• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銀納米晶對鉺鐿共摻的TeO2-WO3-La2O3微晶玻璃發(fā)光性能的影響

    2018-07-04 06:15:30陳淑文張文俊
    無機化學學報 2018年7期
    關鍵詞:微晶學報

    陳淑文 林 健 張文俊

    (同濟大學材料科學與工程學院,教育部先進土木工程材料重點實驗室,上海 201800)

    0 Introduction

    Tellurite glasses have many advantages such as wide range of transparency,large optical nonlinearity,refractive index and density,high solubility of rareearth (RE)ions,as well as low phonon energy compared to other oxide glasses[1].These characteristics make RE doped tellurite glasses promising candidates for the optical fiber amplifier,laser and new band optical communication[2].Er3+-doped tellurite glass has generated considerableinterest duetotheirfavorable emissions of blue,red,green and near-infrared light[3].Yb3+is known as a resourceful dopant can enhance the luminescence emissions of Er3+due to its large absorption cross-section.What′s more,the resonance energy transfer between Yb3+and Er3+can significantly improve the pumping efficiency of Er3+,and improve the upconversion (UC)properties of glasses[4].However,the luminous intensity of RE doped tellurite glasses is still weaker than some luminescent crystals[5].

    Over the last few years,glass-ceramics have attracted great interest because of their prospective applications as promising hosts for RE ions.The formation of micro-crystals in the glass can greatly change the coupled environment around RE ions,and reduce the covalence of crystal field as well as the vibration energy of lattice[6].Gao et al.[7]obtain NaYF4∶Tb3+,Yb3+,Li+crystallites in silicate oxide system.RE ions are gathering around the micro-crystals,which increases the probability of the energy transfer between RE ions,and improves the luminous performance of the glasses.In addition,the simple process of preparation and synthesis makes RE ions doped glassceramics become important UC luminescence materials.Ansari et al.[8]report the synthesis of YbF3/ErF3-codoped lithium tungsten tellurite oxyfluoride glass-ceramicscontain LiYbErF4nanocrystals.An intense visible emission originated from Er3+can be observed due to the cooperative UC processed 980 nm excitation.

    The localized surface plasmon resonance (LSPR)can increase the local field on the RE ions which near the metal nanoparticles and transferring energy to the RE ions,When the incident light wavelength or photoluminescence (PL)wavelength of the glass is close to the localized surface plasmon resonance wavelength,due to the local field enhancement(LFE)and energy transfer (ET)from Ag to RE ions,the luminescence intensity of glasses can be enhanced[9].Therefore,inorganic glasses doped with silver nanocrystals(Ag NPs)have received considerable attention[10]due to their unique optical properties[11].Amjad et al.[12]report significant luminescence enhancement of Er3+ions as well as raman intensity of Ag NPs embedded zinctellurite glasses.The radiative transition of Er3+ions and Ag NPs induce the electric dipoles,leading to the enhancement of PL[2-13].Ma et al.[14]successfully introduce Ag NPs into SiO2-Al2O3-CaF2system and obtain the glass-ceramics containing CaF2crystallites with significant enhanced luminous intensity.To our best knowledge,the study oftellurite glass-ceramics containing Ag NPs is rare.

    In this paper,we report the optical properties of Er3+/Yb3+co-doped tellurite glass-ceramics containing Ag NPs.The effect of different introducing ways of Ag NPs on the UC luminescence properties of Er3+/Yb3+co-doped tellurite glass-ceramics were systematically investigated.Ourstudy furtherdemonstrates the luminescent intensity of the sample co-doped with AgCl and AgNO3has the better UC luminescence properties than the sample which was single doped with AgCl or AgNO3.Tellurite glass-ceramics doped with RE ions and Ag NPs are promising candidates for the development of lasers and optical amplifiers for PL based devices.

    1 Experimental

    1.1 Material preparation

    Tellurite glasses with compositions 69TeO2-23WO3-8La2O3(TWL)containing fixed concentration of Er3+(0.5% (n/n),Yb3+(1.0% (n/n),AgCl(0~2.0% (w/w))and AgNO3(0~3.0% (w/w)were prepared by conventional melt-quenching method,melting anhydrous mixtures of TeO2(99.99%),La2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),WO3(99.99%),AgCl (99.9%)and AgNO3(99.9%).A gold crucible containing the glass constituents was placed in an electric furnace at(790±10)℃ for 15 min and the melt was poured onto a preheated stainless steel plates.Subsequently,the samples were annealed at 380℃for 2 h to remove the thermal and mechanical strains completely.The samples were then cooled down to the room temperature.69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3(TWL-ErYb base glass)and 69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3-1.0%AgCl (TWL-ErYb-1AgCl)glasses were heat treated at different heat treatment conditions and other samples were heat treated at appropriate heat treatment condition(at 390 ℃ for 15 min)to form glass ceramics.The samples heat treated at different temperatures (T)and times (t)are denoted as T-t.Finally,all the samples were cut and polished for the structural and optical measurements.

    1.2 Characterizations

    Differential thermal analysis (DTA)measurement(NETZSCH STA 449C)was carried out by heating about 0.02 g of glass powder in alumina crucible at the heating rate of 10 K·min-1from 200 to 800℃.The used atmosphere in DTA was N2,and the gas flow was set as 40 mL·min-1.The DTA results of samples were referenced to that of alumina powder.Phase identification of the samples was performed by X-ray diffraction (XRD)analysis with Cu Kα (λ=0.154 06 nm,35 kV,30 mA)radiation (D8 Advance,Bruker Inc.,Germany)at room temperature in the 2θ range of 10°~70°with a step size of 0.02°and a step scanning time of 1 s.The UV-NIR absorption spectra of glasses were recorded by a UV-4100 UV/VIS/NIR spectrophotometer in the range of 400~1 100 nm.The fluorescence spectrometer (Model Omni-λ300 Zolix),together with aphotomultiplierdetector (PMTH-SI-CR131)were used to measure the luminescence spectra under 980 nm diode laser within the range of 500~700 nm.Laser power is 194 mW and focusing methodology is lens focusing.Standard sample was used to compare the intensity between different spectra.Luminescence decay times in the microsecond time scale was measured on an Edinburgh FLSP920 spectrophotometer.All spectroscopic measurements were performed at room temperature.The characterizations of nanocrystal or microcrystal in glasses were carried out by a Transmission electron microscopy (TEM)(JEM-2100)with an accelerating voltage of 200 kV.The samples were grinded into fine powders in an agate mortar.Subsequently,the powders were dissolved in ethanol and then dispersed by supersonic before the solution was dropped on the copper grid.

    2 Results and discussion

    2.1 Effect of micro-crystallization on luminescence of the TWL-ErYb glasses

    Comparing to the base glass,appropriate microcrystallization can improve the strength and thermal stability of glass.For example,oxyfluoride glassceramics doped with RE ions show higher chemical and mechanical stability and lower phonon energy than fluoride glasses[7].

    The transparent TWL-ErYb glass-ceramics were prepared by appropriate heat treating.The absorption spectra of TWL-ErYb glasses before and after heat treatment at 390℃for 15 min are presented in Fig.1.After heat treatment,the absorption edge shows no obvious shift.The spectra exhibit a number of distinct absorption bands around 974,800,654,544,522 and 499 nm,which can be well assigned as the electronic transitions of Er3+from its ground4I15/2state to the4I11/2,4I9/2,4F9/2,4S3/2,2H11/2and4F7/2excited states,the absorption bands around 974 nm also include the electronic transitions of Yb3+from its ground2F7/2state to the2F5/2besides[15].This result clearly shows that Er3+ions exists in the glass.In order to further check whether microcrystals were formed,the samples were characterized by TEM,instead of the XRD which is found to be hard to detective small amount of nanometer size micro-crystals in the glass.

    Fig.1 Absorption spectra of TWL-ErYb glasses before and after heat treatment(390 ℃-15 min)

    Fig.2 shows representative HR-TEM images of TWL-ErYb base glass after heat treatment at 390℃for 15 min.There were many micro-crystals precipitated in the glass,and the size of micro-crystals varies from 40 to 150 nm.The measurement results of crystalline inter-planar space are 0.357 14 and 0.329 8 nm,corresponding to the (311)plane of Er2WO6(PDF No.38-0102)andLa2(WO4)3(PDF No.19-0669).For this reason,it can be inferred that Er3+ions have been incorporated into micro-crystals,which hasbeen demonstrated to improve the efficiency of the UC luminescence to a certain extent[16].

    Fig.2 HR-TEM images of TWL-ErYb base glass with heat treatment(390 ℃-15 min)and (b,c)are the enlarged view of(a)

    Fig.3 shows the UC emission spectra of TWLErYb base glasseswith differentheattreatment temperatures under the excitation of 980 nm.Three UC emission bands that located at 538,557 and 674 nm can be clearly observed,which can be assigned to2H11/2→4I15/2,4S3/2→4I15/2and4F9/2→4I15/2transitions of Er3+ions,respectively[17].With the increase of heat treatment temperature,luminous intensity of each band gradually enhanced.As shown in Fig.1,after heat treatment,the transmittance of glass declined,to the contrary,the intensity of RE absorption peaks accordingly increased and the non-radiative-relaxation influences which caused by RE ions co-doping can be eliminated due to the lower phonon energy of glass ceramics[18].

    Fig.3 Up-conversion emission spectra of TWL-ErYb base glasses for different heat treatment temperatures with the same treatment time of 15 min

    What′s more,comparing to the red emission (674 nm),the enhancement of the green emission (557 nm)is more obvious (Fig.3).However,the enhancement ofluminescencecaused bymicro-crystalsisnot significant because of the incomplete structure of micro-crystals. Even when the heat treatment temperature was raised to 410℃,due to the overgrowth of micro-crystals,the luminous intensity of the glass was decreased.In order to investigate the luminescence mechanism of RE ions in glasses,the power dependence of UC emission intensity for TWLErYb base glasses without and with heat treatment at 390℃for 15 min were studied,as shown in the inset of Fig.3.The slope (n)for 557 nm wavelength of the sample without heat treatment was 1.84,and the sample with heat treatment at 390℃for 15 min was 1.71.The result confirms that the green emission (557 nm)originates from the two-photon process absorption of Er3+ions,and micro-crystallization has little effect on the UC mechanism of Er3+and Yb3+ions[19].

    2.2 Effect of AgCl on luminescence of the TWLErYb glasses

    Introducing Ag NPs into RE ions doped glasses can effectively alter the free space spectral properties of RE ions and enhance the yield of their weak optical transitions[20-21].It is common to introduce AgCl as source of silver in glasses.The introduction of AgCl can reduce the glass transition temperature (Tg)of glass and open the network structure of the glass well,leading to the precipitation of Ag NPs easily despite of the small solubility of AgCl in glass[22].

    In order to study the effect of Ag NPs on the micro-crystallization process,XRD patterns of TWLErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions (Fig.4(a~c)and DTA curves of TWL-ErYb and TWL-ErYb-1AgCl glasses (Fig.4(d))at the heating rate of 10 K·min-1from 200 to 800 ℃were measured.Tgand the first crystallization temperature (Tc1),the second crystallization temperature (Tc2)and the third crystallization temperature (Tc3)are pointed by the arrow in the Fig.4(d).When the glasses were been heat treated at 420℃for 24 h,TWL-ErYb base glass was still transparent and TWL-ErYb-1AgCl glass became purple.There is no obvious crystallization peak on the XRD patterns,which may be caused by the small content of microcrystal and Ag NPs.When the glasses were been heat treated at 500℃for 24 h and 640℃for 24 h,the glasses were all opaque.The crystalline peaks oflanthanum tellurium oxides compounds were observed in Fig.4(b,c).In addition,crystallization peaks of TWL-ErYb-1AgCl glasses are more obvious than TWL-ErYb base glass.Therefore,the Ag NPs are expected to be the nucleation agent and promote the precipitation of microcrystals.In general,this kind of glass is very stable and Ag NPs will not destroy the structure of the glass at a moderate heat treatment temperature.

    The absorption spectra ofTWL-ErYb-1AgCl glasses with different heat treatment conditions are shown in Fig.5.After introducing Ag NPs into the glass,the absorption peak positions didn′t change.However,with the growth of Ag NPs caused by the increase of heat treatment temperature,the transmittance of TWL-ErYb glass with Ag NPs decreased.When the heat treatment temperature was raised to 460℃,in addition to the intrinsic absorption peaks of RE ions,the LSPR peak of Ag NPs was detected at the range of 500~650 nm[23].The emergence of the LSPR peak means that the content of Ag NPs increased significantly in the glass.

    Fig.6(a)presents the HR-TEM image of TWLErYb-1AgCl glass with heat treatment at 390℃for 15 min.The shapes of Ag NPs are mainly spherical and ellipsoidal.Moreover,the size of Ag NPs is about 4~6 nm,while the size of micro-crystals is about 6~8 nm.The lattice fringes can be clearly observed in an enlarge image Fig.6(b).The interplanar spacing of NPs is 0.238 1 nm,corresponding to the (111)plane of silver crystal (PDF No.65-8424).These results prove the precipitation of Ag NPs in TWL-ErYb-1AgCl glass.It is important to note that,in the Fig.6(c),we can find the precipitation of La2WO6micro-crystals around the Ag NPs.However,the number of Ag NPs is overall dominant.

    Fig.4 XRD patterns of TWL-ErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions of(a)420 ℃-24 h,(b)500 ℃-24 h and (c)640 ℃-24 h;(d)DTA curve of TWL-ErYb and TWL-ErYb-1AgCl glasses

    Fig.5 Absorption spectra of TWL-ErYb-1AgCl with different heat treatment

    Fig.6 TEM images of the sample TWL-ErYb-1AgCl heat treated at 390℃for 15 min

    AgNPsareformedfrom AgClorAgNO3throughout the melting procedure and grown during the annealing.The reduction of the Ag NPs can be discussed by the reduction potentials (E0)of redox system elements,as[24]:

    Following reduction processes are likely to ensue:

    where ΔE0is the total potential of reduction process.The equation (5~7)are all feasible reactions (with ΔE0>0).Therefore,these reactions guarantee the presence of Ag NPs in the system in addition to the absorption spectra results and TEM images.

    The luminescence spectra of TWL-ErYb-1AgCl glasses with different heat treatment conditions were studied,the results are shown in Fig.7.After heat treatment,all of the samples obtained the stronger emissions.The sample with heat treatment at 390℃for 15 min acquired the best luminescence property.In this heat treatment condition,Ag NPs precipitated a lot and the average size of the micro-crystals was small.A lot of precipitations of Ag NPs,leading to short distance between Ag NPs and Er3+ions,made the energy transfer from Ag NPs to Er3+ions become a possible explanation for the enhanced luminescence[25].The non-resonance excitation light excites the d-band electron to unoccupied sp-conduction band[1].Subsequently,electron and hole recombine and moves to Fermi level through a phonon-electron interaction.Therefore,luminescence is mainly in visible region[26].The local electric field change cause the enhancement of photoluminescence and the effective electric field)can be written as[17]:

    Fig.7 Up-conversion emission spectra of TWL-ErYb-1AgCl glasses at different heat treatment conditions

    here ε0is the dielectric constant in the presence of an external electromagnetic field of amplitude,q is the nanocrystal specific volume,ωpis the plasma frequency,i is the ground level,and γ is the damping of the resonance.The damping γ is the contribution of the conduction electrons and it can be described as[2]:

    The first term 1/τ0is related to the bulk electron scattering process in the nanoparticle.The interaction between quasi-electron-free and the surface of a sphere causes the second term,where VFis the Fermi velocity,D is the mean core particle size,and gsis the surface factor[26].The shape of the NPs is related to surface plasmon resonance (SPR)and the appropriate size of the NPs can enhance local field[27].Therefore,the glass with more Ag NPs,fewer micro-crystals,as well as high transmittance can obtain the enhancement of the luminescence property[28].The inset of Fig.7 showsthedependenceoftheUC luminescence intensity on the 980 nm pump laser power for 557 nm.The slope (n)for 557 nm wavelength of the sample without heat treatment was found to be 1.87,and the sample with heat treatment at 390℃for 15 min was found to be 2.05.This experimental result confirms that the green emission (557 nm)is due to the twophoton process absorption of Er3+ions.It is worth noting that the slope (n)of the glass doped with Ag NPs is larger than the tellurite base glass (Fig.4),which implies that Ag NPs can promote the two-photon absorption of Er3+ions in the process of the energy transfer and promote particles jump to a high level[29].

    Under the appropriate heat treatment condition at 390℃for 15 min,the up-conversion emission spectra of the glasses with different contents of AgCl are shown in Fig.8.The co-doped AgCl samples are denoted as TWL-ErYb-xAgCl(x=0~2% (w/w).The reduction and growth ofAg nanocrystalsgenerate an efficient localized electric field around the Ag NPs.The local electric field can increase the rate of excitations of Er3+ions in vicinity of Ag NPs.As a result,the rates of transitions from emitting levels are enhanced[29].According to our testing results,the glass sample containing 0.75% (w/w)AgCl shows the maximum intensity enhancement.Furthermore,we find that the glass will be opaque after introducing 2%(w/w)AgCl into the glass.It means that doping content of AgCl is limited.

    Fig.8 Up-conversion emission spectra of TWL-ErYbxAgCl with heat treatment temperature (390 ℃-15 min)

    2.3 Effect of co-doped AgCl and AgNO3on luminescence of the TWL-ErYb glassceramics

    Ag NPs can be produced by the introduction of AgCl,however,itwillcause the overgrowth of microcrystals at the same time.In order to find a better way to increase the precipitation of Ag NPs,the effect of different contents of AgNO3on luminescence of TWL-ErYb glass-ceramics has been studied,and the luminescence spectra are shown in Fig.9.The single doped AgNO3samples are denoted as TWLErYb-yAgNO3(y=0~3%, (w/w).Under the heat treatment condition at 390℃for 15 min,the glass sample containing 2.5% (w/w)AgNO3shows the maximum intensity enhancement.Under the condition of large content,the luminescent property of the glass single doped AgNO3is better than that with single doped AgCl.However,the UC emission intensity enhancement of the glasses doped with a small content of AgNO3is not obvious.Besides,it was difficult to find Ag NPs in the TEM images of TWL-ErYb-2.5AgNO3.It is not easy for AgNO3to generate Ag NPs in the glasses.Therefore,we consider co-doping AgCl and AgNO3to inhibitthe precipitation of AgCl crystals and introduce more Ag+ions into the glasses.

    Fig.9 Up-conversion emission spectra of TWL-ErYbyAgNO3with heat treatment temperature(390℃-15 min)

    We studied the effect of the proportion of AgCl and AgNO3on luminescent properties,the results are shown in Fig.10.The single doped AgCl and AgNO3samples are denoted as TWL-ErYb-xAgCl-yAgNO3(x=0~1%,y=0~1%,(w/w)and the proportion of AgCl and AgNO3is x∶y.The luminescent intensity of the glass co-doped with AgCl and AgNO3was stronger than the glass which was single doped with AgCl or AgNO3.The sample with x ∶y=0.5 ∶0.5 displayed the highest luminescence intensity.The glass with x∶y=0.7∶0.3 show the better luminescence intensity than the glass with x∶y=0.3∶0.7,which proves that AgCl can have greater effect on fluorescence enhancement of glasses when the content of silver source is limited.However,when x∶y=1∶1,the glass didn′t obtain further enhanced luminescence intensity.The luminescence microsecond time resolution were performed on the luminescence of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass.The samples were excited at 823 nm,and the decay curves were detected at 557 nm,as described in Fig.11.Both the luminescence decays are well fitted to single exponential decay function,the calculated lifetime of the Er3+ions in TWL-ErYb base glass (τEr)and TWL-ErYb-0.5AgCl-0.5AgNO3glass (τErAg)is 81.001 and 95.081 μs,respectively.The energy transfer between Ag NPs and Er3+ions and the effect of LSPR enhanced emission are might responsible for the longer lifetime of the glass with Ag NPs[30].Zhang et al[31].also find a longer lifetime of Er3+ions (4I13/2)in TeO2-WO3-La2O3-AgNO3glass than TeO2-WO3-La2O3glass.

    Fig.10 Up-conversion emission spectra of TWL-ErYbxAgCl-yAgNO3glasses with heat treatment temperature (390 ℃-15 min)

    Fig.11 Luminescence decay curves of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass

    LSPR and plasma coupling effectbetween particles make the effective enhancement of local electric field near the nanoparticles,leading to the increase of the radiative transition probability of each energy level of Er3+ions,which eventually makes luminescence emission enhanced.Comparing to LSPR and plasma coupling effect,the energy transfer between Ag NPs and Er3+ions is however the secon-dary factor lead to the enhancement of luminescence[30].Besides,micro-crystallization can decrease the phonon energy of glasses,and boost the energy level transition probability of RE ions[32].

    Fig.12 TEM images of the sample TWL-ErYb-0.5AgCl-0.5AgNO3annealed at 380 ℃ for 2 h:(a)is the enlarged view of(c)and (b)is the enlarged view of(a)

    TWL-ErYb-0.5AgCl-0.5AgNO3glasswith heat treatment at 390℃for 15 min shows the maximum enhancement and the HR-TEM images of the glass are shown in Fig.12.A large number of Ag NPs in uniform distribution were observed.The shapes of Ag NPs are mainly spherical and ellipsoidal.It can be clearly seen the regular arrangement of silver atoms,and the size is about 4~6 nm.However,we didn′t find micro-crystals in this TEM image.It is probably that the amount of Cl-ions of TWL-ErYb-0.5AgCl-0.5AgNO3glass is less than TWL-ErYb-1AgCl glass.The effect of AgCl on the precipitation of microcrystals becomes weak,and the glass becomes more stable.Therefore,the precipitation of micro-crystals wasnotobviousinTWL-ErYb-0.5AgCl-0.5AgNO3glass.Besides,TWL-ErYb-0.5AgCl-0.5AgNO3glass can provide the same amount of Ag+ions comparing to the TWL-ErYb-1AgCl glass.According to the above results,we conclude the follow results: (1)The introduction of AgCl can be helpful to produce Ag NPs,but it will cause the overgrowth of microcrystals;(2)It is not easy for AgNO3to produce Ag NPs,but introducing AgNO3can increase the content of Ag+ions.Therefore,co-doping AgCl and AgNO3can combine the characteristics of AgCl and AgNO3.Comparing to single doped AgCl or AgNO3,co-doping AgCl and AgNO3can bring more Ag NPs into the glass,and keep the glass transparent.Based on the above reasons,the glass with appropriate co-doping proportion of AgCl and AgNO3show an enhancement ofup-conversion emission intensity due to the formation of a lot of Ag NPs and a small amount of micro-crystals.

    3 Conclusions

    The role of micro-crystals and Ag NPs on the thermal,structural and spectroscopic properties of TWL-ErYb glasses have been studied in this paper.Micro-crystallization can improve the efficiency of luminescence emission.In the meantime,Ag NPs can also increase the strength of luminescence emission.The luminous efficiency of glasses can be further increased by introducing micro-crystals and Ag NPs at the same time.However,the excessive growth of micro-crystals will decrease the strength of luminescence emission.We find that co-doping AgCl and AgNO3can increase the precipitation of Ag NPs and reducetheovergrowth ofmicro-crystals.Besides,appropriate heattreatmenttemperature can also promote the precipitation of Ag NPs,and help to control the precipitation of micro-crystals.TWL-ErYb glasses with a lot of Ag NPs and a small amount of micro-crystals can further improve the up-conversion luminescence intensity due to the enhanced LSPR effect and a low phonon energy environment.

    Acknowledgements:The research is supported by theShanghaiScienceTechnologyCommittee (GrantNo.12nm0504700).

    :

    [1]Dousti M R,Sahar M R,Amjad R J,et al.J.Lumin.,2013,143:368-373

    [2]Rivera V A G,Ledemi Y,Osorio S P A,et al.J.Non-Cryst.Solids,2012,358:399-405

    [3]Culea E,Vida-Simiti I,Borodi G,et al.Ceram.Int.,2014,40:11001-11007

    [4]Tikhomirov V K,Rodríguez V D,Méndez-Ramos J,et al.Sol.Energy Mater.Sol.Cells,2012,100:209-215

    [5]Dousti M R,Amjad R J,Mahraz Z A S.J.Mol.Struct.,2015,1079:347-352

    [6]Qiu J B,Jiao Q,Zhou D C,et al.J.Rare Earths,2016,34:341-367

    [7]Gao Y,Hu Y B,Ren P,et al.J.Alloys Compd.,2016,667:297-301

    [8]Ansari G F,Mahajan S K.J.Lumin.,2014,156:97-101

    [9]de Araujo C B,da Silva D S,de Assumpcao T A A,et al.The Scientific World Journal,2013,2013:385193

    [10]Wu Y,Shen X,Dai S X,et al.J.Phys.Chem.C,2011,115:25040-25045

    [11]Chin P T,van der Linden M,van Harten E J,et al.Nanotechnology,2013,24:075703

    [12]Amjad R J,Sahar M R,Dousti M R,et al.Opt.Express,2013,21:14282-14290

    [13]Mertens H,Koenderink A F,Polman A.Phys.Rev.B,2007,76(11):115123

    [14]Chen S M,Qiu J B,Zhou D C,et al.Chin.Opt.Lett.,2014,12:081601-081604

    [15]Balaji S,Misra D,Debnath R.J.Fluoresc.,2011,21:1053-1060

    [16]XIAO Sheng-Chun(肖生春),Lü Jing-Wen (呂景文),ZHENG Tao(鄭濤)et al.Chinese Journal of Lasers(中國激光),2012,39(2):0206002

    [17]Rivera V A G,Osorio S P A,Manzani D,et al.Opt.Mater.,2011,33:888-892

    [18]Wei Y L,Li J J,Yang J W,et al.J.Lumin.,2013,137:70-72

    [19]Zhang Q Y,Feng Z M,Yang Z M,et al.J.Quant.Spectrosc.Radiat.Transfer,2006,98:167-179

    [20]Ma Y,Lin J,Chen J J,et al.Mater.Lett.,2011,65:282-284

    [21]Ghoshal S K,Awang A,Sahar M R,et al.J.Lumin.,2015,159:265-273

    [22]Reza Dousti M,Sahar M R,Ghoshal S K,et al.J.Mol.Struct.,2013,1035:6-12

    [23]Zhang W J,Lin J,Cheng M Z,et al.J.Quant.Spectrosc.Radiat.Transfer,2015,159:39-52

    [24]Lide D R.CRC Handbook of Chemistry and Physics.Boca Raton:CRC press,2004.

    [25]Mattarelli M,Montagna M,Vishnubhatla K,et al.Phys.Rev.B,2007,75(12):125102

    [26]Baida H,Marhaba S,et al.Nano Lett.,2009,9:3463-3469

    [27]Amjad R J,Sahar M R,Ghoshal S K,et al.J.Lumin.,2013,136:145-149

    [28]Hou Z X,Xue Z L,Li F,et al.J.Alloys Compd.,2013,577:523-527

    [29]JIA Yu-Jie(賈玉潔),LIN Jian(林?。?ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2014,35:287-292

    [30]Ma R H,Qian J Y,Cui S,et al.J.Lumin.,2014,152:222-225

    [31]ZHANG Shuo(張碩),LIN Jian(林健),ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2015,36:305-311

    [32]Ledemi Y,Trudel A A,Rivera V A G,et al.Optical Components and Materials XI,2014,8982:UNSP 89820V

    猜你喜歡
    微晶學報
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    NASICON型微晶玻璃電解質(zhì)的研究現(xiàn)狀與展望
    陶瓷學報(2021年1期)2021-04-13 01:32:44
    致敬學報40年
    微晶剛玉磨粒磨削20CrMnTi鋼的數(shù)值模擬研究
    Li2O加入量對Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    學報簡介
    學報簡介
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    《深空探測學報》
    微晶玻璃的制備、分類及應用評述
    河南科技(2014年16期)2014-02-27 14:13:13
    麻豆成人午夜福利视频| 国产一区二区三区视频了| 午夜激情欧美在线| 亚洲七黄色美女视频| 亚洲精品色激情综合| 亚洲精品色激情综合| 乱人视频在线观看| 一边摸一边抽搐一进一小说| 亚洲av免费高清在线观看| 高清毛片免费观看视频网站| 日韩高清综合在线| 最后的刺客免费高清国语| 日本免费a在线| 亚洲狠狠婷婷综合久久图片| 亚洲无线在线观看| 中文字幕熟女人妻在线| 有码 亚洲区| 国产主播在线观看一区二区| 国产真实伦视频高清在线观看 | 国产私拍福利视频在线观看| 2021天堂中文幕一二区在线观| 亚洲美女黄片视频| 国产乱人视频| 欧美一级毛片孕妇| 欧美黄色淫秽网站| 免费人成在线观看视频色| 欧美最新免费一区二区三区 | 国产精品一区二区三区四区免费观看 | x7x7x7水蜜桃| 黑人欧美特级aaaaaa片| 又黄又爽又免费观看的视频| 91字幕亚洲| 搡女人真爽免费视频火全软件 | 男女下面进入的视频免费午夜| 亚洲中文日韩欧美视频| 高清日韩中文字幕在线| 国产成人系列免费观看| 在线视频色国产色| 久久亚洲精品不卡| 亚洲熟妇熟女久久| 亚洲欧美日韩卡通动漫| 俺也久久电影网| 精品久久久久久久末码| 亚洲欧美一区二区三区黑人| 中文字幕熟女人妻在线| 国产黄色小视频在线观看| 超碰av人人做人人爽久久 | 美女大奶头视频| 97人妻精品一区二区三区麻豆| 亚洲精品在线美女| 久久香蕉精品热| 精品国产亚洲在线| 国产精品综合久久久久久久免费| 婷婷六月久久综合丁香| 久久久国产精品麻豆| 90打野战视频偷拍视频| 亚洲,欧美精品.| 日韩精品青青久久久久久| 91久久精品电影网| 日韩免费av在线播放| 黄色成人免费大全| 小蜜桃在线观看免费完整版高清| 丰满人妻熟妇乱又伦精品不卡| 黄色片一级片一级黄色片| 午夜精品久久久久久毛片777| 啪啪无遮挡十八禁网站| 夜夜爽天天搞| 亚洲欧美日韩卡通动漫| 婷婷六月久久综合丁香| 国语自产精品视频在线第100页| 亚洲不卡免费看| 精品熟女少妇八av免费久了| 两个人视频免费观看高清| 一二三四社区在线视频社区8| 成人三级黄色视频| 三级国产精品欧美在线观看| 天天一区二区日本电影三级| 国产色婷婷99| 成人亚洲精品av一区二区| 国产成人av教育| 国产成人影院久久av| 乱人视频在线观看| 亚洲,欧美精品.| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | 精品人妻1区二区| 国产毛片a区久久久久| 婷婷亚洲欧美| 欧美日韩综合久久久久久 | 国产真人三级小视频在线观看| 国产老妇女一区| 偷拍熟女少妇极品色| 国产午夜精品论理片| 国产伦一二天堂av在线观看| 欧美国产日韩亚洲一区| 无人区码免费观看不卡| 国产精品嫩草影院av在线观看 | 亚洲一区高清亚洲精品| 久久精品91无色码中文字幕| 嫩草影院入口| 嫁个100分男人电影在线观看| 91在线精品国自产拍蜜月 | 制服人妻中文乱码| 给我免费播放毛片高清在线观看| 两个人视频免费观看高清| 国产精品久久久久久人妻精品电影| 一区二区三区免费毛片| 久久婷婷人人爽人人干人人爱| 日韩人妻高清精品专区| 亚洲人成网站在线播放欧美日韩| 伊人久久精品亚洲午夜| 午夜视频国产福利| 高潮久久久久久久久久久不卡| 国产精品久久电影中文字幕| 日本黄色片子视频| 成人性生交大片免费视频hd| 18禁裸乳无遮挡免费网站照片| 岛国在线免费视频观看| 中文字幕熟女人妻在线| 国产黄a三级三级三级人| 一区福利在线观看| 又粗又爽又猛毛片免费看| 波多野结衣巨乳人妻| 少妇的丰满在线观看| 国内精品久久久久久久电影| 成年免费大片在线观看| 色尼玛亚洲综合影院| www.熟女人妻精品国产| 国产成人a区在线观看| 精品久久久久久成人av| 老司机午夜福利在线观看视频| 精品无人区乱码1区二区| www国产在线视频色| 欧美成人免费av一区二区三区| 熟女人妻精品中文字幕| 18禁美女被吸乳视频| 亚洲av第一区精品v没综合| 欧美一区二区亚洲| 国产伦人伦偷精品视频| 久久久国产精品麻豆| 日本a在线网址| 国模一区二区三区四区视频| 天美传媒精品一区二区| 草草在线视频免费看| 人人妻,人人澡人人爽秒播| 全区人妻精品视频| 一区二区三区国产精品乱码| 亚洲人成电影免费在线| 国产中年淑女户外野战色| 成熟少妇高潮喷水视频| 人妻久久中文字幕网| 精品熟女少妇八av免费久了| 毛片女人毛片| 午夜福利视频1000在线观看| 18禁裸乳无遮挡免费网站照片| 嫩草影院入口| 精品欧美国产一区二区三| 别揉我奶头~嗯~啊~动态视频| 性色av乱码一区二区三区2| 亚洲性夜色夜夜综合| 国产精品自产拍在线观看55亚洲| 国产黄a三级三级三级人| АⅤ资源中文在线天堂| 老汉色av国产亚洲站长工具| 五月玫瑰六月丁香| 国产伦人伦偷精品视频| 露出奶头的视频| 国内毛片毛片毛片毛片毛片| 91久久精品国产一区二区成人 | 三级毛片av免费| 老司机午夜福利在线观看视频| 两个人看的免费小视频| 又黄又粗又硬又大视频| 欧美乱色亚洲激情| 国产亚洲精品av在线| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 最好的美女福利视频网| 一区福利在线观看| 啦啦啦免费观看视频1| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 久久久久久大精品| 男女之事视频高清在线观看| 99精品久久久久人妻精品| 一区二区三区免费毛片| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 国内久久婷婷六月综合欲色啪| 亚洲精品乱码久久久v下载方式 | 国产高清视频在线播放一区| 嫩草影视91久久| 国产av在哪里看| avwww免费| 97超视频在线观看视频| 热99在线观看视频| 亚洲片人在线观看| 国产伦精品一区二区三区视频9 | 免费看美女性在线毛片视频| 精品免费久久久久久久清纯| 免费搜索国产男女视频| 91久久精品国产一区二区成人 | 日本黄色片子视频| 国产v大片淫在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久精品国产欧美久久久| av片东京热男人的天堂| 欧美丝袜亚洲另类 | 国产高潮美女av| 国产一区在线观看成人免费| 亚洲激情在线av| 制服丝袜大香蕉在线| 超碰av人人做人人爽久久 | 午夜免费激情av| 亚洲人成伊人成综合网2020| 亚洲精品乱码久久久v下载方式 | 欧美一区二区精品小视频在线| 午夜福利在线观看免费完整高清在 | 国产老妇女一区| 国产乱人视频| 一a级毛片在线观看| 亚洲熟妇中文字幕五十中出| a级毛片a级免费在线| 亚洲欧美一区二区三区黑人| 麻豆国产av国片精品| 久99久视频精品免费| av片东京热男人的天堂| 亚洲av成人精品一区久久| 午夜视频国产福利| 欧美日韩瑟瑟在线播放| 国内精品一区二区在线观看| 在线观看免费视频日本深夜| 国产午夜福利久久久久久| 亚洲电影在线观看av| 亚洲av成人不卡在线观看播放网| av天堂在线播放| 国产野战对白在线观看| 午夜a级毛片| 亚洲国产欧洲综合997久久,| 国产一区二区亚洲精品在线观看| 十八禁网站免费在线| 偷拍熟女少妇极品色| 色播亚洲综合网| 最近在线观看免费完整版| 美女高潮的动态| 蜜桃久久精品国产亚洲av| 一本精品99久久精品77| 99久久精品一区二区三区| 中文资源天堂在线| 亚洲电影在线观看av| 1000部很黄的大片| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | 色播亚洲综合网| 欧美色视频一区免费| xxxwww97欧美| svipshipincom国产片| 免费在线观看日本一区| 亚洲一区二区三区不卡视频| 三级男女做爰猛烈吃奶摸视频| 国产精品综合久久久久久久免费| 草草在线视频免费看| 极品教师在线免费播放| 男女视频在线观看网站免费| 久久久国产成人免费| 久久伊人香网站| 欧美绝顶高潮抽搐喷水| 国产男靠女视频免费网站| 九色成人免费人妻av| a在线观看视频网站| 国产精品永久免费网站| 网址你懂的国产日韩在线| 99久久九九国产精品国产免费| av在线蜜桃| 香蕉av资源在线| 久久亚洲真实| 成年免费大片在线观看| 国产又黄又爽又无遮挡在线| 成人亚洲精品av一区二区| 女人被狂操c到高潮| 怎么达到女性高潮| 亚洲 欧美 日韩 在线 免费| 色噜噜av男人的天堂激情| 男女之事视频高清在线观看| 午夜免费激情av| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 无遮挡黄片免费观看| 欧美午夜高清在线| 日本免费a在线| 性欧美人与动物交配| 精品一区二区三区av网在线观看| 又黄又粗又硬又大视频| 国产精品久久久久久久电影 | 国产精品久久视频播放| 午夜激情福利司机影院| 又爽又黄无遮挡网站| 啦啦啦观看免费观看视频高清| 手机成人av网站| 日韩精品青青久久久久久| 精品国产三级普通话版| 亚洲无线在线观看| 毛片女人毛片| 亚洲男人的天堂狠狠| netflix在线观看网站| 一个人看的www免费观看视频| 婷婷精品国产亚洲av| 日本免费一区二区三区高清不卡| 中文字幕人妻丝袜一区二区| 黄片大片在线免费观看| 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 免费av毛片视频| 给我免费播放毛片高清在线观看| 欧美另类亚洲清纯唯美| 亚洲av成人精品一区久久| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 亚洲精品粉嫩美女一区| av女优亚洲男人天堂| 免费在线观看日本一区| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区久久| 亚洲av熟女| 在线看三级毛片| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 高清日韩中文字幕在线| 桃红色精品国产亚洲av| 精品久久久久久久久久久久久| 精品一区二区三区av网在线观看| 网址你懂的国产日韩在线| 国产精品久久久人人做人人爽| 日本a在线网址| 非洲黑人性xxxx精品又粗又长| 天堂网av新在线| 91久久精品电影网| 国产一区二区亚洲精品在线观看| 国产精品美女特级片免费视频播放器| 午夜久久久久精精品| 久久久久免费精品人妻一区二区| 麻豆久久精品国产亚洲av| 国产精品久久久人人做人人爽| 91在线精品国自产拍蜜月 | 亚洲国产精品合色在线| 国产野战对白在线观看| 淫秽高清视频在线观看| 亚洲最大成人手机在线| 中文在线观看免费www的网站| 婷婷亚洲欧美| 亚洲成人中文字幕在线播放| a级毛片a级免费在线| 精品一区二区三区视频在线 | 亚洲国产精品sss在线观看| 久久久久久久久大av| 成人午夜高清在线视频| 欧美黄色淫秽网站| 国产亚洲精品av在线| 男女做爰动态图高潮gif福利片| 国产精品日韩av在线免费观看| 亚洲精华国产精华精| 欧美丝袜亚洲另类 | 搡女人真爽免费视频火全软件 | 国产真实伦视频高清在线观看 | 成人欧美大片| 又紧又爽又黄一区二区| 变态另类丝袜制服| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 国产精品久久久久久精品电影| 久久性视频一级片| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 九色成人免费人妻av| 亚洲黑人精品在线| av片东京热男人的天堂| 日本熟妇午夜| 久久精品国产清高在天天线| 别揉我奶头~嗯~啊~动态视频| 一区二区三区国产精品乱码| 精品一区二区三区人妻视频| 黄片小视频在线播放| 桃红色精品国产亚洲av| 99热这里只有是精品50| 亚洲专区中文字幕在线| 久久精品国产清高在天天线| 嫩草影院入口| 亚洲不卡免费看| 999久久久精品免费观看国产| 欧美一区二区国产精品久久精品| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 成人av在线播放网站| 中文字幕高清在线视频| 午夜福利在线观看免费完整高清在 | 久久这里只有精品中国| 嫩草影院精品99| aaaaa片日本免费| 国产亚洲精品一区二区www| 女人高潮潮喷娇喘18禁视频| 最近视频中文字幕2019在线8| 夜夜夜夜夜久久久久| 欧美日韩国产亚洲二区| av国产免费在线观看| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 国产精品,欧美在线| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 好男人电影高清在线观看| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 日韩精品中文字幕看吧| 一区福利在线观看| 俺也久久电影网| 窝窝影院91人妻| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 激情在线观看视频在线高清| 久久精品人妻少妇| 国产av不卡久久| 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 国产精品女同一区二区软件 | 欧美又色又爽又黄视频| 国产精品女同一区二区软件 | 窝窝影院91人妻| 成人精品一区二区免费| 国产高清激情床上av| 一本一本综合久久| 在线观看舔阴道视频| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 九色成人免费人妻av| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看| 久久久国产精品麻豆| 亚洲欧美精品综合久久99| 在线天堂最新版资源| 国产三级黄色录像| 首页视频小说图片口味搜索| 激情在线观看视频在线高清| 国产精品一及| 51国产日韩欧美| 在线十欧美十亚洲十日本专区| 91麻豆精品激情在线观看国产| 日韩亚洲欧美综合| 香蕉久久夜色| www.色视频.com| 可以在线观看的亚洲视频| 国产成+人综合+亚洲专区| 午夜a级毛片| 亚洲欧美日韩高清专用| 91九色精品人成在线观看| 国产真实伦视频高清在线观看 | 国产av不卡久久| 最后的刺客免费高清国语| 免费看日本二区| h日本视频在线播放| 99热只有精品国产| 欧美成狂野欧美在线观看| 久久草成人影院| 少妇的逼水好多| 国内精品美女久久久久久| 久久亚洲精品不卡| 亚洲av一区综合| 操出白浆在线播放| 国产高清三级在线| 精品福利观看| 日韩成人在线观看一区二区三区| 国产国拍精品亚洲av在线观看 | 欧美激情在线99| 国产亚洲欧美98| 波多野结衣巨乳人妻| 不卡一级毛片| 宅男免费午夜| 啪啪无遮挡十八禁网站| 成年女人毛片免费观看观看9| 一级毛片高清免费大全| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| 日本a在线网址| 中文字幕久久专区| 男人舔女人下体高潮全视频| 日本撒尿小便嘘嘘汇集6| 精品不卡国产一区二区三区| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 最新中文字幕久久久久| 在线看三级毛片| 三级国产精品欧美在线观看| 国产精品久久久久久人妻精品电影| 人人妻人人看人人澡| 久久精品影院6| 国产aⅴ精品一区二区三区波| 精品久久久久久,| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| 嫩草影院精品99| 精品国内亚洲2022精品成人| 国产高清激情床上av| 国产69精品久久久久777片| 精品电影一区二区在线| 十八禁人妻一区二区| 欧美精品啪啪一区二区三区| 麻豆国产97在线/欧美| 日韩欧美在线二视频| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久久久久| 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| av视频在线观看入口| 久久久久免费精品人妻一区二区| 有码 亚洲区| 久久国产精品人妻蜜桃| 五月伊人婷婷丁香| 在线看三级毛片| 老汉色∧v一级毛片| 18美女黄网站色大片免费观看| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 国产成人系列免费观看| 国产成人av教育| 国产免费一级a男人的天堂| 久久天躁狠狠躁夜夜2o2o| 国产伦一二天堂av在线观看| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 人妻夜夜爽99麻豆av| 天天躁日日操中文字幕| 亚洲一区二区三区不卡视频| 床上黄色一级片| 真实男女啪啪啪动态图| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 91久久精品电影网| 午夜免费激情av| 网址你懂的国产日韩在线| 香蕉丝袜av| 在线国产一区二区在线| 一二三四社区在线视频社区8| 国产av一区在线观看免费| 欧美在线黄色| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 精品福利观看| 亚洲欧美一区二区三区黑人| 亚洲成av人片在线播放无| 国产精品日韩av在线免费观看| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| 少妇的丰满在线观看| 2021天堂中文幕一二区在线观| 可以在线观看的亚洲视频| 亚洲成人久久性| 一级作爱视频免费观看| 亚洲成人久久性| 欧美色视频一区免费| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 午夜免费激情av| 女同久久另类99精品国产91| 日韩欧美精品免费久久 | 国产激情偷乱视频一区二区| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 欧美在线黄色| 91麻豆av在线| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 国产真实伦视频高清在线观看 | 国产高潮美女av| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 久久性视频一级片| 女同久久另类99精品国产91| 在线观看午夜福利视频| 亚洲中文字幕日韩| 亚洲成av人片免费观看| 色哟哟哟哟哟哟| 国产欧美日韩一区二区精品| 亚洲成人久久性| 午夜精品久久久久久毛片777| 日本黄大片高清| 久久午夜亚洲精品久久| 亚洲精品在线美女| 国产精品嫩草影院av在线观看 | 国产免费av片在线观看野外av| 亚洲不卡免费看| 精品国产美女av久久久久小说| 最近最新中文字幕大全电影3| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 亚洲内射少妇av|