• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiN納米管的制備及其作為SERS基底的應(yīng)用

    2018-07-04 06:15:38姚愛(ài)華姜文奇王德平
    關(guān)鍵詞:納米管材料科學(xué)同濟(jì)大學(xué)

    胥 巖 姚愛(ài)華*, 姜文奇 王德平

    (1同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,上海 200092)

    (2同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海 200092)

    Surface-enhanced Raman scattering (SERS)is a non-destructive,ultrasensitive and powerful analytical technique,and has been widely used in surface chemistry[1-2],biological identifications and detections[3].It is well known the unique property and application of SERS are closely related to a highly efficient enhancement substrate.To date,various SERS-active substrates with a high Raman enhancement factor(EF),uniformity and stability have been successfully developed[4].Among them,noble metal nanoparticles of various sizes and shapes,especially Au,Ag and Cu,represent one of the most promising materials because their plasmon resonance frequencies locate within excitation wavelength ranges commonly used in Raman spectroscopy[5].However,it remains a challenge to fabricate perfect plasmonic nanostructures with high density “hot spots”to achieve strong electromagnetic contribution to SERS enhancement,which usually requires delicate procedures and high cost[6].In addition,noble metals typically suffer from poor stability and high cost,and therefore the search of other alternative materials for using as SERS substrates becomes highly desirable.

    Titanium nitride (TiN)is known to exhibit similar plasmonic behavior to gold,with a plasmonic resonance absorption peak in the visible and near-infrared light range[6-8]. However,TiN possesses additional significant advantages when compared to Au,such as low cost,high chemical and thermal stability,and simple fabrication[9].These advantages make it attractive as plasmonic material for a variety of applications in several industries including protective coatings,biomedical,and microelectronics.TiN thin films[10]and nanorods[11]were recently explored as SERS-active substrates and were found to exhibit a noble metalcomparable SERS enhancement,with a detection limit in the range of 10-6mol·L-1for R6G solutions.

    Inspired by the studies above,we developed TiN nanotube-based SERS active substrates for detection of organic molecules.It is anticipated that the tubular structure of TiN nanotube array allows for efficient light trapping due to multiple scattering within the small channels,and thus offers additionally advantages to the SERS sensitivity[3].Vertically oriented TiO2nanotube arrays were first grown by anodic oxidation of titanium foils,which is subsequently calcined in NH3atmosphere at elevated temperatures.The SERS performances ofthe TiN substrates nitrided at different temperatures were investigated using R6G as a probe molecule.Our results confirmed that the resultant TiN nanotube arrays exhibit strong and uniform SERS response toward R6G thanks to their plasmonic resonance behaviors and uniform tubular structures.Detection limit of about 10-7mol·L-1and the enhancement factor of~105for R6G can be reached,well beyond the detection limit achieved using TiO2nanotube arrays.

    1 Experimental

    1.1 Chemicals

    Titanium foilwaspurchased from Qingyuan metal material company (Hebei,China).Diethylene glycol(DEG)and Hydrofluoric Acid(HF)were purchased from Sinopharm Chemical Reagent Company(Shanghai,China).All reagents were analytical grade and used without further purification.

    1.2 Fabrication of TiN NTAs

    Prior to anodic oxidation,Ti foils of 17 mm×17 mm×0.5 mm were cleaned sequentially with ethanol,acetone and deionized water for 10 min in an ultrasonic bath.The foils were then chemically polished by immersion in a mixture of HF and HNO3acids (VHF∶60 s and rinsed in deionized water.The anodization process was performed in a homemade two-electrode cell with a Ti foil as the anode and a Pt foil as the cathode.The distance between two electrodes was set to 4 cm.Vertically oriented TiO2NTAs were prepared by anodization of Ti foils in diethylene glycol solution containing 1%(w/w)of HF at room temperature for 24 h at a potential of 60 V.

    The as-grown TiO2NTAs were then calcined at 450℃ at a heating rate of 3℃·min-1for 3 h to transform the amorphous TiO2film to anatase phase,and the fluorine residues were simultaneously removed[12].To prepare TiN NTAs,the TiO2NTAs were nitrided at different temperatures (700~900 ℃)for 2 h under NH3gas flow at a heating rate of 3℃·min-1.The flow rate of NH3gas was kept 50 mL·min-1from 300 to 500℃.When the nitridation temperature reached to 500℃,the flow rate of NH3gas was adjusted to 100 mL·min-1.The samples were cooled under NH3gas until the temperature decreased to 300℃.

    1.3 Characterization

    The surface morphology and the microstructure were investigated using a field emission scanning electron microscope (FESEM,Hitachi S-2360).X-ray powder diffraction (XRD)was conducted on a Rigaku D max 2550 diffractometer using Cu Kα radiation (λ=0.154 18 nm)operated at 40 kV and 40 mA in the 2θ range of 20°~90°.UV-Vis diffuse reflectance spectra(DRS)were recorded over the spectral range of 300~800 nm on a Lambda 750 UV/Vis/NIR spectrometer(Perkin Elmer,USA).BaSO4was used as a reflectance standard.The elemental composition was determined by an X-ray photoelectron spectroscopy(XPS,Escalab 250Xi,Thermo Scientific)using a 500 μm diameter beam of monochromatic Al Kα radiation.SERS measurements were conducted with a Renishaw inVia micro-Raman spectrometer with He-Ne laser excitation at 532 nm.A 100×objective was used to focus the laser beam and to collect the Raman signals.The SERS spectra were collected from at least 5 random locations with an accumulation time of 10 s,and expressed in terms of average spectra.All samples were incubated in different concentrations of R6G aqueous solutions for 12 h to allow for equilibrium adsorption,and then air dried at ambient conditions for SERS measurement.

    2 Results and discussion

    2.1 Preparation and characterization of TiN NTAs

    The crystal structure and phase composition of the nitrided products of TiO2NTAs at different temperatures in an ammonia atmosphere were analyzed by XRD.Besides the diffraction peaks of Ti metal phase(PDF No.44-1294),most of the diffraction peaks in Fig.1(a)can be assigned to anatase TiO2(PDF No.21-1272).This implies that a lower degree of nitridation occurrs at 700℃.The increase in nitridation temperature to 800℃results in the formation of more cubic TiN and/or TiOxNyphases (Fig.1(b),indicating the gradual replacement of O atoms in TiO2with N atoms at increased temperatures.As shown in Fig.1(c),there is a small amount of rutile TiO2still present in the products even if the nitridation temperature is up to 900℃.There exists high thermodynamic and kinetic barriers to replace the strong Ti-O bands with Ti-N bonds,and thus high temperatures are required for completing the nitridation reaction.However,the nanotubes have almost collapsed when the samples are nitrided at temperatures above 900℃.We therefore chose 900℃as the highest nitridation temperature.

    Fig.1 XRD patterns of the nitrided products of TiO2 NTAs at different temperatures

    The elemental composition was checked using XPS technique.The survey scan profiles in Fig.2 (a)confirm that the nitrided products of TiO2NTAs at various temperatures contain Ti,O and N elements.Furthermore,the data in Table 1 confirm that the N atomic ratio increases whereas the O atomic ratio decreases as the nitridation temperatures increase from 700 to 900℃,consistent with the XRD analyses.Deconvolution of the N1s,Ti2p and O1s core-level spectra of TiN NTAs prepared at 900℃was performed,and the results are presented in Fig.2(b~d).As shown in Fig.2(b),N1s spectrum consists of three different components.The weakest peak at~401 eV can be ascribed to chemisorbed NH3gas.N1s peaks at 396.7 and 397.6 eV are assigned to β-N in the Ti-N bonds and N substituted at oxygen sites[12],respectively.The Ti2p spectrum was deconvoluted into three components:Ti-N bonding (455.6 eV corresponding to titanium nitride),N-Ti-O bonding (~456.7 eV corresponding to titanium oxynitride),and Ti-O bonding(458.6 eV corresponding to titanium dioxide)[13].O1s peak was deconvoluted into three Gaussian curves.The lower binding energy peaks located at 529.8 and 530.5 eV are attributed to lattice oxygen in the crystal structure,whereas the high binding energy peak at 531.5 eV is assigned to oxygen vacancies or hydroxyl species[14-15].

    Fig.2 XPS Survey spectra of the nitrided products of TiO2NTAs at different temperatures (a),and high resolution XPS spectra of Ti2p (b),N1s (c),and O1s (d)of TiN NTAs prepared at 900 ℃

    Table 1 Relative atomic concentrations from the XPS analyses in Fig.2

    Note that there is a certain amount of titanium oxynitride TiOxNycomponent present in all three samples,which indicates a partial replacement of oxygen in TiO2with nitrogen.However,due to the structural similarity between TiN and TiOxNy,it is difficult to distinguish these two phases by XRD pattern[16].It is known that TiOxNycontains a wide range of oxygen vacancies and defects[17],which offers the advantage of enhancing interaction between analyte molecules and substrates,and thus contributing to the SERS effect[5].

    The morphologiesofTiO2and TiN NTAs prepared at different temperatures are observed in Fig.3.The anodized TiO2arrays grown on Ti foil exhibit wall-separated ordered tubular structures,and have relatively uniform pore size and wall thickness distributions (Fig.3(a).The pore sizes of the TiO2NTAs are distributed in the range of 100~200 nm.Nitridation at elevated temperatures up to 900℃results in contraction of the nanotube diameters,whereas the tubular morphology still remains,as shown in Fig.3(c).Close observation of the nanotube walls reveals that the TiN nanotube sidewalls are highly porous,and the pore morphology undergoes evolution with nitridation temperatures. Such highly porous structure is expected to promote the adsorption of analytes as a result of increased surface area.

    Fig.3 SEM images of TiO2NTAs (a),nitrided products at 800 ℃ (b)and nitrided products at 900 ℃ (c)

    UV-Vis diffuse reflection spectra were performed to investigate the optical properties of the TiO2and TiN NTAs prepared at different temperatures.Fig.4(a)displays a characteristic spectrum of TiO2NTAs with the fundamental absorbance stopping edge at~400 nm.Nitridation at 700℃extends the light absorption of TiO2NTAs into the whole visible light range (Fig.4(b),which is in agreement with N-doped TiO2NTAs[18].It was reported that the extension of optical absorbance was ascribed to the synergetic effects of substitution of the crystal lattice oxygen by nitrogen and the existence of oxygen vacancies on the surface and interior of TiO2NTAs[18-20].The spectra of TiN NTAs in Fig.4(c)and (d)exhibit absorption peaks in the wavelength range of 500~600 nm,resulting from their surface plasmon resonance effect.Furthermore,a red shift in the SPR peak is observed as the nitridation temperature increases from 800 to 900℃.Similar phenomenon is reported in the reference[19],where higher nitrogen content led to a red shift for TiN films.

    Fig.4 UV-Vis diffuse reflection spectra of TiO2NTAs and nitrided products at different temperatures

    2.2 SERS performance of the TiN NTA substrates

    Rhodamine 6G wasselected asthe probe molecular to investigate the SERS performance of TiN NTAs substrates.Fig.5 shows SERS spectra of 2.5×10-5mol·L-1R6G adsorbed on the samples nitrided at different temperatures and are compared with those on bare Ti sheet and TiO2NTAs.While no Raman signals from R6G are recognized on bare Ti sheet and TiO2NTAs,substantialRaman enhancementis observed on TiN NTAs substrates prepared at 800 and 900℃.TheRamanpeaksexhibitedbythese substrates correspond well with previous reports[5,21].It can be observed that the SERS signal intensities of R6G increase with increasing the nitridation temperatures,indicating that the SERS activity of the substrates mainly depends on the nitridation degree of the TiO2NTAs.

    Fig.5 Raman spectra of 2.5×10-5mol·L-1R6G adsorbed on Ti foil(a),TiO2NTA (b),and the nitrided products at 700 ℃ (c),800 ℃ (d)and 900 ℃ (e)

    We further measured the SERS spectra as a function of the R6G concentrations and determined the detection sensitivity.The TiN NTAs prepared at 900℃were immersed in a series of aqueous solutions with R6G concentration ranging from 2.5×10-4to 2.5×10-8mol·L-1and their SERS spectra were recorded at an excitation wavelength of 532 nm.As expected,the Raman signal intensity of R6G gradually decreases with decreasing R6G concentrations (Fig.6).However,all the characteristic peaks of R6G can be clearly identified at a low concentration of 2.5×10-7mol·L-1,indicating the detection limit is in the order of 10-7mol·L-1,which is higher than those of TiN thin films and nanorods[10-11].The average enhancement factor(EF)for R6G was calculated according to the following equation[22]:

    Fig.6 SERS spectra of R6G with different concentrations adsorbed on TiN NTAs substrates prepared at 900℃

    where ISERSand IRSrepresent peak intensities of the SERS spectra obtained from 2.5×10-5mol·L-1R6G on the TiN substrate and 2.5 ×10-2mol·L-1R6G on a quartz substrate,respectively;NSERSand NRSare the numbers of R6G molecules excited by the laser beam on the TiN and quartz substrates,respectively.Here two Raman peaks at 612 and 1 362 cm-1were selected for calculating the EFs,and the average EF value of the TiN NTA substrates was determined to be 2×105.

    Such high SERS performance of the TiN NTAs originates from synergistic combination of four effects.The major contribution to SERS enhancement is the SPR effect of the TiN component.The formation of oxygen vacancies on the surface and interior of TiN NTAs,due to substitution of the crystal lattice oxygen by nitrogen,enhances the interaction affinity between the R6G molecules and the substrates,therefore contributing to the overall SERS effect.Meanwhile,the unique tubular structure allows the incident light to undergo multiple scattering inside the small channels.The scattering folds the light path many times,causing an enhancement of the light adsorption,and making the excitation of the SPR more efficient[3].Furthermore,the rough and highly porous tube walls ofTiN NTAsfacilitate the adsorption ofR6G molecules,providing an additionally advantage for the SERS enhancement.

    In order to examine the reproducibility of the TiN NTAs substrates,SERS spectra of 2.5×10-6mol·L-1R6G were collected from randomly selected 10 positions on the same substrate.As observed,these 10 SERS spectra in Fig.7 exhibit excellent similarity.Furthermore,the relative standard deviation (RSD)of the peaks at 1 362 cm-1was calculated to be 16.4%,revealing good uniformity and reproducibility of the TiN NTAs substrates.

    Fig.7 SERS spectra of 10 positions in the same substrate of TiN NTAs with 2.5×10-6mol·L-1R6G

    3 Conclusions

    TiN NTAs were fabricated by calcining the anodized TiO2NTAs in NH3atmosphere above 800℃.The TiN NTAs exhibit wall-separated ordered tubular structures,and have relatively uniform pore size distribution ranging from 100 to 200 nm.Furthermore,the TiN nanotube walls are highly porous,which contributes to the adsorption of analytes.The SPR peaks of the TiN NTAs are in the range of 500~600 nm,and the SPR peak is red-shifted as the nitridation temperature increases from 800 to 900℃.The TiN NTAs exhibit strong and uniform SERS response toward R6G molecules,with an EF of~105and a detection limit of ~10-7mol·L-1.Regarding the high sensitivity,good reproducibility and stability,the TiN NTAs can be considered as an alternative substrate for SERS detection.

    :

    [1]Li X,Chen G,Yang L,et al.Adv.Funct.Mater.,2010,20:2815-2824

    [2]Rumaiz A K,Woicik J,Cockayne E,et al.Appl.Phys.Lett.,2009,95:262111

    [3]Alessandri I,Lombardi J R.Chem.Rev.,2016,116:14921-14981

    [4]DING Song-Yuan(丁 松 園 ),WU De-Yin(吳 德 印 ),YANG Zhi-Lin(楊志林),et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報(bào)),2008,29(12):2569-2581

    [5]Cong S,Yuan Y,Chen Z,et al.Nat.Commun.,2015,6:7800-7804

    [6]Guler U,Shalaev V M,Boltasseva A.Mater.Today,2015,18:227-237

    [7]Ishii S,Shinde S L,Jevasuwan W.ACS Photonics,2016,3:1552-1557

    [8]Kamakura R,Murai S,Ishii S,et al.ACS Photonics,2017,4:815-822

    [9]Naik G V,Schroeder J L,Ni X,et al.Opt.Mater.Express,2012,2:478-489

    [10]Lorite I,Serrano A,Schwartzberg A,et al.Thin Solid Films,2013,531:144-146

    [11]Zhao J,Lin J,Wei H,et al.Opt.Mater.,2015,47:219-224

    [12]Mor G K,Shankar K,Paulose M,et al.Nano Lett.,2006,6:215-218

    [13]Hoang S,Guo S,Hahn N T,et al.Nano Lett.,2011,12:26-32

    [14]Li W J,Liang R,Hu A M,et al.RSC Adv.,2014,4:36959-36966

    [15]Jaiswar S,Mandal K D.J.Phys.Chem.C,2017,121 (36):19586-19601

    [16]Dryga?,Czosnek C,Paine R T,et al.Chem.Mater.,2006,18:3122-3129

    [17]Yoo J B,Yoo H J,Jung H J,et al.J.Mater.Chem.A,2016,4:869-876

    [18]Asahi R,Morikawa T,Ohwaki T,et al.Science,2001,293:269-271

    [19]Ansari S A,Khan M M,Ansari M O,et al.New J.Chem.,2016,40:3000-3009

    [20]Yan G T,Zhang M,Hou J,et al.Mater.Chem.Phys.,2011,129:553-557

    [21]Huang J,Zhang L M,Chen B,et al.Nanoscale,2010,2:2733-2738

    [22]Xu S C,Jiang S Z,Wang J H,et al.Sens.Actuator B:Chem.,2016,222:1175-1183

    猜你喜歡
    納米管材料科學(xué)同濟(jì)大學(xué)
    中海油化工與新材料科學(xué)研究院
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    材料科學(xué)與工程學(xué)科
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    国产精品久久久久久久电影| 国产黄色小视频在线观看| 最近视频中文字幕2019在线8| 一级毛片久久久久久久久女| 免费人成视频x8x8入口观看| 一本久久中文字幕| 欧美极品一区二区三区四区| 亚洲最大成人中文| 国产一区二区在线观看日韩| 久久6这里有精品| 能在线免费观看的黄片| 成人一区二区视频在线观看| 久久热精品热| 亚洲精品国产成人久久av| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 欧美又色又爽又黄视频| 色综合站精品国产| 精品无人区乱码1区二区| 免费人成在线观看视频色| av.在线天堂| 国产蜜桃级精品一区二区三区| 欧美日韩乱码在线| 美女高潮的动态| 看黄色毛片网站| 99久久久亚洲精品蜜臀av| av免费在线看不卡| 给我免费播放毛片高清在线观看| 国产色婷婷99| 国产极品精品免费视频能看的| www.色视频.com| 卡戴珊不雅视频在线播放| 久久久国产成人精品二区| 欧美日本视频| 国产三级中文精品| 久久精品综合一区二区三区| 欧美色欧美亚洲另类二区| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 亚洲av一区综合| 国产伦在线观看视频一区| 中文字幕免费在线视频6| 蜜桃亚洲精品一区二区三区| 国产成人aa在线观看| 国产单亲对白刺激| 亚洲人成网站高清观看| 亚洲人成网站在线播| 啦啦啦啦在线视频资源| 国产乱人偷精品视频| 淫妇啪啪啪对白视频| 中文资源天堂在线| 亚洲成人av在线免费| 国产高清视频在线播放一区| 久久国产乱子免费精品| 久久久久久伊人网av| 久久久精品94久久精品| 亚洲欧美日韩卡通动漫| 99riav亚洲国产免费| 能在线免费观看的黄片| 成年女人毛片免费观看观看9| 老师上课跳d突然被开到最大视频| 91在线观看av| 成人三级黄色视频| 日韩高清综合在线| 亚洲在线观看片| 精品一区二区三区人妻视频| 综合色av麻豆| 亚洲av不卡在线观看| 看免费成人av毛片| 一级毛片久久久久久久久女| 午夜福利成人在线免费观看| 老熟妇乱子伦视频在线观看| 亚州av有码| 禁无遮挡网站| 大又大粗又爽又黄少妇毛片口| 一进一出抽搐gif免费好疼| 国产精品三级大全| 别揉我奶头~嗯~啊~动态视频| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 国产精品三级大全| 干丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 久久99热这里只有精品18| 国产精品久久久久久av不卡| 可以在线观看的亚洲视频| 淫妇啪啪啪对白视频| 亚洲最大成人中文| 色在线成人网| 午夜老司机福利剧场| 国产色爽女视频免费观看| 国产一级毛片七仙女欲春2| 深夜精品福利| 免费在线观看成人毛片| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看| 99在线视频只有这里精品首页| 成人欧美大片| 亚洲自拍偷在线| 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 免费av不卡在线播放| 香蕉av资源在线| 国产亚洲精品久久久com| 日韩大尺度精品在线看网址| 午夜福利18| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| a级一级毛片免费在线观看| 国产精品久久久久久亚洲av鲁大| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 变态另类丝袜制服| 美女高潮的动态| 亚洲av五月六月丁香网| 国产成人福利小说| 99久国产av精品| 网址你懂的国产日韩在线| 色吧在线观看| 国产美女午夜福利| 免费无遮挡裸体视频| av免费在线看不卡| 人妻少妇偷人精品九色| 大香蕉久久网| 色哟哟·www| 国产精品一二三区在线看| 成人高潮视频无遮挡免费网站| 久久久成人免费电影| 免费观看的影片在线观看| 免费人成在线观看视频色| 免费看a级黄色片| av在线播放精品| 中文在线观看免费www的网站| 亚洲第一区二区三区不卡| 精品久久国产蜜桃| a级毛色黄片| 日韩,欧美,国产一区二区三区 | 国产免费男女视频| 亚洲国产欧洲综合997久久,| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 日本三级黄在线观看| 免费观看在线日韩| 我要看日韩黄色一级片| 国产在视频线在精品| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 天堂av国产一区二区熟女人妻| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 亚洲自拍偷在线| 一区二区三区免费毛片| 99精品在免费线老司机午夜| 草草在线视频免费看| 国产淫片久久久久久久久| 搡老熟女国产l中国老女人| 久久精品夜夜夜夜夜久久蜜豆| 插阴视频在线观看视频| 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 成人二区视频| 91久久精品电影网| 国产精品久久久久久av不卡| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 亚洲人成网站在线播| 我的老师免费观看完整版| 综合色丁香网| 一级毛片aaaaaa免费看小| 色在线成人网| 国产精品一区www在线观看| 久久精品国产亚洲av涩爱 | 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 日日撸夜夜添| 亚洲成a人片在线一区二区| 波野结衣二区三区在线| 欧美一区二区国产精品久久精品| 一本精品99久久精品77| 少妇人妻一区二区三区视频| 亚洲国产色片| 免费av不卡在线播放| 一级毛片电影观看 | 国产精品久久视频播放| 亚洲人成网站在线观看播放| 高清日韩中文字幕在线| 欧美3d第一页| 久久久久久九九精品二区国产| 亚洲av第一区精品v没综合| 亚洲在线观看片| 国产一区二区三区av在线 | 亚洲在线自拍视频| 日本 av在线| 亚洲国产色片| 欧美区成人在线视频| a级毛片a级免费在线| 亚洲人成网站在线播| 日韩欧美 国产精品| 两个人视频免费观看高清| 青春草视频在线免费观看| 搡老岳熟女国产| 99久国产av精品国产电影| 国产伦在线观看视频一区| 久久中文看片网| 麻豆av噜噜一区二区三区| 在线观看免费视频日本深夜| 日本a在线网址| 99热精品在线国产| 在线观看免费视频日本深夜| 亚洲av一区综合| 久久久精品大字幕| 一进一出好大好爽视频| 精品日产1卡2卡| 国产爱豆传媒在线观看| 久久久久九九精品影院| 国产精品一区二区三区四区免费观看 | 在现免费观看毛片| 日韩精品中文字幕看吧| 国产精品女同一区二区软件| 观看免费一级毛片| 成人国产麻豆网| 久99久视频精品免费| 亚洲色图av天堂| 色综合站精品国产| 大又大粗又爽又黄少妇毛片口| 少妇被粗大猛烈的视频| 啦啦啦啦在线视频资源| 男人舔奶头视频| videossex国产| 日韩在线高清观看一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲aⅴ乱码一区二区在线播放| 久久午夜福利片| 久久这里只有精品中国| a级毛片免费高清观看在线播放| 狠狠狠狠99中文字幕| 99热这里只有是精品在线观看| 可以在线观看毛片的网站| 两个人的视频大全免费| 亚洲av成人av| 欧美xxxx性猛交bbbb| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| av卡一久久| 国产精品永久免费网站| 99视频精品全部免费 在线| 精品久久国产蜜桃| 亚洲人成网站在线播| 一区二区三区高清视频在线| 日韩成人av中文字幕在线观看 | 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 久久99热6这里只有精品| 欧美+日韩+精品| 午夜福利在线在线| 午夜福利在线观看吧| 国产精品电影一区二区三区| av福利片在线观看| 国产三级在线视频| 亚洲无线在线观看| 美女高潮的动态| 精品熟女少妇av免费看| 国产成人福利小说| 日本黄色片子视频| 99视频精品全部免费 在线| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 欧美区成人在线视频| 亚州av有码| 最近手机中文字幕大全| 99久久精品一区二区三区| 亚洲精品在线观看二区| 美女xxoo啪啪120秒动态图| 91久久精品国产一区二区三区| 午夜激情欧美在线| 免费无遮挡裸体视频| 五月玫瑰六月丁香| 亚洲国产精品成人久久小说 | 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 免费搜索国产男女视频| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av| 亚洲美女视频黄频| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 91av网一区二区| 性色avwww在线观看| 波多野结衣巨乳人妻| 97人妻精品一区二区三区麻豆| 亚洲va在线va天堂va国产| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 69人妻影院| 真实男女啪啪啪动态图| 午夜福利高清视频| 中文字幕熟女人妻在线| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 麻豆国产97在线/欧美| 91精品国产九色| 波野结衣二区三区在线| 国产一区二区在线av高清观看| 最新在线观看一区二区三区| 插逼视频在线观看| 成人特级av手机在线观看| 高清毛片免费看| 我的老师免费观看完整版| 欧美日韩乱码在线| 搞女人的毛片| 日本a在线网址| 久久久久免费精品人妻一区二区| 俄罗斯特黄特色一大片| 国产精品不卡视频一区二区| 18禁在线播放成人免费| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 欧美日韩国产亚洲二区| 一个人免费在线观看电影| 日韩成人伦理影院| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 嫩草影院新地址| 国产伦一二天堂av在线观看| 日本免费a在线| 午夜日韩欧美国产| 淫秽高清视频在线观看| 97超碰精品成人国产| 色综合站精品国产| 97超碰精品成人国产| 丰满乱子伦码专区| 赤兔流量卡办理| 床上黄色一级片| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 久久人妻av系列| 久久久久久伊人网av| 在线播放国产精品三级| 亚洲av.av天堂| 国产乱人偷精品视频| 草草在线视频免费看| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 国产 一区精品| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 成年女人毛片免费观看观看9| 午夜福利18| 国产69精品久久久久777片| 免费看a级黄色片| 麻豆乱淫一区二区| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 精品人妻视频免费看| 最新在线观看一区二区三区| av国产免费在线观看| 美女高潮的动态| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 精品日产1卡2卡| 国产一区二区在线观看日韩| 国产精品永久免费网站| 免费不卡的大黄色大毛片视频在线观看 | 国产高清激情床上av| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 亚洲图色成人| 久久精品国产清高在天天线| 亚洲在线观看片| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 国产精品,欧美在线| 十八禁国产超污无遮挡网站| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| АⅤ资源中文在线天堂| 精品久久久久久久人妻蜜臀av| a级毛片免费高清观看在线播放| av专区在线播放| 亚洲国产欧美人成| 亚洲性久久影院| 超碰av人人做人人爽久久| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 少妇熟女aⅴ在线视频| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 男女视频在线观看网站免费| 夜夜看夜夜爽夜夜摸| 久久久色成人| 国产精品久久久久久亚洲av鲁大| 国产精品伦人一区二区| 草草在线视频免费看| 一本精品99久久精品77| 变态另类丝袜制服| 午夜日韩欧美国产| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 欧美潮喷喷水| 我要看日韩黄色一级片| 黄色配什么色好看| 午夜老司机福利剧场| 永久网站在线| 精品无人区乱码1区二区| 亚洲自拍偷在线| 99久国产av精品| 男女做爰动态图高潮gif福利片| 亚洲第一电影网av| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 免费大片18禁| 国产精品1区2区在线观看.| 成人无遮挡网站| 国产一级毛片七仙女欲春2| 午夜爱爱视频在线播放| 村上凉子中文字幕在线| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 91在线观看av| 夜夜爽天天搞| 国产精品一区二区性色av| 午夜激情福利司机影院| 精品久久久久久久久亚洲| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 黄色视频,在线免费观看| 国内精品一区二区在线观看| 国产精品久久视频播放| 一进一出抽搐gif免费好疼| 国产日本99.免费观看| 日韩中字成人| 老女人水多毛片| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 日韩精品青青久久久久久| 亚洲国产精品成人久久小说 | 国产欧美日韩精品亚洲av| 午夜视频国产福利| 日韩成人av中文字幕在线观看 | 午夜爱爱视频在线播放| 国产 一区精品| 亚洲第一电影网av| 色哟哟·www| 伦精品一区二区三区| 性插视频无遮挡在线免费观看| 欧美三级亚洲精品| 麻豆乱淫一区二区| 国产高清激情床上av| 亚洲在线观看片| 狂野欧美激情性xxxx在线观看| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 日本-黄色视频高清免费观看| 国产美女午夜福利| 欧美bdsm另类| 成人综合一区亚洲| 免费大片18禁| 国产视频一区二区在线看| 可以在线观看的亚洲视频| 美女大奶头视频| 一本精品99久久精品77| 亚洲最大成人av| 日本熟妇午夜| 国内精品宾馆在线| 精品人妻一区二区三区麻豆 | 在线播放国产精品三级| 国产一区二区激情短视频| 搞女人的毛片| 午夜福利视频1000在线观看| 91午夜精品亚洲一区二区三区| 国产v大片淫在线免费观看| 99久久中文字幕三级久久日本| 午夜视频国产福利| 夜夜爽天天搞| ponron亚洲| 国产v大片淫在线免费观看| 久久中文看片网| 国产亚洲精品综合一区在线观看| 嫩草影院入口| 91久久精品电影网| 老司机福利观看| 精品午夜福利在线看| av在线亚洲专区| videossex国产| 日韩av不卡免费在线播放| 色av中文字幕| 长腿黑丝高跟| 国产成人freesex在线 | 久久人人精品亚洲av| 尤物成人国产欧美一区二区三区| 丰满乱子伦码专区| 国产精品1区2区在线观看.| 国产精品一区www在线观看| 精华霜和精华液先用哪个| 亚洲人成网站高清观看| 日本免费a在线| 夜夜看夜夜爽夜夜摸| 在线看三级毛片| 国产精品久久久久久精品电影| 午夜视频国产福利| 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 欧美xxxx性猛交bbbb| 嫩草影视91久久| 女人被狂操c到高潮| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | 欧美一区二区亚洲| 国产老妇女一区| 中文字幕精品亚洲无线码一区| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 我要搜黄色片| 久久鲁丝午夜福利片| 性插视频无遮挡在线免费观看| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 美女免费视频网站| 国产探花在线观看一区二区| 99国产精品一区二区蜜桃av| 22中文网久久字幕| 日本在线视频免费播放| 亚洲最大成人av| 欧美区成人在线视频| 麻豆精品久久久久久蜜桃| 久久久成人免费电影| 亚洲精华国产精华液的使用体验 | 一级黄片播放器| 免费无遮挡裸体视频| 久久人人精品亚洲av| 国产精品一二三区在线看| 亚洲自拍偷在线| 亚洲人成网站在线播| 美女免费视频网站| 日韩欧美国产在线观看| 亚洲国产欧洲综合997久久,| 免费av观看视频| а√天堂www在线а√下载| 网址你懂的国产日韩在线| 日本一二三区视频观看| 国产高清视频在线播放一区| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 国产色婷婷99| 舔av片在线| 99久久九九国产精品国产免费| 18禁在线无遮挡免费观看视频 | 日韩成人av中文字幕在线观看 | 欧美成人一区二区免费高清观看| 久久精品91蜜桃| 国产美女午夜福利| 精品人妻视频免费看| 久久久久久久久久久丰满| 波多野结衣高清作品| 日韩欧美在线乱码| av视频在线观看入口| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 中文字幕免费在线视频6| 在线免费观看的www视频| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 国产乱人偷精品视频| АⅤ资源中文在线天堂| 日韩成人伦理影院| 99久久无色码亚洲精品果冻| 成年女人看的毛片在线观看| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 欧美极品一区二区三区四区| 婷婷色综合大香蕉| 一本精品99久久精品77| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看| 91在线精品国自产拍蜜月| 一级黄色大片毛片| 最近在线观看免费完整版| 国产av在哪里看| 内地一区二区视频在线| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜爱| 亚洲第一区二区三区不卡| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区av网在线观看| 狂野欧美激情性xxxx在线观看| 日韩精品中文字幕看吧| 亚洲欧美清纯卡通| 人人妻,人人澡人人爽秒播| 精品久久久久久成人av| 五月玫瑰六月丁香| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| 中文字幕av成人在线电影| 色av中文字幕| 国产男人的电影天堂91| 国产亚洲精品综合一区在线观看|