉(zhuǎn)化酶(AI)、肌醇半乳糖苷合成酶(GS)和水蘇糖合成酶(STS)活性。【結(jié)果】遮光處理后,兩個(gè)甜瓜品種葉片葉綠素a/b、凈光合速率(Pn)、葡萄糖、果糖和蔗糖含量均顯著降低,淀粉含量升高,‘玉金香’葉綠素a/b降幅(10.0%)大于‘鈺雪三號(hào)’(5.8%),而Pn、蔗糖含量降幅(分別為30.3%和30.9%)和淀粉含量增幅(3.6%)均顯著小于‘鈺雪三號(hào)’(分別為45.2%、60.6%和20.4%)。遮陰條件下,兩個(gè)品種葉片蔗糖代謝相關(guān)酶SPS、SS、AI和NI活性均顯著降低,‘玉金香’SPS和SS酶活性降幅(分別為16.5%和30.0%)顯著小于‘鈺雪三號(hào)’(31.6%和40.5%),而AI和NI降幅(分別為23.8%和12.7%)高于‘鈺雪三號(hào)’。遮光后甜瓜葉片肌醇半乳糖苷含量和GS活性均顯著降低,但品種間差異不顯著。棉子糖、水蘇糖和STS活性均顯著降低,‘玉金香’棉子糖含量降幅(65.3%)顯著高于‘鈺雪三號(hào)’(35.0%),而水蘇糖和STS活性降幅(分別為79.5%和23.8%)小于‘鈺雪三號(hào)’?!窘Y(jié)論】遮光條件下,耐弱光品種‘玉金香’葉片蔗糖合成能力和水蘇糖裝載能力下降較少,具有較強(qiáng)的同化物輸出能力。
甜瓜;遮光;氣體交換特性;蔗糖合成;水蘇糖裝載;同化物輸出
【研究意義】甜瓜反季節(jié)設(shè)施栽培中經(jīng)常遇到弱光逆境,弱光下甜瓜果實(shí)糖分積累受到抑制主要是因?yàn)槿~片同化物供給減少[1-3]。甜瓜等葫蘆科作物韌皮部運(yùn)輸?shù)奶妓衔镏饕獮樗K糖,還有少量棉子糖和蔗糖[4-5]。相對(duì)于以蔗糖為主要運(yùn)輸物質(zhì)的植物來說,葫蘆科植物葉片同化物輸出過程中增加了把蔗糖轉(zhuǎn)化成棉子糖和水蘇糖進(jìn)行裝載的步驟。有研究表明,葫蘆科作物葉肉細(xì)胞中合成的蔗糖和肌醇半乳糖苷通過胞間連絲運(yùn)輸?shù)街虚g細(xì)胞,在中間細(xì)胞進(jìn)一步合成棉子糖和水蘇糖[6],然后裝載進(jìn)入篩分子運(yùn)輸?shù)綆炱鞴?,因此葫蘆科作物葉片光合產(chǎn)物輸出由合成和裝載共同決定。分析不同耐性品種同化物輸出能力對(duì)弱光響應(yīng)的差異,為進(jìn)一步研究甜瓜耐弱光品種果實(shí)糖分卸載與積累機(jī)理奠定基礎(chǔ)?!厩叭搜芯窟M(jìn)展】溫室反季節(jié)生產(chǎn)條件下日照時(shí)間短,光照強(qiáng)度弱,弱光脅迫成為影響甜瓜產(chǎn)量和品質(zhì)的重要因素[7]。弱光脅迫下,葉片葉綠素含量升高,葉綠素a/b降低[1,8-10],碳同化速率和蔗糖合成相關(guān)酶活性下降[7-8,10-14],光合產(chǎn)物合成和輸出減少[1-3,15-17],最終導(dǎo)致果實(shí)產(chǎn)量和品質(zhì)降低[18-20]?!颈狙芯壳腥朦c(diǎn)】目前對(duì)甜瓜弱光脅迫的研究主要集中在葉片光合能力和果實(shí)產(chǎn)量與品質(zhì)上,對(duì)弱光脅迫下葉片同化物裝載的研究尚未見報(bào)道?!緮M解決的關(guān)鍵問題】通過對(duì)甜瓜葉片光合產(chǎn)物合成能力和裝載能力研究,分析不同耐性品種同化物輸出能力對(duì)弱光響應(yīng)的差異。
試驗(yàn)于2016年在甘肅省農(nóng)業(yè)科學(xué)院日光溫室和甘肅農(nóng)業(yè)大學(xué)園藝學(xué)院實(shí)驗(yàn)室進(jìn)行。
材料為耐弱光品種‘玉金香’,不耐弱光品種‘鈺雪三號(hào)’。2016年1月28日催芽播種,穴盤育苗,搭架栽培,單蔓整枝,授粉結(jié)束后用雙層遮陽網(wǎng)遮光,實(shí)測光照強(qiáng)度為溫室自然光照強(qiáng)度的52%,以自然光強(qiáng)為對(duì)照。遮光后第5天開始,取坐果節(jié)位葉片進(jìn)行糖分和酶活性測定,每隔5 d取樣一次,每次3個(gè)重復(fù),至授粉后35 d結(jié)束,共取樣7次。葉樣采集后迅速轉(zhuǎn)移到液氮內(nèi),-80℃低溫冰箱保存。
葉片氣體交換特性于授粉后晴天上午9:30—11:00用CIRAS-2便攜式光合儀測定,同步記錄坐果節(jié)位葉片凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci),重復(fù)3次。
光合色素含量測定采用95%乙醇浸提法[10]。
1.3.1 樣品處理 糖分組成和含量測定依據(jù)Hu等[5]的方法,并加以改進(jìn)。取樣品3 g在研缽中充分研磨后加入5 mL 80%乙醇,再研磨3 min,置于10 mL離心管中,80℃水浴保溫30 min,取出冷卻至室溫,離心后收集上清液,殘?jiān)?0℃水浴中反復(fù)再抽提兩次,合并3次抽提液,轉(zhuǎn)入旋轉(zhuǎn)蒸干儀中,在45℃低溫蒸干,用1 mL超純水溶解,轉(zhuǎn)入1.5 mL離心管中,12 000 r/min離心20 min,0.45 μm水相濾膜過濾,4℃保存?zhèn)溆谩?/p>
1.3.2 測定方法及色譜條件 Shodex Asahipak NH2P-50 4E色譜柱,柱溫35℃,2410示差折光檢測器,流動(dòng)相比例為70%乙腈:30%超純水,流速為1.0 mL?min-1,糖分標(biāo)準(zhǔn)品均購自sigma公司。果糖、葡萄糖、蔗糖、肌醇半乳糖苷、棉籽糖、水蘇糖標(biāo)準(zhǔn)品保留時(shí)間分別為:5.544、6.716、8.247、11.454、12.200和18.463 min。
1.3.3 淀粉含量測定方法 糖分用80%乙醇抽提后,剩余沉淀物用高氯酸水解法測定淀粉含量[21]。
1.4.1 SS、SPS、AI和NI酶活性測定 粗酶液提取:取樣品1 g,加入4 mL 50 mmol?L-1HEPES-NaOH buffer(pH 7.5)充分研磨,抽提緩沖液包含:10 mmol?L-1MgCl2,1 mmol?L-1EDTA,2.5 mmol?L-1DTT,0.1%(w/v)BSA和0.05%TritonX-100。12 000 r/min離心20 min,上清液在稀釋10倍的緩沖液中透析16 h。
SS和SPS活性測定參照趙越等[22]的方法,AI和NI活性測定參照LOWELL等[23]的方法。
1.4.2 水蘇糖合成酶(STS)活性測定 參照HUBER等[24]的方法。粗酶液提取:鮮樣0.5 g,在冷凍研缽里充分研磨,加入2 mL預(yù)冷的抽提液,抽提液含50 mmol?L-1HEPES-NaOH buffer(pH 7.0)和20 mmol?L-12-硫基乙醇。12 000 r/min 離心10 min,取上清液在緩沖液中透析16 h,緩沖液含25 mmol?L-1HEPES- NaOH buffer(pH 7.0)和20 mmol?L-12-硫基乙醇。
酶活性測定:100 μL反應(yīng)體系包含25 mmol?L-1HEPES-NaOH buffer(pH 7.0),20 mmol?L-12-硫基乙醇,10 mmol?L-1肌醇半乳糖苷,40mmol?L-1棉籽糖,加入100 μL透析液,25℃水浴中孵育90 min,加入0.1 mol?L-1NaOH終止反應(yīng),將離心管置于沸水浴中30 s,冷卻至25℃。
肌醇生成量測定:1.0 mL反應(yīng)體系中包含2 mmol?L-1NAD、0.1 U肌醇脫氫酶、50 mmol?L-1Na2CO3(pH 9.5),25℃水浴中孵育40 min,將NADH的生成量,即在340 nm處測定吸光值作為酶活性。
1.4.3 肌醇半乳糖苷酶(GS)活性測定 粗酶液提取:取0.5 g樣品,加入2 mL抽提液充分研磨,抽提緩沖液包含50 mmol?L-1HEPES-NaOH buffer(pH 7.0)和10 mmol?L-1DTT。12 000 r/min離心30 min,上清液在稀釋10倍的抽提液中透析脫鹽16 h。
酶活性測定:參照SMITH等[25]的方法加以改進(jìn)。55 μL反應(yīng)體系包含50 mmol?L-1HEPES-NaOH buffer(pH 7.5),5 mmol?L-1MnCl2,3 mmol?L-1DTT,20 mmol?L-1肌醇和10 mmol?L-1UDPG?;旌衔镌?0℃水浴中反應(yīng)30 min,置沸水浴中5 min終止反應(yīng)。冷卻至室溫,8 000r/min離心20 min,過45 μm濾膜后進(jìn)液相(HPLC)測定,測定方法及色譜條件同1.3.2。以肌醇半乳糖苷生成量表示GS活性。
授粉后‘玉金香’a/b值在5—15 d逐漸下降,之后相對(duì)較平穩(wěn);而‘鈺雪三號(hào)’在5—10 d快速上升,之后逐漸降低,35 d時(shí)又略微上升(圖1-A)。遮光處理后兩個(gè)品種a/b均降低(<0.05),平均降幅為10.0%(‘玉金香’)、5.8%(‘鈺雪三號(hào)’),‘玉金香’在授粉后10—20 d顯著低于‘鈺雪三號(hào)’。
葉片凈光合速率(Pn)和氣孔導(dǎo)度(Gs)授粉后均先升高后降低(圖1-B、C)。兩個(gè)品種的Pn均在授粉后20 d時(shí)達(dá)到最高值,品種間差異不顯著。遮光處理后,Pn最高值提前至授粉后15 d,‘玉金香’顯著高于‘鈺雪三號(hào)’?!窠鹣恪汀曆┤?hào)’的Pn與對(duì)照相對(duì)平均降幅為30.3%和45.2%(<0.01)。遮光處理后,‘玉金香’和‘鈺雪三號(hào)’的Gs均下降(<0.01),分別為22.6%和33.5%。兩個(gè)品種胞間CO2濃度(Ci)在遮光后均高于對(duì)照(圖1-D)。
葉片果糖和葡萄糖含量均先升高后降低,果糖的含量明顯高于葡萄糖(圖2-A、B)。正常光照下,兩個(gè)品種葉片果糖和葡萄糖含量均在授粉后10 d時(shí)達(dá)到最高值,之后逐漸降低。遮光處理后果糖和葡萄糖含量均降低(<0.05),平均降幅為24.6%和18.3%(‘玉金香’)、17.4%和24.2%(‘鈺雪三號(hào)’),葡萄糖含量峰值出現(xiàn)時(shí)間推遲至授粉后15 d,品種間差異不顯著。
授粉后15 d內(nèi),‘鈺雪三號(hào)’葉片蔗糖含量顯著高于‘玉金香’,之后差異很?。▓D2-C)。弱光下兩個(gè)品種葉片的蔗糖含量均降低(<0.01),平均降幅為:30.9%(‘玉金香’)、60.6%(‘鈺雪三號(hào)’),‘鈺雪三號(hào)’降幅顯著高于‘玉金香’。
葉片淀粉含量在授粉后25 d內(nèi)相對(duì)平穩(wěn),之后迅速上升(圖2-D)。遮光處理下葉片淀粉含量在25 d前略高于對(duì)照,至授粉后35 d顯著低于對(duì)照。授粉后25 d內(nèi),對(duì)照中‘玉金香’淀粉含量略高于‘鈺雪三號(hào)’,而遮光處理下則顯著低于‘鈺雪三號(hào)’。弱光下‘鈺雪三號(hào)’葉片淀粉含量平均增幅(20.4%)顯著高于‘玉金香’(3.6%)。
葉片蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)活性授粉后先升高后降低(圖3-A、B)。對(duì)照中兩個(gè)品種SPS酶活性均在授粉后20 d時(shí)達(dá)到最高值,之后逐漸降低。遮光處理后SPS酶活性降低(<0.01),‘鈺雪三號(hào)’(31.6%)降幅顯著高于‘玉金香’(16.5%)。對(duì)照中‘玉金香’葉片SS酶活性在授粉后第10—20天顯著高于‘鈺雪三號(hào)’,20 d后又顯著低于‘鈺雪三號(hào)’。遮光處理使兩個(gè)品種SS酶活性均降低(<0.01),平均降幅為30.0%(‘玉金香’)和40.5%(‘鈺雪三號(hào)’)。
圖1 弱光下甜瓜葉片葉綠素a/b及光合特性
圖2 弱光下甜瓜葉片可溶性糖和淀粉含量
圖3 弱光下甜瓜葉片蔗糖代謝酶活性
授粉后葉片酸性轉(zhuǎn)化酶(AI)和中性轉(zhuǎn)化酶(NI)活性均先升高后降低,AI酶活性略高于NI(圖3—C、D)。對(duì)照中,‘玉金香’AI酶活性在授粉后前20 d顯著高于‘鈺雪三號(hào)’,之后差異不顯著。遮光處理后兩個(gè)品種AI酶活性均降低(<0.01),平均降幅為23.8%(‘玉金香’)和18.3%(‘鈺雪三號(hào)’)。對(duì)照中,‘玉金香’的NI酶活性均顯著高于‘鈺雪三號(hào)’,遮光處理使‘玉金香’NI酶活性降低(<0.05),而‘鈺雪三號(hào)’只在授粉后15—20 d時(shí)明顯低于對(duì)照,平均降幅為12.7%(‘玉金香’)和1.8%(‘鈺雪三號(hào)’)。
葉片肌醇半乳糖苷含量在授粉后30 d時(shí)降低,35 d時(shí)又迅速升高(圖4-A)。遮光處理使兩個(gè)品種葉片肌醇半乳糖苷含量均降低(<0.01),品種間差異不顯著。
葉片棉子糖含量授粉后逐漸降低,對(duì)照中兩個(gè)品種在30 d均有一個(gè)小幅的上升(圖4-B)。正常光照下,‘玉金香’葉片棉子糖含量顯著高于‘鈺雪三號(hào)’。遮光后兩個(gè)品種棉子糖含量均降低(<0.05),平均降幅為65.3%(‘玉金香’)和35.0%(‘鈺雪三號(hào)’),品種間差異不明顯。
對(duì)照中兩個(gè)品種的水蘇糖含量在授粉后5—15 d先降低再升高,之后逐漸降低(圖4-C),‘玉金香’葉片水蘇糖含量顯著高于‘鈺雪三號(hào)’。遮光處理后兩個(gè)品種水蘇糖含量均顯著降低(<0.05),‘玉金香’略高于‘鈺雪三號(hào)’。
授粉后肌醇半乳糖苷合成酶(GS)和水蘇糖合成酶(STS)活性均先升高后降低(圖5)。正常光照下,兩個(gè)品種的GS酶活性均在授粉后20 d時(shí)達(dá)到最高值,品種間差異不明顯。遮光處理使兩個(gè)品種GS酶活性均降低(<0.01),‘玉金香’在授粉后15—25 d略高于‘鈺雪三號(hào)’,平均降幅為38.9%(‘玉金香’)和38.5%(‘鈺雪三號(hào)’)。對(duì)照中,‘玉金香’葉片STS酶活性在授粉后15—25 d顯著高于‘鈺雪三號(hào)’,其余時(shí)間差異不明顯。遮光處理后兩個(gè)品種的STS酶活性均降低,‘玉金香’葉片酶活性顯著高于‘鈺雪三號(hào)’(<0.05)。
圖4 弱光下甜瓜葉片肌醇半乳糖苷、棉子糖和水蘇糖含量
圖5 弱光下甜瓜葉片肌醇半乳糖苷合成酶和水蘇糖合成酶酶活性
在弱光條件下,植物要正常生長發(fā)育就必須盡可能多地吸收和捕獲光能,以利于CO2的固定和碳水化合物的積累,而光合作用參數(shù)是反映植物光能利用能力和效率的重要指標(biāo)[7-9,14]。遮光處理下,甜瓜葉片葉綠素a/b下降,氣孔導(dǎo)度Gs下降,凈光合速率Pn降低,胞間CO2濃度Ci升高,說明光合速率下降的主要限制因素不是CO2濃度,而是光能的供應(yīng),是非氣孔限制產(chǎn)生的結(jié)果。葉綠素a/b降低有利于植物吸收環(huán)境中的紅光,維持光系統(tǒng)Ⅰ與光系統(tǒng)Ⅱ之間的能量平衡,增強(qiáng)植物對(duì)弱光環(huán)境的生態(tài)適應(yīng)性[10]。弱光適應(yīng)性較強(qiáng)的品系,在弱光條件下葉綠素a/b水平較低、Pn降幅較小[26-27],與‘玉金香’相符,說明耐弱光品種可以通過調(diào)整色素含量及比例來彌補(bǔ)光照不足,在弱光條件下仍然具有較強(qiáng)的光合能力。
蔗糖是光合作用最重要的產(chǎn)物,植物葉片的蔗糖含量取決于蔗糖合成酶(SPS、SS)和分解酶(AI、NI)的作用及用于合成棉子糖和水蘇糖的量。只有葉片蔗糖合成酶的活性高于分解酶活性,才能積累足夠的蔗糖用來合成棉子糖和水蘇糖[5]。葉片光合能力降低的直接結(jié)果是碳水化合物合成減少,遮光處理后甜瓜葉片果糖、葡萄糖和蔗糖含量均降低,但葡萄糖和果糖的降幅均小于蔗糖。弱光降低油桃葉片中蔗糖含量,但對(duì)葡萄糖和果糖含量影響較小,葡萄糖和果糖與蔗糖的比值高于對(duì)照,有利于植物抵御弱光環(huán)境的脅迫[28]?!窠鹣恪~片蔗糖降幅顯著低于‘鈺雪三號(hào)’,說明遮光處理對(duì)耐弱光品種光合產(chǎn)物合成的影響較小,不耐弱光品種‘鈺雪三號(hào)’蔗糖含量大幅下降對(duì)棉子糖和水蘇糖裝載及同化物輸出不利。
遮光處理后,兩個(gè)甜瓜品種葉片蔗糖磷酸合成酶SPS和蔗糖合成酶SS活性均明顯下降,‘玉金香’降幅均顯著低于‘鈺雪三號(hào)’,說明弱光下耐弱光品種‘玉金香’仍然具有相對(duì)較強(qiáng)的蔗糖合成能力。弱光下蔗糖合成酶活性降低可以控制蔗糖合成和向外運(yùn)輸?shù)臄?shù)量,保持葉片糖分代謝的平衡。SPS還調(diào)控著碳源在蔗糖和淀粉之間的分配,蔗糖和淀粉的比值與SPS酶活性呈正相關(guān),SPS是葉片乃至整個(gè)植株光合碳同化去向的一個(gè)重要決定因素[29-30]。遮光處理后,兩個(gè)品種淀粉含量在授粉后25 d內(nèi)均高于對(duì)照,不耐弱光品種‘鈺雪三號(hào)’葉片蔗糖含量最低,而淀粉含量卻最高,‘鈺雪三號(hào)’葉片淀粉含量的增幅和SPS酶活性的降幅均顯著高于‘玉金香’,說明葉片中蔗糖合成受阻之后,同化物主要在葉綠體中以淀粉形式積累起來。轉(zhuǎn)化酶AI和NI催化蔗糖轉(zhuǎn)化為葡萄糖和果糖,以滿足植物對(duì)新陳代謝的能量需求,弱光降低轉(zhuǎn)化酶活性[14,29],Pn較低時(shí),較高的蔗糖降解狀態(tài)會(huì)對(duì)植物的生長產(chǎn)生不利的影響[14]。
肌醇半乳糖苷是目前所知唯一的半乳糖基供體,肌醇半乳糖苷合成酶(GS)是棉子糖和水蘇糖合成的關(guān)鍵酶[25]。在大豆種子中,GS酶活性的迅速提高先于棉子糖和水蘇糖的積累,GS在代謝中調(diào)控碳源在蔗糖和棉籽糖、水蘇糖之間的分配[31-32]。遮光處理后,兩個(gè)品種葉片肌醇半乳糖苷含量和GS酶活性均降低,品種間差異不顯著,說明弱光下肌醇半乳糖苷的合成不是造成棉子糖和水蘇糖裝載存在品種間差異的關(guān)鍵因素。
正常光照下,葉片棉子糖和水蘇糖含量降低可能與葉片同化物的輸出有關(guān),‘玉金香’葉片棉子糖和水蘇糖含量均顯著高于‘鈺雪三號(hào)’,STS酶活性在15—25d也顯著高于‘鈺雪三號(hào)’,而‘鈺雪三號(hào)’葉片內(nèi)蔗糖和肌醇半乳糖苷含量在授粉后10d內(nèi)卻顯著高于‘玉金香,推測是‘鈺雪三號(hào)’葉片棉子糖和水蘇糖裝載受抑制使兩種基質(zhì)累積。遮光處理使兩個(gè)甜瓜品種葉片棉子糖和水蘇糖的含量均降低,然而在其他的逆境脅迫下,比如低溫[33-34]、水分虧缺[35]、熱沖擊[36],葉片內(nèi)的棉子糖和水蘇糖含量卻上升。HAO等[33]認(rèn)為低溫阻礙了葉片中共質(zhì)體途徑的裝載,使棉子糖和水蘇糖的輸出受阻而積累,而弱光下棉子糖和水蘇糖的含量降低與光合產(chǎn)物的合成減少有關(guān)。棉子糖合成酶活性不穩(wěn)定,研究較少,所以用水蘇糖合成酶活性來分析裝載能力的高低。遮光處理后,‘鈺雪三號(hào)’葉片STS酶活性降幅顯著高于‘玉金香’,耐弱光品種‘玉金香’在遮光條件下仍然具有較強(qiáng)的水蘇糖裝載能力。水蘇糖裝載完成之后,由韌皮部迅速輸出到庫器官,為庫器官生長發(fā)育提供物質(zhì)保證。
遮光處理后,‘玉金香’葉片凈光合速率,蔗糖和水蘇糖含量,蔗糖磷酸合成酶、蔗糖合成酶和水蘇糖合成酶活性下降幅度均小于‘鈺雪三號(hào)’,說明耐弱光品種‘玉金香’葉片具有較強(qiáng)的同化物合成和裝載能力,在弱光脅迫下同化物輸出能力強(qiáng)于不耐弱光品種。
[1] LANOUE J, LEONARDOS E D, GRODZINSKI. Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves., 2018, 9: 756-770.
[2] 劉婷, 劉衛(wèi)國, 任夢露, 杜勇利, 鄧榆川, 鄒俊林, 方萍, 楊文鈺. 遮蔭程度對(duì)不同耐蔭性大豆品種光合及抗倒程度的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(8): 1466-1475.
LIU T, LIU W G, REN M L, DU Y L, DENG Y C, ZOU J L, FANG P, YANG W Y. Effects of shade degrees on photosynthesis and lodging resistance degree of different shade tolerance soybean., 2016, 49(8): 14666-1475. (in chinese)
[3] 張誠君, 王磊, 段書延, 宋士任, 馬超, 趙麗萍, 張才喜, 王世平, 許文平. ‘巨峰’葡萄盛花后弱光脅迫對(duì)葉片光合生理及光合酶基因表達(dá)的影響. 園藝學(xué)報(bào), 2017, 44(8): 1450-1462.
Zhang C J, Wang L, Duan S Y, Song S R, Ma C, Zhao L P, Zhang C X, Wang S P, Xu W P. Effect of low light stress on photosynthetic physiology and gene expression in ‘Khoyo’ grapevine after blooming., 2017, 44(8): 1450-1462. (in chinese)
[4] OHKAWA W, KANAYAMA Y, DAIBO N, SATO T, NISHIYAMA M, KANAHAMA K. Metabolic process of the14C-sugars on the translocation pathways of cucumber plants., 2010, 124(1): 46-50.
[5] HU L P, MENG F Z, WANG S H, SUI X L, LI W, WEI Y X, SUN J L, ZHANG Z X. Changes in carbohydrate levels and their metabolic enzymes in leaves, phloem sap and mesocarp during cucumber (L) fruit development., 2009, 121(2): 131-137.
[6] TURGEON R, MEDVILLE R, NIXON K C. The evolution of minor vein phloem and phloem loading., 2001, 88(8): 1331-1339.
[7] 李偉, 眭曉蕾, 王紹輝, 關(guān)秋竹, 胡麗萍, 周明, 孟凡珍, 張振賢. 黃瓜幼苗不同葉位葉片光合特性對(duì)弱光的響應(yīng). 中國農(nóng)業(yè)科學(xué), 2008, 41(11): 3698-3707.
Li W, Sui X L, Wang S H, Guan Q Z, Hu L P, Zhou M, Meng F Z, Zhang Z X. Effects of low light on photosynthetic characteristics of different position leaves of cucumber seedlings., 2008, 41(11): 3698-3707. (in Chinese)
[8] 秦玉芝, 邢錚, 鄒劍鋒, 何長征, 李炎林, 熊興耀. 持續(xù)弱光脅迫對(duì)馬鈴薯苗期生長和光合特性的影響. 中國農(nóng)業(yè)科學(xué),2014, 47(3): 537-545.
Qin Y Z, Xing Z, Zou J F, He C Z, Li Y L, Xiong X Y. Effects of sustained weak light on seedling growth and photosynthetic characteristics of potato seedlings., 2014, 47(3): 537-545. (in Chinese)
[9] STAGNARI F, DI MATTIA C, GALIENI A, SANTARELLI V, D'EGIDIO S, PAGNANI G, PISANTE M. Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil., 2018, 122(5): 277-289.
[10] 張志剛, 尚慶茂. 低溫、弱光及鹽脅迫下辣椒葉片的光合特性. 中國農(nóng)業(yè)科學(xué), 2010, 43(1): 123-131.
ZHANG Z G, SHANG Q M. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress., 2010, 43(1): 123-131. (in Chinese)
[11] Liang W J, Wang M L, Ai X Z. The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress., 2009, 123(1): 34-38.
[12] TROUWBORST G, OOSTERKAMP J, HOGEWONING S W, HARBINSON J, LEPEREN W V. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy., 2010, 138(3): 289-300.
[13] Sui X L, Mao S L, Wang L H, Zhang B X, Zhang Z X. Effect of low light on characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper., 2012, 11(10): 1633-1643.
[14] 米國全, 劉麗英, 金寶燕, 張振賢,任華中. 弱光對(duì)不同生態(tài)型黃瓜幼苗光合速率及蔗糖代謝相關(guān)酶活性的影響. 華北農(nóng)學(xué)報(bào), 2011, 26(1): 146-150.
Mi G Q, Liu L Y, Jin B Y, Zhang Z X, Ren H Z. Influence of low light on net photosynthesis rate and activities of enzymes related to sucrose metabolism in cucumber seedlings., 2011, 26(1): 146-150. (in Chinese)
[15] 徐心誠. 弱光對(duì)溫室黃瓜葉片和莖中可溶性糖含量的影響. 江蘇農(nóng)業(yè)學(xué)報(bào), 2015, 31(6): 1448-1450.
Xu X C. Soluble sugar contents in leaves and stems of greenhouse cucumber exposed to weak light., 2015, 31(6): 1448-1450. (in Chinese)
[16] 齊紅巖, 李超. 兩個(gè)品種番茄短期內(nèi)對(duì)不同程度弱光脅迫的反應(yīng). 西南農(nóng)業(yè)學(xué)報(bào), 2011, 24(2): 523-528.
Qi H Y, Li C. Response to different levels of low light stress of two varieties or tomato.2011, 24(2): 523-528.(in Chinese)
[17] CORELLI GRAPPADELLI L, LAKSO A N, FLORE J A. Early season patterns of carbohydrate partitioning in exposed and shaded apple branches., 1994, 119(3): 596-603.
[18] 薛正平, 李軍, 張皓, 趙勝榮, 辛跳兒, 高宇, 王繼英. 遮光對(duì)大棚黃瓜生長、花果及產(chǎn)量影響試驗(yàn). 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版), 2014, 32(4): 54-59.
Xue Z P, Li J, Zhang H, Zhao S R, Xin T E, Gao Y, Wang J Y. Effect of shadow condition on the growth, fruit and yield in greenhouse cucumber., 2014, 32(4): 54-59. (in Chinese)
[19] NISHIZAWA T, ITO A, MOTOMURA Y, ITO M, TOGASHI M. Changes in fruit quality as influenced by shading of netted melon plants (L. ‘Andesu’ and ‘Luster’ )., 2000, 69(5): 563-569.
[20] ARGADE M B, KADAM J H, GARANDE V K, PATGAONKAR D R, PATIL V S, SONAWANE P N. Effect of different shading intensities on growth and yield of cherry tomato., 2018, 10(1): 352-357.
[21] WANG F, SANZ A, BRENNER M L, SMITH A. Sucrose synthase, starch accumulation, and tomato fruit sink strength., 1993, 101(2): 321-327.
[22] 趙越, 魏自民, 馬鳳鳴. 銨態(tài)氮對(duì)甜菜蔗糖合成酶和蔗糖磷酸合成酶的影響. 中國糖料, 2003(3): 1-5.
Zhao Y, Wei Z M, Ma F M. Influence of ammoniacal nitrogen on sucrose synthase and sucrose phosphate synthase in sugar beet., 2003(3): 1-5. (in Chinese)
[23] LOWELL C A, TOMLINSON P T, KOCH K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit., 1989, 90(4): 1394-1402.
[24] HUBER J L A, PHARR D M, HUBER S C. Partial purification and characterization of stachyose synthase in leaves ofand: Utilization of a rapid assay for myo-inositol., 1990, 69(2): 179-188.
[25] SMITH P T, KUO T M, CRAWFORD C G. Purification and characterization of galactinol synthase from mature zucchini squash leaves., 1991, 96(3): 693-698.
[26] 王學(xué)文, 王玉玨, 付秋實(shí), 趙冰, 郭仰東. 弱光逆境對(duì)番茄幼苗形態(tài)、生理特征及葉片超微結(jié)構(gòu)的影響. 華北農(nóng)學(xué)報(bào), 2009, 24(5): 144-149.
Wang X W, Wang Y J, Fu Q S, Zhao B, Guo Y D. Effects of low light stress on morphological trait, physiological characters and leaf ultrastructure of tomato (L.) seedlings., 2009, 24(5): 144-149. (in Chinese)
[27] 眭曉蕾, 張振賢, 張寶璽, 毛勝利, 王立浩, 李偉. 不同基因型辣椒光合及生長特性對(duì)弱光的響應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(10): 1877-1882.
Sui X L, Zhang Z X, Zhang B X, Mao S L, Wang L H, Li W. Photosynthetic and growth characteristics of different ecotype capsicum under weak light., 2006, 17(10): 1877-1882. (in Chinese)
[28] WANG X Q, HUANG W D, ZHAN J C. Effect of low light on the activity of sucrose synthase in leaves of nectarine., 2005, 80(3): 358-362.
[29] CALTIER N, FOYER C H, HUBER J, VOELKER T A, HUBER S C. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (var UC82B)., 1993, 101(2): 535-543.
[30] STEVEN C H, JOAN L H. Role of sucrose-phosphate synthase in sucrose metabolism in leaves., 1992, 99(4): 1275-1278.
[31] HANDLEY L W, PHARR D M, MCFEET ERS R F. Relationship between galactinol sy nthase activity and sugar composition of leaves and seeds of several crop species., 1983, 108(4): 600-605.
[32] SARAVITZ D M, PHARR D M, CARTER T E. Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes., 1987, 83(1): 185-189.
[33] HAO J H, YANG R, FANG K F, WANG J L, ZHANG Q, SHEN Y Y, LI T L. Low night temperatures inhibit galactinol synthase gene expression and phloem loading in melon leaves during fruit development., 2014, 61(2): 178-187.
[34] MIAO M M, XU X F, CHEN X H, XUE C L, CAO B S. Cucumber carbohydrate metabolism and translocation under chilling night temperature., 2007, 164(5): 621-628.
[35] SHAUN P S G, MUNDREE J A, THOMSON J M, FARRANT J M. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit., 2007, 58(8): 1947-1956.
[36] AYAKO N Y, YUKINORI Y, SHIGERU S. The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage., 2008, 3(11): 1016-1018.
(責(zé)任編輯 趙伶俐)
Responses of Leaf Assimilate Export to Lowlight Stress in Melon
YANG LiuYan, CHEN JingJing, CHEN NianLai
(College of Horticulture, Gansu Agricultural University, Lanzhou 730070)
【Objective】The objective of this study is to evaluate the responses of melon leaf photosynthesis, sucrose synthesis and stachyose loading to low light stress during fruit development stage, and the difference in assimilate export between lowlight tolerance and sensitive cultivars, to support the further analysis of sugar unloading and accumulation in fruits of the lowlight tolerant cultivars. 【Method】A low light-tolerant cultivar (Yujinxiang) and a low light-sensitive cultivar (Yuxuesanhao) of melon (L.) were used as materials. The melon plants were cultured in greenhouse and were shaded after pollination. And then the mature leaves from the fruit nodes were collected every five days for measurement. The leaf chlorophyll content, gas exchange parameters, levels of soluble sugars (fructose, glucose, sucrose, galactinol, raffinose, stachyose) and starch, activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), acid invertase (AI), neutral invertase (NI), galactinol synthase (GS) and stachyose synthase (STS) were determined. 【Result】Under shading condition, leaf chlorophyll a/b, net photosynthetic rate (Pn), and contents of glucose, fructose and sucrose in the leaves of both cultivars decreased, but the starch level increased. The reduction of chlorophyll a/b in Yujinxiang leaves (10.0%) was larger than that in Yuxuesanhao leaves (5.8%), but the reduction of leaf Pn, sucrose content and increment of starch content were less in Yujinxiang (30.3%, 30.9% and 3.6%, respectively) than those of Yuxuesanhao (45.2%, 60.6% and 20.4%). Activities of sucrose metabolism enzymes (SPS, SS, AI and NI) decreased after shading, and the reduction of SPS and SS activities were significantly less in Yujinxiang (16.5% and 30.0%) than in Yuxuesanhao (31.6% and 40.5%), but the reduction of AI and NI activities was larger in Yujinxiang (23.8% and 12.7%) than in Yuxuesanhao (18.3% and 1.8%). Galactinol level and GS activity decreased after shading, but no significant genotypic difference was observed. Contents of raffinose and stachyose as well as the activity of STS all decreased after shading. The reduction of raffinose content was larger, the reduction of stachyose content and STS activity was less in Yujinxiang (65.3%, 79.5% and 23.8%, respectively) than those in Yuxuesanhao (35.0%, 83.3% and 32.4%). 【Conclusion】The reduction of leaf sucrose synthesis and stachyose loading after shading was less in Yujinxiang than in Yuxuesanhao, which indicates that the low light tolerant cultivar has stronger leaf assimilate export capacity than the sensitive cultivar under shading.
melon; shading; gas exchange parameters; sucrose synthesis; stachyose loading; assimilates export
2017-12-14;
2018-01-25
甘肅省農(nóng)業(yè)生物技術(shù)研究與應(yīng)用開發(fā)項(xiàng)目(GNSW-2015-17)
楊柳燕,E-mail:zyyangliuyan@163.com。
陳年來,E-mail:chennl@gsau.edu.cn
10.3864/j.issn.0578-1752.2018.13.011