• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    柚子皮衍生的分級多孔碳作為高性能超級電容器的電極材料

    2018-07-04 06:15:16武中鈺陶友榮吳興才趙健偉
    關(guān)鍵詞:化工學(xué)院南京大學(xué)嘉興

    武中鈺 范 蕾 陶友榮 王 偉 吳興才*, 趙健偉

    (1南京大學(xué)化學(xué)化工學(xué)院,介觀化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 210023)

    (2嘉興學(xué)院材料與紡織工程學(xué)院,嘉興 314001)

    0 Introduction

    Energy storage devices have drawn abundant attention for the increasing emergency of traditional resources like fossil fuels[1-8].Supercapacitor,a vital type of these devices,was further researched owing to its high power density and excellent cycling stability[9-12].Generally,it can be divided into two main species of electrical double layer capacitors (EDLCs)and pseudocapacitors,and the EDLCs are more promising for its longer cycling life and better rate performance though the relatively low specific capacitance[13-14].Carbon as a typical material used in EDLCs has been extensively researched in the following aspects:graphenes[13,15],carbon nanotubes[16-17],carbon aerogels[18]and porous carbons[19-21].

    As we all know,the performance of EDLCs is primarily determined by the features of electrode materials,including specific surface area (SSA),pore structure,surface functionality and electrical conductivity.Typically,the electrolyte ions can be effectively trapped in micropores and enhance the charge storage density due to the strong electric potential,while electrolyte in macropores,which keeps its bulk phase behavior,can reduce the transport distance of ions.For mesopores,electrolyte ions would have a smaller probability to clash against pore walls,hence reducing ion transport resistance[22-23].Furthermore,apart from the reasonable pore structure,the large specific surface area is essential for sufficient interface to form electric double layers.Hence,the carbons with hierarchically pore structures and large specific surface area are preferred to be used as the electrode material[18,20,24-25].It should be noted that the performance of supercapacitors has been enhanced constantly,but the low energy density is still a critical issue calling for further improvement.Additionally,some routes to produce carbon materials are complicated and not eco-friendly enough.For these problems,it is imperative for us to find the ideal carbon materials.

    Some of the biomass is a big class of solid wastes,but with the advantages of low cost,large abundance,easy accessibility and environmentally friendly[26-27].Meanwhile,the problem of waste handling can be solved efficiently through the application of biomass.Several kinds of biomass like peanut shells[28-29],bamboo chopsticks[19,30],pine needles[31],chicken eggshell membranes[32]have been further researched in energy storage.It can be found that after treated with activated agent,the biomass-derived carbons often possess a complicated hierarchical porous structure which is strongly associated with the natural interconnection of the biomass material and handling methods.However,depending on the natural property or the activated process,not all the biomass-derived carbon contains mirco-,meso-and macro-pores at the same time,which leads to an inferior property of supercapacitors.

    Herein,we deliver an easy and low-cost approach to produce hierarchical porous carbons (HPCs)from pomelopeels.Inspired by producing mesoporous silicates from soft-template approach[33],we propose the surfactant could interact with cellulose or lignin in the biomass to form mesopore structure,while freezedrying was used to retain the macropores in the biomass and the micropores are obtained from the KOH activation.The obtained hierarchically porous carbon possesses a high SSA up to 1 813 m2·g-1,in which the specific surface area of mesopore is up to 536 m2·g-1,and displays a prominent electrochemical performance with a high specific capacitance up to 285 F·g-1at 0.5 A·g-1in a three-electrode system.Moreover,we also assemble symmetry supercapacitor possessing a specific capacitance of 162 F·g-1at 0.5 A·g-1,and can deliver a moderate energy density of 5.58 Wh·kg-1and a power density of 124.5 W·kg-1in 6 mol·L-1KOH electrolyte at a working potential of 1.0 V.

    1 Experimental

    1.1 Synthesis of PC and HPCs

    Fig.1 Schematic diagram of preparation for PCs and HPCs

    Preparation of pomelo peel-derived porous carbon was described as in Fig.1.The pomelo peel was washed several times by deionized water and dried at 60℃overnight in a vacuum oven.Then,the white fine powder was collected by disintegrating the dried pomelo peel in a bucker.Afterwards,the powder was carbonized at 400℃ with a heating rate of 6℃·min-1for 3 h in a muffle furnace.To ensure the oxygenlimited conditions,thepowderwasplaced in a ceramic pot with a lid covered in a compressed state.For demineralization,the resulted biochar was placed in an adequate 1 mol·L-1HCl solution for 8 h under vigorous magnetic stirring.The biochar was obtained after filtration and vacuum-drying.To get the porous activated carbon,moderated biochar was firstly dispersed in 15 mL deionized water under stirring,then KOH (wbiochar∶wKOH=1∶3)was added into the slurry,and the mixed solution was further stirred for 12 h.Here the ratio of biochar and KOH was modified according to the electrochemical performance (supporting information,Fig.S1).Then,the mixed black paste was vacuum-dried at 60℃ overnight to remove the redundantwater.Subsequently,the mixture was placed in a tubular furnace and heated to 800℃with a heating rate of 5℃·min-1for 2 h under a N2flow(100 mL·min-1),followed by HCI and deionized water washing for several times until pH=7,and then the PC was obtained.In comparisons,to get the HPC,all the procedures are the same except for treating the pomelo peel with CTAB before pre-carbonization at 400℃and a substituted freeze-drying process.In detail,1.2 g CTAB was dissolved in 10 mL DI water at a teflon-lined stainless steel autoclave of 15 mL,followed by the addition of 2.4 g pomelo peel powder.The mixture was stirred for a few minutes,then the sealed autoclave was heated to 100℃and maintained 12 h.The products were directly freeze-dried without any further treatments.Additionally,the HPC was also activated at 700 and 900℃.The as-obtained PC and HPC samples are termed PC-T,and HPC-T,where T is the activation temperature.

    1.2 Characterization of PC and HPCs

    The as-prepared PC and HPCs were characterized by field-emission scanning electron microscope (FE-SEM,Hitachi S-4800),transmission electron microscopy (TEM,JEM-2100)and X-ray photoelectron spectra (XPS,PHI 5000 VersaProbe).The working voltages of FE-SEM and TEM are 5 and 200 kV,respectively.Raman spectra were obtained using a LabRAM Aramis instrumentwith an excitation wavelength of 532 nm.Nitrogen adsorption-desorption isotherms were measured at 77 K using a surfer gas adsorption porosimeter (Thermo Fisher Scientific).The specific surface area was calculated by the Brunauer-Emmett-Teller (BET)method based on the adsorption data from 0.05 to 0.3 in the linear relative pressure(P/P0).The pore size distribution was obtained according to Horvath-Kawazoe method for micropore and Barrett-Joyner-Halenda method for mesopore.

    1.3 Preparation and characterization of supercapacitors

    Briefly for three-electrode system,80% (w/w)PC(or HPC),10% (w/w)carbon black,and 10% (w/w)polyvinylidene fluoride (PVDF)were homogeneously mixed into slurry using a mortar and pestle.Then the slurry was roll coated on nickel foam with a diameter of 1 cm,where nickel foam was the current collector.After vaccum-dried at 100℃overnight,this nickel foam with PC or HPC coating was used as the working electrode in a typical three-electrode system,where the electrolyte was 1 mol·L-1KOH aqueous solution,Pt wire and Hg/HgO electrode was counter electrode and reference electrode,respectively.To assemble symmetry supercapacitor,the fabrication of working electrode was the same except it was assembled in a stainless steel coin cell (CR2032)with 6 mol·L-1KOH aqueous solution or 1 mol·L-1tetraethylammonium tetrafluoroborate acetonitrile solution (TEABF4/AN)and porous cellulose membrane as electrolyte and separator,respectively.The amount of active materials was about 2 mg on each current collector.

    CHI760E electrochemicalworkstation (CH Instrument,Inc.)was used for electrochemical evaluation.For three-electrode system,cyclic voltammetry(CV)was carried out at various scan rates from 5 to 100 mV·s-1where the potential range is between-1.0 and 0 V vs Hg/HgO electrode.The galvanostatic charge-discharge (GCD)tests were performed with potential range between-1.0 and 0 V in various current densities from 0.5 to 10 A·g-1.Electrochemical impedance spectroscopy (EIS)measurements were performed at open circuit potential from 100 kHz to 0.01 Hz with an amplitude of 5 mV.The cycling tests were evaluated by constant galvanostatic chargedischarge measurement at a current density of 5 A·g-1for over 12 000 cycles.For two-electrode symmetry supercapacitor,all the tests are almost the same except the potential range for GCD was from 0 to 1 V.

    The specific capacitance (Cs,F·g-1)of active materials in three-electrode system was calculated from the GCD curves with the following equation:

    where I (A)is the discharging current,Δt(s)the discharge time,m (g)the mass of the PC (or HPC)coated on the working electrode,ΔV (V)the potential change during the discharge processes.

    While the specific capacitance of the electrode material for coin cell:

    where m (g)is the mass of the PC (or HPC)coated on one electrode and other physical parameters are same as above.

    The energy density (E,Wh·kg-1)and power density (P,W·kg-1)of symmetrical coin cell can be calculated from the following equations:

    2 Results and discussion

    Fig.2 (a,b)SEM images of pomelo peel after pre-carbonization at 400 ℃ and (c,d)CTAB hydrothermal-treated pomelo peel after pre-carbonization at 400℃

    SEM was used to investigate the microstructure of PC and HPCs.Obviously,pomelo peel pyrolyzed at 400℃present crumpled carbon sheet and no noticeable pores on the surface in a high magnification as shown in Fig.2(a,b),while the surface situation would be totally different if pomelo peel was hydrothermal treated with CTAB.A low-magnification image(Fig.2c)shows crumpled carbon nanosheet,but a highmagnification image reveals that there are countless pores on the surface of the carbon sheets,and the size of the pores is about dozens of nanometers (Fig.2d).After activated by KOH at 800℃,the biochar turned into microporous carbon which should be attributed to the etching effect of KOH for the intercalation of the potassium compounds[34].

    Fig.3a displays the network-like curved surface with obvious macropores in PC-800,while the HPC-800 hasformed relativelyuniform 3D pore-hole structure which would be beneficial for the diffusion of electrolyte ions into the inner mesopores and mircopores,as shown in Fig.3b.Further confirmations of porous morphology to PC-800 and HPC-800 via TEM are shown in Fig.3(c~f),S2 and S3.The uniform pore with numerous pores which are transparent under electron irradiation could be clearly observed for HPC-800.

    Fig.4a compares the nitrogen adsorptiondesorption isotherm of PC-800 with that of HPC-800,while Fig.4b shows the pore size distribution.It is clear that HPC-800 has significantly higher absorbed nitrogen volume than PC-800.The steep increase in the amount of nitrogen absorbed at low relative pressure (P/P0<0.1)for both PC-800 and HPC-800 indicates the existence of lager amounts of micropores.The hysteresis located at P/P0>0.4 for HPC-800 is apparently larger than that for PC-800,which suggests more mesopores in HPC-800,and a steep increase in the amount of absorbed nitrogen can only be found in HPC-800 at high relative pressure (P/P0>0.9),manifesting the open structure in the HPC-800.As shown in Fig.4b,HPC-800 possesses porous structure containing multiscale pores with pore size from subnanometer to submicron,while the PC-800 possesses a micropores-dominated pore structure.This conclusion can also be drawn from the specific surface area of mesopores for HPC-800 and PC-800 as shown(Table 1).Table 1 lists key parameters of PC-800 and HPC-800 obtained from the BET measurements.It is conclusive that the SSA and the pore volume are both higher for HPC-800 (1 813 m2·g-1,1.05 cm3·g-1)than that of PC-800 (1 184 m2·g-1,0.57 cm3·g-1).The increased SSA and pore volume should be attributed to the increasing amounts of mesopore and micropore resulting from hydrothermal treatment with CTAB.Moreover,the HPCs prepared under different temperatures exist little discriminating results (Fig.S4 and Table S1).To sum up,all the HPCs present a steep increase of absorbed nitrogen at a relative pressure(P/P0>0.9),proving the open structures in all samples.However,with the temperature increasing,the amount of mesopores also increases with the slightly low SSA.The distinct difference between HPC-900 and HPC-800 can be concluded to the collapse of micropores affected by higher carbonization temperatures.

    Fig.3 (a)SEM images of PC-800 and (b)HPC-800;(c,e)TEM images of the as-prepared PC-800 and (d,f)as-prepared HPC-800

    Fig.4 (a)Typical nitrogen adsorption-desorption isotherm for PC-800 and HPC-800;(b)Corresponding pore size distributions;(c)Raman spectra of PC-800 and HPC-800;(d)XPS survey spectra of the as-prepared PC-800 and HPC-800;(e,f)High-resolution XPS spectra of C1s and O1s

    Table 1 Textural properties of PC and HPC achieved from nitrogen adsorption-desorption

    It is noted that the hydrothermal treatment with CTAB for raw pomelo peel plays a vital role in the developmentofhierarchically pore structure.In particular,the specific surface area of mesopores and micropores,together with the surface morphology was apparently affected by CTAB treatment.Pomelo peel is rich in cellulose,lignin and polysaccharide.When CTAB solution was added,rod-like micelle could intercalate gap of cellulose or lignin molecules to form mesopore during the hydrothermal process.After the materials were carbonized,the mesopores were retained.

    Raman spectroscopy was used to investigate the crystalline structures and defects of prepared PC and HPCs.As shown in Fig.4c,the obvious bands of 1 346 and 1 583 cm-1correspond to D (defects and disorder)and G (graphitic)bands of the carbon material[35],respectively.The intensity ratio of D and G band could disclose the structural defect and disorder intensity of carbon materials,and here ID/IGis about 1,which indicates the amorphous carbon both in the PC and HPCs.All these agree with the results of the TEM experiments.The detailed images of HPC-700 and HPC-900 are shown in Fig.S5.

    X-ray photoelectron spectroscopy (XPS)was employed to investigate the surface and chemical composition of PC-800 and HPC-800.Fig.4d displays the XPS survey spectra and the surface composition of the carbons and the oxygen functionalities are shown in Table 2.The high resolution C1s and O1s spectra of PC-800 and HPC-800 are shown in Fig.4(e,f).The high resolution C1s spectrum can be deconvoluted to three individual peaks centered at 284.5,286.2 and 288.0 eV[36],corresponding to C-C,C-O and C=O,respectively.The high resolution O1s spectrum can be resolved into two peaks representing the two different types of oxygen functional groups according to early research[37].Here the COOH carboxylic groups(O-III,535.4 eV)has been ignored for the relative minority,so actually the surfaces are primarily covered by C=O quinone type groups (O-I,531 eV)and C-OH phenol/C-O-C ether groups (O-II,532.4 eV).In comparison,the O contentislargerin HPC-800,especially quinone type groups,which has a positive effect on enhancing the pseudocapacitance performance[38].It also can be found that the N content in all carbons is sufficiently low,which is not expected to promote the storage capacity efficiently.

    Table 2 Surface composition of the carbons and the oxygen functionalities

    To evaluate the capacitance performance of the samples,cyclic voltammetry (CV)and galvanostatic charge-discharge (GCD)tests were applied in a 1 mol·L-1KOH aqueous electrolyte through three electrode system.Fig.5a shows the CV curves under scan rates of 50 mV·s-1for HPC-800 and PC-800,manifesting the larger specific capacitance in HPC-800 based electrode.It should also be mentioned that the broad peak near-0.7 V (vs Hg/HgO)could be ascribed to the pseudo-capacitor performance arisen from oxygen-containing group on the surface of samples,and the most reactive oxygen functional groups should be the quinine type groups (O-I type)for the unsaturated carbon-oxygen double bonds[38].According to the O1s XPS spectrum,the content of quinine type groups in HPC-800 is distinctively more than that in PC-800,correspondingly bringing more pseudocapacitance,which illustrates more conspicuous peaks in HPC-800.Furthermore,the curves of CV(Fig.S6i)under the increasing scan rates remain displaying a quasi-rectangular shape,indicating the capacitance originatesfrom the electricaldouble layers with a high charge-discharge speed,a good rate electrochemicalperformance and little electrolyte diffusion limitation[39].

    Fig.5 (a)CV curves in 1 mol·L-1KOH at a scan rate of 50 mV·s-1;(b)Galvanostatic charge-discharge lines obtained at 1 A·g-1;(c)Nyquist plots in a frequency range from 0.01 Hz to 100 kHz and the inset of(c)reveals the high-frequency region of the plots;(d)Specific capacitance at different current density

    The galvanostatic charge-discharge curves of the first cycle are depicted in the Fig.5b,where the current density is 1 A·g-1.All the curves (Fig.S6ii)are nearly symmetrical with slight distortion in the slope,suggesting the ideal capacitor behaviour of electrical double-layered capacitor for all samples and the existing of pseudocapacitance caused by oxygencontaining groups.At a current density of 1 A·g-1,the specific capacitance of the samples can reach 250,120,180 and 160 F·g-1for HPC-800,HPC-700,HPC-900 and PC-800,respectively.It should be noted that HPC-800 shows a semicircle with larger diameter at the high frequency range which reflects the larger charge transfer resistance (Rct).As mentioned above,the HPC-800 has more oxygen-containing groups.But it would further arise a larger pseudocapacitance,which may decrease the conductivity and further disturb the charge transfer despite of the fact that the hierarchical porous structure in HPC-800 can improve the charge transfer.The first intercept along the real axis (the crosspoint between the real axis and semicircle)represents the equivalent internal resistance(Rs),including the intrinsic resistance of electrode material,the resistance of the electrolyte and the contact resistance at the interface.The much smaller Rsfor HPC-800 (0.5 Ω)than that of PC-800 (1.3 Ω)can be clearly seen in the inset of Fig.5c.By extrapolating the vertical portion to the real axis,the equivalentseries resistance (ESR) is obtained according to the intercept at real axis.This value reaches 1.4 Ω for PC-800 and 1.2 Ω for HPC-800 with a difference of 0.2 Ω,which mainly results from the much smaller Rsof HPC-800 than that of PC-800,with a 0.8 Ω difference,and the larger Rctof HPC-800 than that of PC-800,with a 0.6 Ω difference.The details of the EIS of HPC-700 and HPC-900 are depicted in Fig.S6.Fig.5d exhibits the capacitance retention of electrode materials for current density up to 10 A·g-1.With the current density increasing,the specific capacitances are decreasing for the electrolyte ions would have less time to diffuse and enter into the porosity under the higher current densities[40].Overall the HPC-800-based electrode has at least comparative performance to those of most of other biomass-derived carbon does (Table 3)[19,41-46].

    The two-electrode coin cells were assembled to investigate the further performance in practical application.CV curves (Fig.6(a,b)maintain the quasirectangle shapes from a low scan rate to a high scan

    Table 3 Specific capacitance of activated carbon from different biomass precursors in a three-electrode system

    rate up to 500 mV·s-1,which indicates an excellent capacitive behaviour with great rate performance.It should be attributed to the easy and fast ionic motion caused by hierarchical porous structure.It should also be noted that there are no more peaks in CV images in spite of the presence of numerous heteroatoms.Herein it is different from the situation in threeelectrode system,which is consistent with the previous report[25].For HPC-800,the area for a single CV curves under the same scan rate is larger than that for PC-800,suggesting the larger specific capacitance.The GCD curves (Fig.6 (c,d)were measured under the increasingly current density over the 0~1 V and the capacitance of coin cell supercapacitors can be drawn from the discharge period of GCD curves.The specific capacitance of supercapacitor based on HPC-800 is calculated to 162 F·g-1at a current density of 0.5 A·g-1,while the value is 120 F·g-1for PC-800 under the same condition.When the current density increased to 20 A·g-1,the specific capacitances are decreased to 73 and 70 F·g-1,respectively,demonstrating a great rate capability.EIS measurements are carried out to probe the electrochemical characteristics for supercapacitors and the Nyquist plots are shown in Fig.6e.All the conditions are the same as the three-electrode system.The supercapacitor based on HPC-800 owns a much smaller equivalent internal resistance (0.6 Ω),comparing to the device based on PC-800 (3.5 Ω).The high slopes in the low-frequency region reveal the ideal capacitive performance for both two devices.

    Fig.7 (a)Ragone plots of HPC-800 and PC-800 based supercapacitors;(b)GCD curves of the first and the last three cycles during the 12 000 cycles for HPC-800 based supercapacitors

    Moreover,the Ragone plots (Fig.7a)confirm the electrochemical performance of HPC-800 and PC-800 electrode materials.It shows that HPC-800 based supercapacitor exhibits the energy density of 5.58 Wh·kg-1at a power density of 124.5 W·kg-1.Additionally,the cycling stability is a crucial parameter for surpercapacitors.After 12 000 galvanostatic charge-discharge cycles at a current density of 10 A·g-1,the capacitance remains almost 100%for HPC-800 based devices (Fig.7b),and the lower resistance could be observed after cycling (Fig.S7).In order to achieve a higher energydensityperformance,theHPC-800 based symmetry supercapacitor using organic electrolyte was assembled and accessed.It turned out that the specific capacitance could be up to 53 F·g-1at a current density of 0.5 A·g-1.Besides,it could deliver an energy density of 11.34 Wh·kg-1with a power density of 311.52 W·kg-1.Further information can be found in the Fig.S8 and S9.Furthermore,the device was used to light up a yellow light-emitting-diode(LED)with a lowest working potential of 2 V (Fig.S10).The disappointing performance on the specific capacitance should be ascribed to less amount of mesopores which match up with larger electrolyte ions.

    Overall the HPC-800 electrode offers a better performance,which is mainly attributed to synergistic effects from several factors:the larger specific surface area,hierarchical open pore structure with the higher mesopore content and the optimum combination of O content.Firstly,the large specific surface area provides plenty of sufficient active interfaces to form electric double layers.Secondly,the hierarchical open-pore structure ensures the efficient ion diffusion,butalso decreasesthe resistance forthe open marcopores.The higher mesoporous content facilitates ionic transport and shortens the diffusion pathways,while numerous micropores serve as charge accommodation.Thirdly,the presence of O content,especially thequininetypegroupsimprovesthe pseudocapacitance performance greatly.

    3 Conclusions

    In this work,a novel functionalized HPC has been obtained viaan improved KOH activating process by using pomelo peel as the carbonaceous precursor.The as-prepared HPC processes a 3D hierarchical porous structure with various pore sizes,high specific surface area and high-level O-doping.As the electrode material for supercapacitors,it exhibits a remarkable electrochemical performance with large specific capacitance,great rate capability and superior cycling stability.Notably,the high energy densities of~5.58 and ~11.34 Wh·kg-1are achieved in the coin cell symmetric supercapacitor in aqueous and organic electrolytes,respectively.Apart from the excellent performance,the synthesis process is facile and ecofriendly,presenting a promising future for the application in energy storage devices.

    Supporting information is available at http://www.wjhxxb.cn

    :

    [1]Zhang Q F,Uchaker E,Candelaria S L,et al.Chem.Soc.Rev.,2013,42:3127-3171

    [2]Tarascon J M,Armand M.Nature,2001,414:359-367

    [3]Wu Z S,Sun Y,Tan Y Z,et al.J.Am.Chem.Soc.,2012,134:19532-19535

    [4]Wang X,Jiang K,Shen G Z.Mater.Today,2015,18:265-272

    [5]Zhang L L,Zhao X S.Chem.Soc.Rev.,2009,38:2520-2531

    [6]Simon P,Gogotsi Y,Dunn B.Science,2014,343:1210-1211

    [7]Gogotsi Y,Simon P.Science,2011,334:917-918

    [8]Lu Y,Zheng S S,Xu Y X.Adv.Funct.Mater.,2017,27:1703949-1703977

    [9]Lin T Q,Chen I W,Liu F X.et al.Science,2015,350:1508-1513

    [10]Zhao J,Lai H W,Lyu Z Y,et al.Adv.Mater.,2015,27:3541-3545

    [11]Zhang Y Z,Wang Y,Cheng T,et al.Chem.Soc.Rev.,2015,44:5181-5199

    [12]Chen L F,Zhang X,Liang H W,et al.ACS Nano,2012,6:7092-7102

    [13]Zhu Y W,Murali S,Stoller M D,et al.Science,2011,332:1537-1541

    [14]Qu D Y,Shi H.J.Power Sources,1998,74:99-107

    [15]Liu C G,Yu Z N,Neff D,et al.Nano Lett.,2010,10:4863-4868

    [16]Yue S H,Tong H,Lu L,et al.J.Mater.Chem.A,2017,5:689-698

    [17]Hahm M G,Reddy A L M,Cole D P,et al.Nano Lett.,2012,12:5616-5621

    [18]Hao P,Zhao Z H,Leng Y H,et al.Nano Energy,2015,15:9-23

    [19]Tian W Q,Gao Q M,Tan Y L,et al.J.Mater.Chem.A,2015,3:5656-5664

    [20]Zhang F,Liu T Y,Li M Y,et al.Nano Lett.,2017,17:3097-3104

    [21]Niu J,Shao R,Liang J J,et al.Nano Energy,2017,36:322-330

    [22]Li Y,Fu Z F,Su B L.Adv.Funct.Mater.,2012,22:4634-4667

    [23]Wang H L,Dai H J.Chem.Soc.Rev.,2013,42:3088-3113

    [24]Dutta S,Bhaumik A,Wu K C W.Energy Environ.Sci.,2014,7:3574-3592

    [25]Qie L,Chen W M,Xu H H,et al.Energy Environ.Sci.,2013,6:2497-2504

    [26]Deng J,Li M M,Wang Y.Green Chem.,2016,18:4824-4854

    [27]Zheng F C,Liu D,Xia G L,et al.J.Alloys Compd.,2017,693:1197-1204

    [28]Ding J,Wang H L,Li Z,et al.Energy Environ.Sci.,2015,8:941-955

    [29]He X J,Ling P H,Qiu J S,et al.J.Power Sources,2013,240:109-113

    [30]Jiang J,Zhu J H,Ai W,et al.Energy Environ.Sci.,2014,7:2670-2679

    [31]Zhu G Y,Ma L B,Lv H L,et al.Nanoscale,2017,9:1237-1243

    [32]Li Z,Zhang L,Amirkhiz B S,et al.Adv.Energy Mater.,2012,2:431-437

    [33]Wan Y,Zhao D Y.Chem.Rev.,2007,107:2821-2860

    [34]Wang J C,Kaskel S.J.Mater.Chem.,2012,22:23710-23725

    [35]Thomsen C,Reich S.Phys.Rev.Lett.,2000,85:5214-5217

    [36]Li Y,Zhao Y,Cheng H,et al.J.Am.Chem.Soc.,2012,134:15-18

    [37]Hulicova-Jurcakova D,Seredych M,Lu G Q,et al.Adv.Funct.Mater.,2009,19:438-447

    [38]Sevilla M,Mokaya R.Energy Environ.Sci.,2014,7:1250-1280

    [39]Rose M,Korenblit Y,Kockrick E,et al.Small,2011,7:1108-1117

    [40]Hou J H,Cao C B,Idrees F,et al.ACS Nano,2015,9:2556-2564

    [41]Balathanigaimani M S,Shim W G,Lee M J,et al.Electrochem.Commun.,2008,10:868-871

    [42]Si W J,Zhou J,Zhang S M,et al.Electrochim.Acta,2013,107:397-405

    [43]Kalpana D,Cho S H,Lee S B,et al.J.Power Sources,2009,190:587-591

    [44]Ma G F,Hua F T,Sun K,et al.RSC Adv.,2016,6:103508-103516

    [45]Jiang L,Yan J W,Hao L X,et al.Carbon,2013,56:146-154

    [46]Cheng P,Gao S Y,Zang P Y,et al.Carbon,2015,93:315-324

    猜你喜歡
    化工學(xué)院南京大學(xué)嘉興
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    《初心》
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    嘉興學(xué)院
    《南京大學(xué)學(xué)報(bào)數(shù)學(xué)半年刊》征稿簡則
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    浙江嘉興卷
    《化工學(xué)報(bào)》贊助單位
    Comprendre et s'entendre
    亚洲成人免费电影在线观看| 午夜亚洲福利在线播放| 亚洲人成伊人成综合网2020| 男男h啪啪无遮挡| 少妇 在线观看| 精品人妻1区二区| 一二三四社区在线视频社区8| 久久精品国产亚洲av高清一级| 国产极品粉嫩免费观看在线| 精品久久久久久久人妻蜜臀av| 亚洲精品在线美女| 男人舔女人下体高潮全视频| 免费搜索国产男女视频| 欧美中文综合在线视频| 婷婷亚洲欧美| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 欧美成人性av电影在线观看| 黄片大片在线免费观看| 99在线视频只有这里精品首页| 中文在线观看免费www的网站 | 欧美精品啪啪一区二区三区| 国产又爽黄色视频| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 日本成人三级电影网站| 在线观看一区二区三区| 18美女黄网站色大片免费观看| 成人三级做爰电影| 欧美性长视频在线观看| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 国产精品九九99| 麻豆国产av国片精品| 久久久久久久久免费视频了| 一区二区三区高清视频在线| 欧美日韩中文字幕国产精品一区二区三区| 久99久视频精品免费| 精品一区二区三区av网在线观看| 亚洲成人久久性| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 亚洲中文日韩欧美视频| 久久久久久人人人人人| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 国产成+人综合+亚洲专区| av中文乱码字幕在线| 露出奶头的视频| 国产精品美女特级片免费视频播放器 | av在线播放免费不卡| 亚洲七黄色美女视频| www国产在线视频色| 欧美性长视频在线观看| 国产精品久久久久久精品电影 | 每晚都被弄得嗷嗷叫到高潮| videosex国产| 少妇的丰满在线观看| 超碰成人久久| 国产私拍福利视频在线观看| 欧美色视频一区免费| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片 | 精品国产一区二区三区四区第35| 亚洲精华国产精华精| www.熟女人妻精品国产| 亚洲国产欧美日韩在线播放| or卡值多少钱| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 国产主播在线观看一区二区| 在线观看免费日韩欧美大片| 我的亚洲天堂| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 国产成+人综合+亚洲专区| 美女大奶头视频| 精品免费久久久久久久清纯| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 操出白浆在线播放| 在线十欧美十亚洲十日本专区| 美女免费视频网站| www.www免费av| 黄片播放在线免费| 国产精品影院久久| 亚洲国产精品成人综合色| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 国产日本99.免费观看| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 色精品久久人妻99蜜桃| 窝窝影院91人妻| 久久久久亚洲av毛片大全| 少妇裸体淫交视频免费看高清 | 淫妇啪啪啪对白视频| 午夜视频精品福利| 国产伦人伦偷精品视频| 法律面前人人平等表现在哪些方面| 一级a爱视频在线免费观看| 少妇被粗大的猛进出69影院| av福利片在线| 欧美性长视频在线观看| 深夜精品福利| 中文字幕人妻熟女乱码| 不卡av一区二区三区| 国产不卡一卡二| 在线观看午夜福利视频| 日韩欧美 国产精品| 久久久水蜜桃国产精品网| 国产成人av教育| 91九色精品人成在线观看| 中文字幕人成人乱码亚洲影| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| av天堂在线播放| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 日本成人三级电影网站| 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 好看av亚洲va欧美ⅴa在| 男女午夜视频在线观看| 丝袜人妻中文字幕| 精品国产国语对白av| 美女午夜性视频免费| 亚洲精品久久国产高清桃花| 一区二区三区国产精品乱码| 久久精品aⅴ一区二区三区四区| 高清毛片免费观看视频网站| 两个人看的免费小视频| 欧美av亚洲av综合av国产av| 午夜免费激情av| 亚洲 欧美一区二区三区| 大型黄色视频在线免费观看| 亚洲精品中文字幕一二三四区| 在线播放国产精品三级| 午夜福利在线在线| www.www免费av| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| av欧美777| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 欧美黑人精品巨大| 99久久国产精品久久久| av免费在线观看网站| 亚洲精品美女久久久久99蜜臀| 国产日本99.免费观看| 免费无遮挡裸体视频| 欧美激情 高清一区二区三区| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 1024香蕉在线观看| 首页视频小说图片口味搜索| 悠悠久久av| 极品教师在线免费播放| 久久伊人香网站| 老汉色∧v一级毛片| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 亚洲精品国产区一区二| 久久中文字幕一级| 国产成人av激情在线播放| 欧美日本亚洲视频在线播放| 国产色视频综合| 精品高清国产在线一区| 久久天堂一区二区三区四区| 在线av久久热| 麻豆久久精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 午夜久久久在线观看| 国产一区二区三区视频了| 久久中文字幕人妻熟女| 精品国产乱子伦一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲国产欧美一区二区综合| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 免费高清在线观看日韩| 欧美久久黑人一区二区| 99re在线观看精品视频| 国产成人av教育| 曰老女人黄片| 亚洲人成77777在线视频| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 丝袜人妻中文字幕| 又黄又爽又免费观看的视频| 90打野战视频偷拍视频| 高清在线国产一区| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 亚洲最大成人中文| or卡值多少钱| 亚洲欧洲精品一区二区精品久久久| 97碰自拍视频| 久久午夜亚洲精品久久| 午夜激情av网站| 国产三级黄色录像| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| www.www免费av| 国产熟女xx| 国产精品,欧美在线| 很黄的视频免费| 少妇 在线观看| 嫩草影院精品99| 正在播放国产对白刺激| 99re在线观看精品视频| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 久久中文字幕一级| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 人人妻人人澡人人看| 精品福利观看| 性色av乱码一区二区三区2| 国产成人av激情在线播放| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区| 19禁男女啪啪无遮挡网站| www.精华液| 男人舔奶头视频| 久久精品91无色码中文字幕| 色婷婷久久久亚洲欧美| 久久久精品欧美日韩精品| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区| av福利片在线| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 日日爽夜夜爽网站| 久久精品国产亚洲av香蕉五月| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 国产激情欧美一区二区| 亚洲成av片中文字幕在线观看| 老司机午夜福利在线观看视频| 少妇粗大呻吟视频| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品av久久久久免费| 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 午夜激情福利司机影院| 亚洲成人免费电影在线观看| 精品久久久久久久末码| 亚洲一区中文字幕在线| 一夜夜www| 窝窝影院91人妻| 1024香蕉在线观看| 高清在线国产一区| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区黑人| 国产熟女xx| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 一区福利在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| 好男人在线观看高清免费视频 | 日韩有码中文字幕| 悠悠久久av| 又大又爽又粗| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 国产成人av激情在线播放| 欧美黑人精品巨大| 亚洲成国产人片在线观看| 久久久久久九九精品二区国产 | 久久热在线av| 久久天堂一区二区三区四区| 在线播放国产精品三级| www日本黄色视频网| 老司机午夜十八禁免费视频| 亚洲全国av大片| 青草久久国产| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线| 成人18禁在线播放| 国内揄拍国产精品人妻在线 | 国产爱豆传媒在线观看 | 亚洲欧美日韩高清在线视频| 午夜免费观看网址| 日韩欧美在线二视频| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看 | 欧美最黄视频在线播放免费| 久久精品影院6| 精品第一国产精品| 黄片小视频在线播放| 色尼玛亚洲综合影院| 欧美av亚洲av综合av国产av| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 熟女电影av网| 国产精品久久视频播放| 久热爱精品视频在线9| 日本a在线网址| 91九色精品人成在线观看| 国产精品日韩av在线免费观看| 久久热在线av| 国产精品二区激情视频| 免费观看精品视频网站| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 88av欧美| 欧美一级a爱片免费观看看 | 国产精品美女特级片免费视频播放器 | xxx96com| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 亚洲,欧美精品.| 在线播放国产精品三级| 他把我摸到了高潮在线观看| 91大片在线观看| 男女做爰动态图高潮gif福利片| 成人三级做爰电影| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 2021天堂中文幕一二区在线观 | 欧美黑人精品巨大| 黄色丝袜av网址大全| 久久亚洲精品不卡| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 熟女少妇亚洲综合色aaa.| 中文字幕人成人乱码亚洲影| 午夜成年电影在线免费观看| 日韩欧美一区二区三区在线观看| 国产av一区在线观看免费| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 一区二区日韩欧美中文字幕| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 日韩欧美在线二视频| 日本 av在线| 欧美中文综合在线视频| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片| 午夜成年电影在线免费观看| 1024香蕉在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 亚洲av日韩精品久久久久久密| 亚洲av中文字字幕乱码综合 | 欧美精品啪啪一区二区三区| 男女视频在线观看网站免费 | 他把我摸到了高潮在线观看| 欧美久久黑人一区二区| 日韩三级视频一区二区三区| 亚洲国产欧美网| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 成人手机av| 在线观看www视频免费| 在线观看免费日韩欧美大片| 国产高清视频在线播放一区| 国产成人av教育| 欧美又色又爽又黄视频| 免费看日本二区| 亚洲第一av免费看| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影 | 亚洲av电影在线进入| 国产成人精品久久二区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 桃红色精品国产亚洲av| 久久久久久人人人人人| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 国产v大片淫在线免费观看| 久久狼人影院| 午夜久久久久精精品| 亚洲第一青青草原| 国产精品野战在线观看| 黑丝袜美女国产一区| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费成人在线视频| 国产v大片淫在线免费观看| 在线观看一区二区三区| 九色国产91popny在线| 国产精品二区激情视频| 色综合婷婷激情| 久久中文字幕一级| 精品福利观看| 制服诱惑二区| 午夜免费成人在线视频| 亚洲av电影不卡..在线观看| 欧美激情 高清一区二区三区| 久久久久久久久久黄片| 91老司机精品| 久久久久久大精品| 天天一区二区日本电影三级| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 黄色片一级片一级黄色片| 神马国产精品三级电影在线观看 | 亚洲最大成人中文| 这个男人来自地球电影免费观看| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 日本五十路高清| 精品日产1卡2卡| 一进一出好大好爽视频| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 白带黄色成豆腐渣| 一本一本综合久久| av天堂在线播放| 欧美成人免费av一区二区三区| 少妇被粗大的猛进出69影院| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清 | 999久久久国产精品视频| 国产区一区二久久| 久久99热这里只有精品18| 淫妇啪啪啪对白视频| 久久久国产精品麻豆| 日韩国内少妇激情av| 国产色视频综合| 天天躁夜夜躁狠狠躁躁| 91麻豆av在线| 亚洲男人天堂网一区| 亚洲中文日韩欧美视频| 人成视频在线观看免费观看| 亚洲精品中文字幕在线视频| 亚洲免费av在线视频| 久久狼人影院| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| 麻豆成人av在线观看| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 亚洲第一欧美日韩一区二区三区| 美女大奶头视频| 亚洲天堂国产精品一区在线| 久久久国产精品麻豆| 757午夜福利合集在线观看| 俺也久久电影网| 好男人电影高清在线观看| 99久久综合精品五月天人人| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 免费人成视频x8x8入口观看| 国产99白浆流出| 在线看三级毛片| 一区二区日韩欧美中文字幕| 国产精品电影一区二区三区| 性色av乱码一区二区三区2| 侵犯人妻中文字幕一二三四区| 国产真实乱freesex| 91成人精品电影| 精品久久蜜臀av无| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 精品无人区乱码1区二区| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 久久狼人影院| 欧美国产日韩亚洲一区| 国产蜜桃级精品一区二区三区| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 亚洲免费av在线视频| 亚洲真实伦在线观看| 欧美色欧美亚洲另类二区| 男人舔奶头视频| 国产成人一区二区三区免费视频网站| 午夜福利高清视频| 欧美人与性动交α欧美精品济南到| 欧美日韩黄片免| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 1024手机看黄色片| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 99精品久久久久人妻精品| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 久久精品人妻少妇| 国产日本99.免费观看| 亚洲自拍偷在线| 久久草成人影院| 婷婷六月久久综合丁香| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| ponron亚洲| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 亚洲一区中文字幕在线| 欧美日韩福利视频一区二区| 男女下面进入的视频免费午夜 | 一进一出好大好爽视频| 国产亚洲精品av在线| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 久久伊人香网站| a级毛片a级免费在线| 侵犯人妻中文字幕一二三四区| x7x7x7水蜜桃| 18禁国产床啪视频网站| 韩国av一区二区三区四区| www.www免费av| av天堂在线播放| 久久午夜综合久久蜜桃| 亚洲性夜色夜夜综合| 久久香蕉精品热| 首页视频小说图片口味搜索| 中文字幕人妻丝袜一区二区| 757午夜福利合集在线观看| 别揉我奶头~嗯~啊~动态视频| 男人舔女人下体高潮全视频| 一级毛片高清免费大全| 麻豆av在线久日| 黄色 视频免费看| 亚洲欧美激情综合另类| 美女免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免费看| 日韩欧美在线二视频| 午夜免费观看网址| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 久久久久久久午夜电影| 亚洲一区二区三区不卡视频| 欧美在线一区亚洲| 精品少妇一区二区三区视频日本电影| 给我免费播放毛片高清在线观看| 亚洲成人久久性| 国内精品久久久久久久电影| 国产在线观看jvid| 久久伊人香网站| www.999成人在线观看| 可以在线观看毛片的网站| 黄色视频,在线免费观看| 岛国在线观看网站| 日韩高清综合在线| 免费在线观看影片大全网站| 国产日本99.免费观看| 精品国产一区二区三区四区第35| 久久久久精品国产欧美久久久| 免费高清视频大片| 韩国av一区二区三区四区| 亚洲黑人精品在线| 在线观看www视频免费| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 91字幕亚洲| 正在播放国产对白刺激| 国产黄色小视频在线观看| 国产爱豆传媒在线观看 | 亚洲 欧美 日韩 在线 免费| 中出人妻视频一区二区| 久久久久久久午夜电影| 日韩中文字幕欧美一区二区| 亚洲欧美精品综合久久99| 国产精品九九99| 午夜两性在线视频| 成熟少妇高潮喷水视频| 嫩草影院精品99| 国产成人欧美| 伦理电影免费视频| 91av网站免费观看| 欧美一区二区精品小视频在线| 中文字幕最新亚洲高清| а√天堂www在线а√下载| 97碰自拍视频| 91老司机精品| 最近最新免费中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久人妻蜜臀av|