• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銀納米晶對鉺鐿共摻的TeO2-WO3-La2O3微晶玻璃發(fā)光性能的影響

    2018-07-04 06:15:30陳淑文張文俊
    無機化學學報 2018年7期
    關鍵詞:微晶學報

    陳淑文 林 健 張文俊

    (同濟大學材料科學與工程學院,教育部先進土木工程材料重點實驗室,上海 201800)

    0 Introduction

    Tellurite glasses have many advantages such as wide range of transparency,large optical nonlinearity,refractive index and density,high solubility of rareearth (RE)ions,as well as low phonon energy compared to other oxide glasses[1].These characteristics make RE doped tellurite glasses promising candidates for the optical fiber amplifier,laser and new band optical communication[2].Er3+-doped tellurite glass has generated considerableinterest duetotheirfavorable emissions of blue,red,green and near-infrared light[3].Yb3+is known as a resourceful dopant can enhance the luminescence emissions of Er3+due to its large absorption cross-section.What′s more,the resonance energy transfer between Yb3+and Er3+can significantly improve the pumping efficiency of Er3+,and improve the upconversion (UC)properties of glasses[4].However,the luminous intensity of RE doped tellurite glasses is still weaker than some luminescent crystals[5].

    Over the last few years,glass-ceramics have attracted great interest because of their prospective applications as promising hosts for RE ions.The formation of micro-crystals in the glass can greatly change the coupled environment around RE ions,and reduce the covalence of crystal field as well as the vibration energy of lattice[6].Gao et al.[7]obtain NaYF4∶Tb3+,Yb3+,Li+crystallites in silicate oxide system.RE ions are gathering around the micro-crystals,which increases the probability of the energy transfer between RE ions,and improves the luminous performance of the glasses.In addition,the simple process of preparation and synthesis makes RE ions doped glassceramics become important UC luminescence materials.Ansari et al.[8]report the synthesis of YbF3/ErF3-codoped lithium tungsten tellurite oxyfluoride glass-ceramicscontain LiYbErF4nanocrystals.An intense visible emission originated from Er3+can be observed due to the cooperative UC processed 980 nm excitation.

    The localized surface plasmon resonance (LSPR)can increase the local field on the RE ions which near the metal nanoparticles and transferring energy to the RE ions,When the incident light wavelength or photoluminescence (PL)wavelength of the glass is close to the localized surface plasmon resonance wavelength,due to the local field enhancement(LFE)and energy transfer (ET)from Ag to RE ions,the luminescence intensity of glasses can be enhanced[9].Therefore,inorganic glasses doped with silver nanocrystals(Ag NPs)have received considerable attention[10]due to their unique optical properties[11].Amjad et al.[12]report significant luminescence enhancement of Er3+ions as well as raman intensity of Ag NPs embedded zinctellurite glasses.The radiative transition of Er3+ions and Ag NPs induce the electric dipoles,leading to the enhancement of PL[2-13].Ma et al.[14]successfully introduce Ag NPs into SiO2-Al2O3-CaF2system and obtain the glass-ceramics containing CaF2crystallites with significant enhanced luminous intensity.To our best knowledge,the study oftellurite glass-ceramics containing Ag NPs is rare.

    In this paper,we report the optical properties of Er3+/Yb3+co-doped tellurite glass-ceramics containing Ag NPs.The effect of different introducing ways of Ag NPs on the UC luminescence properties of Er3+/Yb3+co-doped tellurite glass-ceramics were systematically investigated.Ourstudy furtherdemonstrates the luminescent intensity of the sample co-doped with AgCl and AgNO3has the better UC luminescence properties than the sample which was single doped with AgCl or AgNO3.Tellurite glass-ceramics doped with RE ions and Ag NPs are promising candidates for the development of lasers and optical amplifiers for PL based devices.

    1 Experimental

    1.1 Material preparation

    Tellurite glasses with compositions 69TeO2-23WO3-8La2O3(TWL)containing fixed concentration of Er3+(0.5% (n/n),Yb3+(1.0% (n/n),AgCl(0~2.0% (w/w))and AgNO3(0~3.0% (w/w)were prepared by conventional melt-quenching method,melting anhydrous mixtures of TeO2(99.99%),La2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),WO3(99.99%),AgCl (99.9%)and AgNO3(99.9%).A gold crucible containing the glass constituents was placed in an electric furnace at(790±10)℃ for 15 min and the melt was poured onto a preheated stainless steel plates.Subsequently,the samples were annealed at 380℃for 2 h to remove the thermal and mechanical strains completely.The samples were then cooled down to the room temperature.69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3(TWL-ErYb base glass)and 69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3-1.0%AgCl (TWL-ErYb-1AgCl)glasses were heat treated at different heat treatment conditions and other samples were heat treated at appropriate heat treatment condition(at 390 ℃ for 15 min)to form glass ceramics.The samples heat treated at different temperatures (T)and times (t)are denoted as T-t.Finally,all the samples were cut and polished for the structural and optical measurements.

    1.2 Characterizations

    Differential thermal analysis (DTA)measurement(NETZSCH STA 449C)was carried out by heating about 0.02 g of glass powder in alumina crucible at the heating rate of 10 K·min-1from 200 to 800℃.The used atmosphere in DTA was N2,and the gas flow was set as 40 mL·min-1.The DTA results of samples were referenced to that of alumina powder.Phase identification of the samples was performed by X-ray diffraction (XRD)analysis with Cu Kα (λ=0.154 06 nm,35 kV,30 mA)radiation (D8 Advance,Bruker Inc.,Germany)at room temperature in the 2θ range of 10°~70°with a step size of 0.02°and a step scanning time of 1 s.The UV-NIR absorption spectra of glasses were recorded by a UV-4100 UV/VIS/NIR spectrophotometer in the range of 400~1 100 nm.The fluorescence spectrometer (Model Omni-λ300 Zolix),together with aphotomultiplierdetector (PMTH-SI-CR131)were used to measure the luminescence spectra under 980 nm diode laser within the range of 500~700 nm.Laser power is 194 mW and focusing methodology is lens focusing.Standard sample was used to compare the intensity between different spectra.Luminescence decay times in the microsecond time scale was measured on an Edinburgh FLSP920 spectrophotometer.All spectroscopic measurements were performed at room temperature.The characterizations of nanocrystal or microcrystal in glasses were carried out by a Transmission electron microscopy (TEM)(JEM-2100)with an accelerating voltage of 200 kV.The samples were grinded into fine powders in an agate mortar.Subsequently,the powders were dissolved in ethanol and then dispersed by supersonic before the solution was dropped on the copper grid.

    2 Results and discussion

    2.1 Effect of micro-crystallization on luminescence of the TWL-ErYb glasses

    Comparing to the base glass,appropriate microcrystallization can improve the strength and thermal stability of glass.For example,oxyfluoride glassceramics doped with RE ions show higher chemical and mechanical stability and lower phonon energy than fluoride glasses[7].

    The transparent TWL-ErYb glass-ceramics were prepared by appropriate heat treating.The absorption spectra of TWL-ErYb glasses before and after heat treatment at 390℃for 15 min are presented in Fig.1.After heat treatment,the absorption edge shows no obvious shift.The spectra exhibit a number of distinct absorption bands around 974,800,654,544,522 and 499 nm,which can be well assigned as the electronic transitions of Er3+from its ground4I15/2state to the4I11/2,4I9/2,4F9/2,4S3/2,2H11/2and4F7/2excited states,the absorption bands around 974 nm also include the electronic transitions of Yb3+from its ground2F7/2state to the2F5/2besides[15].This result clearly shows that Er3+ions exists in the glass.In order to further check whether microcrystals were formed,the samples were characterized by TEM,instead of the XRD which is found to be hard to detective small amount of nanometer size micro-crystals in the glass.

    Fig.1 Absorption spectra of TWL-ErYb glasses before and after heat treatment(390 ℃-15 min)

    Fig.2 shows representative HR-TEM images of TWL-ErYb base glass after heat treatment at 390℃for 15 min.There were many micro-crystals precipitated in the glass,and the size of micro-crystals varies from 40 to 150 nm.The measurement results of crystalline inter-planar space are 0.357 14 and 0.329 8 nm,corresponding to the (311)plane of Er2WO6(PDF No.38-0102)andLa2(WO4)3(PDF No.19-0669).For this reason,it can be inferred that Er3+ions have been incorporated into micro-crystals,which hasbeen demonstrated to improve the efficiency of the UC luminescence to a certain extent[16].

    Fig.2 HR-TEM images of TWL-ErYb base glass with heat treatment(390 ℃-15 min)and (b,c)are the enlarged view of(a)

    Fig.3 shows the UC emission spectra of TWLErYb base glasseswith differentheattreatment temperatures under the excitation of 980 nm.Three UC emission bands that located at 538,557 and 674 nm can be clearly observed,which can be assigned to2H11/2→4I15/2,4S3/2→4I15/2and4F9/2→4I15/2transitions of Er3+ions,respectively[17].With the increase of heat treatment temperature,luminous intensity of each band gradually enhanced.As shown in Fig.1,after heat treatment,the transmittance of glass declined,to the contrary,the intensity of RE absorption peaks accordingly increased and the non-radiative-relaxation influences which caused by RE ions co-doping can be eliminated due to the lower phonon energy of glass ceramics[18].

    Fig.3 Up-conversion emission spectra of TWL-ErYb base glasses for different heat treatment temperatures with the same treatment time of 15 min

    What′s more,comparing to the red emission (674 nm),the enhancement of the green emission (557 nm)is more obvious (Fig.3).However,the enhancement ofluminescencecaused bymicro-crystalsisnot significant because of the incomplete structure of micro-crystals. Even when the heat treatment temperature was raised to 410℃,due to the overgrowth of micro-crystals,the luminous intensity of the glass was decreased.In order to investigate the luminescence mechanism of RE ions in glasses,the power dependence of UC emission intensity for TWLErYb base glasses without and with heat treatment at 390℃for 15 min were studied,as shown in the inset of Fig.3.The slope (n)for 557 nm wavelength of the sample without heat treatment was 1.84,and the sample with heat treatment at 390℃for 15 min was 1.71.The result confirms that the green emission (557 nm)originates from the two-photon process absorption of Er3+ions,and micro-crystallization has little effect on the UC mechanism of Er3+and Yb3+ions[19].

    2.2 Effect of AgCl on luminescence of the TWLErYb glasses

    Introducing Ag NPs into RE ions doped glasses can effectively alter the free space spectral properties of RE ions and enhance the yield of their weak optical transitions[20-21].It is common to introduce AgCl as source of silver in glasses.The introduction of AgCl can reduce the glass transition temperature (Tg)of glass and open the network structure of the glass well,leading to the precipitation of Ag NPs easily despite of the small solubility of AgCl in glass[22].

    In order to study the effect of Ag NPs on the micro-crystallization process,XRD patterns of TWLErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions (Fig.4(a~c)and DTA curves of TWL-ErYb and TWL-ErYb-1AgCl glasses (Fig.4(d))at the heating rate of 10 K·min-1from 200 to 800 ℃were measured.Tgand the first crystallization temperature (Tc1),the second crystallization temperature (Tc2)and the third crystallization temperature (Tc3)are pointed by the arrow in the Fig.4(d).When the glasses were been heat treated at 420℃for 24 h,TWL-ErYb base glass was still transparent and TWL-ErYb-1AgCl glass became purple.There is no obvious crystallization peak on the XRD patterns,which may be caused by the small content of microcrystal and Ag NPs.When the glasses were been heat treated at 500℃for 24 h and 640℃for 24 h,the glasses were all opaque.The crystalline peaks oflanthanum tellurium oxides compounds were observed in Fig.4(b,c).In addition,crystallization peaks of TWL-ErYb-1AgCl glasses are more obvious than TWL-ErYb base glass.Therefore,the Ag NPs are expected to be the nucleation agent and promote the precipitation of microcrystals.In general,this kind of glass is very stable and Ag NPs will not destroy the structure of the glass at a moderate heat treatment temperature.

    The absorption spectra ofTWL-ErYb-1AgCl glasses with different heat treatment conditions are shown in Fig.5.After introducing Ag NPs into the glass,the absorption peak positions didn′t change.However,with the growth of Ag NPs caused by the increase of heat treatment temperature,the transmittance of TWL-ErYb glass with Ag NPs decreased.When the heat treatment temperature was raised to 460℃,in addition to the intrinsic absorption peaks of RE ions,the LSPR peak of Ag NPs was detected at the range of 500~650 nm[23].The emergence of the LSPR peak means that the content of Ag NPs increased significantly in the glass.

    Fig.6(a)presents the HR-TEM image of TWLErYb-1AgCl glass with heat treatment at 390℃for 15 min.The shapes of Ag NPs are mainly spherical and ellipsoidal.Moreover,the size of Ag NPs is about 4~6 nm,while the size of micro-crystals is about 6~8 nm.The lattice fringes can be clearly observed in an enlarge image Fig.6(b).The interplanar spacing of NPs is 0.238 1 nm,corresponding to the (111)plane of silver crystal (PDF No.65-8424).These results prove the precipitation of Ag NPs in TWL-ErYb-1AgCl glass.It is important to note that,in the Fig.6(c),we can find the precipitation of La2WO6micro-crystals around the Ag NPs.However,the number of Ag NPs is overall dominant.

    Fig.4 XRD patterns of TWL-ErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions of(a)420 ℃-24 h,(b)500 ℃-24 h and (c)640 ℃-24 h;(d)DTA curve of TWL-ErYb and TWL-ErYb-1AgCl glasses

    Fig.5 Absorption spectra of TWL-ErYb-1AgCl with different heat treatment

    Fig.6 TEM images of the sample TWL-ErYb-1AgCl heat treated at 390℃for 15 min

    AgNPsareformedfrom AgClorAgNO3throughout the melting procedure and grown during the annealing.The reduction of the Ag NPs can be discussed by the reduction potentials (E0)of redox system elements,as[24]:

    Following reduction processes are likely to ensue:

    where ΔE0is the total potential of reduction process.The equation (5~7)are all feasible reactions (with ΔE0>0).Therefore,these reactions guarantee the presence of Ag NPs in the system in addition to the absorption spectra results and TEM images.

    The luminescence spectra of TWL-ErYb-1AgCl glasses with different heat treatment conditions were studied,the results are shown in Fig.7.After heat treatment,all of the samples obtained the stronger emissions.The sample with heat treatment at 390℃for 15 min acquired the best luminescence property.In this heat treatment condition,Ag NPs precipitated a lot and the average size of the micro-crystals was small.A lot of precipitations of Ag NPs,leading to short distance between Ag NPs and Er3+ions,made the energy transfer from Ag NPs to Er3+ions become a possible explanation for the enhanced luminescence[25].The non-resonance excitation light excites the d-band electron to unoccupied sp-conduction band[1].Subsequently,electron and hole recombine and moves to Fermi level through a phonon-electron interaction.Therefore,luminescence is mainly in visible region[26].The local electric field change cause the enhancement of photoluminescence and the effective electric field)can be written as[17]:

    Fig.7 Up-conversion emission spectra of TWL-ErYb-1AgCl glasses at different heat treatment conditions

    here ε0is the dielectric constant in the presence of an external electromagnetic field of amplitude,q is the nanocrystal specific volume,ωpis the plasma frequency,i is the ground level,and γ is the damping of the resonance.The damping γ is the contribution of the conduction electrons and it can be described as[2]:

    The first term 1/τ0is related to the bulk electron scattering process in the nanoparticle.The interaction between quasi-electron-free and the surface of a sphere causes the second term,where VFis the Fermi velocity,D is the mean core particle size,and gsis the surface factor[26].The shape of the NPs is related to surface plasmon resonance (SPR)and the appropriate size of the NPs can enhance local field[27].Therefore,the glass with more Ag NPs,fewer micro-crystals,as well as high transmittance can obtain the enhancement of the luminescence property[28].The inset of Fig.7 showsthedependenceoftheUC luminescence intensity on the 980 nm pump laser power for 557 nm.The slope (n)for 557 nm wavelength of the sample without heat treatment was found to be 1.87,and the sample with heat treatment at 390℃for 15 min was found to be 2.05.This experimental result confirms that the green emission (557 nm)is due to the twophoton process absorption of Er3+ions.It is worth noting that the slope (n)of the glass doped with Ag NPs is larger than the tellurite base glass (Fig.4),which implies that Ag NPs can promote the two-photon absorption of Er3+ions in the process of the energy transfer and promote particles jump to a high level[29].

    Under the appropriate heat treatment condition at 390℃for 15 min,the up-conversion emission spectra of the glasses with different contents of AgCl are shown in Fig.8.The co-doped AgCl samples are denoted as TWL-ErYb-xAgCl(x=0~2% (w/w).The reduction and growth ofAg nanocrystalsgenerate an efficient localized electric field around the Ag NPs.The local electric field can increase the rate of excitations of Er3+ions in vicinity of Ag NPs.As a result,the rates of transitions from emitting levels are enhanced[29].According to our testing results,the glass sample containing 0.75% (w/w)AgCl shows the maximum intensity enhancement.Furthermore,we find that the glass will be opaque after introducing 2%(w/w)AgCl into the glass.It means that doping content of AgCl is limited.

    Fig.8 Up-conversion emission spectra of TWL-ErYbxAgCl with heat treatment temperature (390 ℃-15 min)

    2.3 Effect of co-doped AgCl and AgNO3on luminescence of the TWL-ErYb glassceramics

    Ag NPs can be produced by the introduction of AgCl,however,itwillcause the overgrowth of microcrystals at the same time.In order to find a better way to increase the precipitation of Ag NPs,the effect of different contents of AgNO3on luminescence of TWL-ErYb glass-ceramics has been studied,and the luminescence spectra are shown in Fig.9.The single doped AgNO3samples are denoted as TWLErYb-yAgNO3(y=0~3%, (w/w).Under the heat treatment condition at 390℃for 15 min,the glass sample containing 2.5% (w/w)AgNO3shows the maximum intensity enhancement.Under the condition of large content,the luminescent property of the glass single doped AgNO3is better than that with single doped AgCl.However,the UC emission intensity enhancement of the glasses doped with a small content of AgNO3is not obvious.Besides,it was difficult to find Ag NPs in the TEM images of TWL-ErYb-2.5AgNO3.It is not easy for AgNO3to generate Ag NPs in the glasses.Therefore,we consider co-doping AgCl and AgNO3to inhibitthe precipitation of AgCl crystals and introduce more Ag+ions into the glasses.

    Fig.9 Up-conversion emission spectra of TWL-ErYbyAgNO3with heat treatment temperature(390℃-15 min)

    We studied the effect of the proportion of AgCl and AgNO3on luminescent properties,the results are shown in Fig.10.The single doped AgCl and AgNO3samples are denoted as TWL-ErYb-xAgCl-yAgNO3(x=0~1%,y=0~1%,(w/w)and the proportion of AgCl and AgNO3is x∶y.The luminescent intensity of the glass co-doped with AgCl and AgNO3was stronger than the glass which was single doped with AgCl or AgNO3.The sample with x ∶y=0.5 ∶0.5 displayed the highest luminescence intensity.The glass with x∶y=0.7∶0.3 show the better luminescence intensity than the glass with x∶y=0.3∶0.7,which proves that AgCl can have greater effect on fluorescence enhancement of glasses when the content of silver source is limited.However,when x∶y=1∶1,the glass didn′t obtain further enhanced luminescence intensity.The luminescence microsecond time resolution were performed on the luminescence of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass.The samples were excited at 823 nm,and the decay curves were detected at 557 nm,as described in Fig.11.Both the luminescence decays are well fitted to single exponential decay function,the calculated lifetime of the Er3+ions in TWL-ErYb base glass (τEr)and TWL-ErYb-0.5AgCl-0.5AgNO3glass (τErAg)is 81.001 and 95.081 μs,respectively.The energy transfer between Ag NPs and Er3+ions and the effect of LSPR enhanced emission are might responsible for the longer lifetime of the glass with Ag NPs[30].Zhang et al[31].also find a longer lifetime of Er3+ions (4I13/2)in TeO2-WO3-La2O3-AgNO3glass than TeO2-WO3-La2O3glass.

    Fig.10 Up-conversion emission spectra of TWL-ErYbxAgCl-yAgNO3glasses with heat treatment temperature (390 ℃-15 min)

    Fig.11 Luminescence decay curves of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass

    LSPR and plasma coupling effectbetween particles make the effective enhancement of local electric field near the nanoparticles,leading to the increase of the radiative transition probability of each energy level of Er3+ions,which eventually makes luminescence emission enhanced.Comparing to LSPR and plasma coupling effect,the energy transfer between Ag NPs and Er3+ions is however the secon-dary factor lead to the enhancement of luminescence[30].Besides,micro-crystallization can decrease the phonon energy of glasses,and boost the energy level transition probability of RE ions[32].

    Fig.12 TEM images of the sample TWL-ErYb-0.5AgCl-0.5AgNO3annealed at 380 ℃ for 2 h:(a)is the enlarged view of(c)and (b)is the enlarged view of(a)

    TWL-ErYb-0.5AgCl-0.5AgNO3glasswith heat treatment at 390℃for 15 min shows the maximum enhancement and the HR-TEM images of the glass are shown in Fig.12.A large number of Ag NPs in uniform distribution were observed.The shapes of Ag NPs are mainly spherical and ellipsoidal.It can be clearly seen the regular arrangement of silver atoms,and the size is about 4~6 nm.However,we didn′t find micro-crystals in this TEM image.It is probably that the amount of Cl-ions of TWL-ErYb-0.5AgCl-0.5AgNO3glass is less than TWL-ErYb-1AgCl glass.The effect of AgCl on the precipitation of microcrystals becomes weak,and the glass becomes more stable.Therefore,the precipitation of micro-crystals wasnotobviousinTWL-ErYb-0.5AgCl-0.5AgNO3glass.Besides,TWL-ErYb-0.5AgCl-0.5AgNO3glass can provide the same amount of Ag+ions comparing to the TWL-ErYb-1AgCl glass.According to the above results,we conclude the follow results: (1)The introduction of AgCl can be helpful to produce Ag NPs,but it will cause the overgrowth of microcrystals;(2)It is not easy for AgNO3to produce Ag NPs,but introducing AgNO3can increase the content of Ag+ions.Therefore,co-doping AgCl and AgNO3can combine the characteristics of AgCl and AgNO3.Comparing to single doped AgCl or AgNO3,co-doping AgCl and AgNO3can bring more Ag NPs into the glass,and keep the glass transparent.Based on the above reasons,the glass with appropriate co-doping proportion of AgCl and AgNO3show an enhancement ofup-conversion emission intensity due to the formation of a lot of Ag NPs and a small amount of micro-crystals.

    3 Conclusions

    The role of micro-crystals and Ag NPs on the thermal,structural and spectroscopic properties of TWL-ErYb glasses have been studied in this paper.Micro-crystallization can improve the efficiency of luminescence emission.In the meantime,Ag NPs can also increase the strength of luminescence emission.The luminous efficiency of glasses can be further increased by introducing micro-crystals and Ag NPs at the same time.However,the excessive growth of micro-crystals will decrease the strength of luminescence emission.We find that co-doping AgCl and AgNO3can increase the precipitation of Ag NPs and reducetheovergrowth ofmicro-crystals.Besides,appropriate heattreatmenttemperature can also promote the precipitation of Ag NPs,and help to control the precipitation of micro-crystals.TWL-ErYb glasses with a lot of Ag NPs and a small amount of micro-crystals can further improve the up-conversion luminescence intensity due to the enhanced LSPR effect and a low phonon energy environment.

    Acknowledgements:The research is supported by theShanghaiScienceTechnologyCommittee (GrantNo.12nm0504700).

    :

    [1]Dousti M R,Sahar M R,Amjad R J,et al.J.Lumin.,2013,143:368-373

    [2]Rivera V A G,Ledemi Y,Osorio S P A,et al.J.Non-Cryst.Solids,2012,358:399-405

    [3]Culea E,Vida-Simiti I,Borodi G,et al.Ceram.Int.,2014,40:11001-11007

    [4]Tikhomirov V K,Rodríguez V D,Méndez-Ramos J,et al.Sol.Energy Mater.Sol.Cells,2012,100:209-215

    [5]Dousti M R,Amjad R J,Mahraz Z A S.J.Mol.Struct.,2015,1079:347-352

    [6]Qiu J B,Jiao Q,Zhou D C,et al.J.Rare Earths,2016,34:341-367

    [7]Gao Y,Hu Y B,Ren P,et al.J.Alloys Compd.,2016,667:297-301

    [8]Ansari G F,Mahajan S K.J.Lumin.,2014,156:97-101

    [9]de Araujo C B,da Silva D S,de Assumpcao T A A,et al.The Scientific World Journal,2013,2013:385193

    [10]Wu Y,Shen X,Dai S X,et al.J.Phys.Chem.C,2011,115:25040-25045

    [11]Chin P T,van der Linden M,van Harten E J,et al.Nanotechnology,2013,24:075703

    [12]Amjad R J,Sahar M R,Dousti M R,et al.Opt.Express,2013,21:14282-14290

    [13]Mertens H,Koenderink A F,Polman A.Phys.Rev.B,2007,76(11):115123

    [14]Chen S M,Qiu J B,Zhou D C,et al.Chin.Opt.Lett.,2014,12:081601-081604

    [15]Balaji S,Misra D,Debnath R.J.Fluoresc.,2011,21:1053-1060

    [16]XIAO Sheng-Chun(肖生春),Lü Jing-Wen (呂景文),ZHENG Tao(鄭濤)et al.Chinese Journal of Lasers(中國激光),2012,39(2):0206002

    [17]Rivera V A G,Osorio S P A,Manzani D,et al.Opt.Mater.,2011,33:888-892

    [18]Wei Y L,Li J J,Yang J W,et al.J.Lumin.,2013,137:70-72

    [19]Zhang Q Y,Feng Z M,Yang Z M,et al.J.Quant.Spectrosc.Radiat.Transfer,2006,98:167-179

    [20]Ma Y,Lin J,Chen J J,et al.Mater.Lett.,2011,65:282-284

    [21]Ghoshal S K,Awang A,Sahar M R,et al.J.Lumin.,2015,159:265-273

    [22]Reza Dousti M,Sahar M R,Ghoshal S K,et al.J.Mol.Struct.,2013,1035:6-12

    [23]Zhang W J,Lin J,Cheng M Z,et al.J.Quant.Spectrosc.Radiat.Transfer,2015,159:39-52

    [24]Lide D R.CRC Handbook of Chemistry and Physics.Boca Raton:CRC press,2004.

    [25]Mattarelli M,Montagna M,Vishnubhatla K,et al.Phys.Rev.B,2007,75(12):125102

    [26]Baida H,Marhaba S,et al.Nano Lett.,2009,9:3463-3469

    [27]Amjad R J,Sahar M R,Ghoshal S K,et al.J.Lumin.,2013,136:145-149

    [28]Hou Z X,Xue Z L,Li F,et al.J.Alloys Compd.,2013,577:523-527

    [29]JIA Yu-Jie(賈玉潔),LIN Jian(林?。?ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2014,35:287-292

    [30]Ma R H,Qian J Y,Cui S,et al.J.Lumin.,2014,152:222-225

    [31]ZHANG Shuo(張碩),LIN Jian(林健),ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2015,36:305-311

    [32]Ledemi Y,Trudel A A,Rivera V A G,et al.Optical Components and Materials XI,2014,8982:UNSP 89820V

    猜你喜歡
    微晶學報
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    NASICON型微晶玻璃電解質(zhì)的研究現(xiàn)狀與展望
    陶瓷學報(2021年1期)2021-04-13 01:32:44
    致敬學報40年
    微晶剛玉磨粒磨削20CrMnTi鋼的數(shù)值模擬研究
    Li2O加入量對Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    學報簡介
    學報簡介
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    《深空探測學報》
    微晶玻璃的制備、分類及應用評述
    河南科技(2014年16期)2014-02-27 14:13:13
    啦啦啦视频在线资源免费观看| 高清视频免费观看一区二区| 午夜福利网站1000一区二区三区| 国产成人91sexporn| 黑人欧美特级aaaaaa片| 99久久精品国产国产毛片| 国产老妇伦熟女老妇高清| 高清欧美精品videossex| 国产 一区精品| 搡女人真爽免费视频火全软件| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 能在线免费看毛片的网站| 青青草视频在线视频观看| 免费观看无遮挡的男女| 少妇 在线观看| 精品99又大又爽又粗少妇毛片| 免费人成在线观看视频色| 在线观看免费视频网站a站| 五月开心婷婷网| 永久网站在线| 亚洲人成77777在线视频| 精品人妻熟女毛片av久久网站| 国产精品国产av在线观看| 国产成人精品一,二区| 精品亚洲成国产av| 亚洲国产成人一精品久久久| 成人二区视频| 免费看av在线观看网站| 特大巨黑吊av在线直播| 欧美 日韩 精品 国产| 亚洲美女搞黄在线观看| av线在线观看网站| 免费少妇av软件| 国产精品国产av在线观看| 黄色配什么色好看| 久久久久久久久久久久大奶| 有码 亚洲区| 国产精品嫩草影院av在线观看| 日日啪夜夜爽| 永久网站在线| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 一级毛片aaaaaa免费看小| 我的女老师完整版在线观看| 国产在视频线精品| 午夜福利视频在线观看免费| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 91精品伊人久久大香线蕉| 国产精品蜜桃在线观看| 国产在线视频一区二区| 精品一区二区免费观看| 免费观看的影片在线观看| av黄色大香蕉| 日本-黄色视频高清免费观看| 国产成人91sexporn| 99久久综合免费| 少妇人妻精品综合一区二区| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 美女福利国产在线| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| videosex国产| 最新的欧美精品一区二区| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 女人精品久久久久毛片| 久久人人爽av亚洲精品天堂| 春色校园在线视频观看| 在线 av 中文字幕| 如何舔出高潮| 精品亚洲成a人片在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲第一av免费看| 97超碰精品成人国产| 久久鲁丝午夜福利片| 亚洲成人av在线免费| 欧美xxⅹ黑人| 国产精品偷伦视频观看了| 国产伦精品一区二区三区视频9| 青青草视频在线视频观看| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 日本vs欧美在线观看视频| 婷婷色综合www| 午夜福利视频在线观看免费| 国产女主播在线喷水免费视频网站| 亚洲内射少妇av| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 只有这里有精品99| 卡戴珊不雅视频在线播放| 熟妇人妻不卡中文字幕| 国产免费现黄频在线看| 国产男人的电影天堂91| 欧美3d第一页| 亚洲人成77777在线视频| 成人国产av品久久久| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 男女无遮挡免费网站观看| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 一本—道久久a久久精品蜜桃钙片| 欧美 亚洲 国产 日韩一| 欧美一级a爱片免费观看看| 午夜福利网站1000一区二区三区| 9色porny在线观看| 国产深夜福利视频在线观看| 国产成人精品无人区| 夫妻午夜视频| 亚洲国产欧美日韩在线播放| 色94色欧美一区二区| 日韩大片免费观看网站| 国产视频内射| 亚洲人成77777在线视频| 黑人高潮一二区| 国产 精品1| 蜜桃在线观看..| 亚洲美女黄色视频免费看| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 欧美丝袜亚洲另类| 国产成人精品在线电影| 免费av中文字幕在线| 婷婷成人精品国产| 国产精品久久久久久久电影| 有码 亚洲区| 久久久精品区二区三区| 人体艺术视频欧美日本| 精品久久久久久久久av| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 桃花免费在线播放| 人妻系列 视频| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 免费黄色在线免费观看| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 国产亚洲精品第一综合不卡 | 精品熟女少妇av免费看| 2018国产大陆天天弄谢| 亚洲国产欧美日韩在线播放| 免费观看av网站的网址| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 亚洲精品第二区| 日韩电影二区| 亚洲欧美成人综合另类久久久| 日韩免费高清中文字幕av| 欧美97在线视频| 2022亚洲国产成人精品| 成人无遮挡网站| 久久狼人影院| 欧美bdsm另类| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 啦啦啦在线观看免费高清www| 亚洲精品第二区| 精品酒店卫生间| av又黄又爽大尺度在线免费看| 最近的中文字幕免费完整| 99国产精品免费福利视频| 久久久久久久久大av| 丝袜脚勾引网站| 亚洲久久久国产精品| 日韩制服骚丝袜av| 99热全是精品| 免费观看在线日韩| 综合色丁香网| 丁香六月天网| 91aial.com中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 99热6这里只有精品| www.av在线官网国产| 久久久久视频综合| 如何舔出高潮| 亚洲精品自拍成人| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 最近最新中文字幕免费大全7| 国产精品99久久99久久久不卡 | 国产亚洲精品久久久com| av专区在线播放| 欧美日韩视频精品一区| 欧美xxxx性猛交bbbb| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 丁香六月天网| 一区二区三区精品91| 18禁在线无遮挡免费观看视频| 亚洲精品久久成人aⅴ小说 | 999精品在线视频| 全区人妻精品视频| 久久综合国产亚洲精品| 精品一区二区三卡| 搡女人真爽免费视频火全软件| 欧美日韩av久久| 日韩,欧美,国产一区二区三区| 777米奇影视久久| 91精品国产九色| 狠狠婷婷综合久久久久久88av| 国产视频首页在线观看| 国产免费又黄又爽又色| 国产成人91sexporn| 久久精品国产亚洲网站| 在线看a的网站| 久久青草综合色| 免费黄频网站在线观看国产| av福利片在线| 亚洲精品成人av观看孕妇| 国产成人精品在线电影| 久久青草综合色| 久久狼人影院| 色吧在线观看| 婷婷成人精品国产| 18在线观看网站| 国模一区二区三区四区视频| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久 | 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av电影在线观看一区二区三区| 乱人伦中国视频| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va| 亚洲少妇的诱惑av| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 在线看a的网站| 国产成人免费无遮挡视频| 考比视频在线观看| av免费在线看不卡| 久久久久久久国产电影| 成人手机av| 曰老女人黄片| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 高清av免费在线| 蜜桃久久精品国产亚洲av| 亚洲精品自拍成人| 丝袜脚勾引网站| 久久国产精品大桥未久av| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 国产免费视频播放在线视频| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲av天美| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 亚洲第一区二区三区不卡| 免费观看性生交大片5| 日韩电影二区| 自拍欧美九色日韩亚洲蝌蚪91| 九九爱精品视频在线观看| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| 国产av国产精品国产| av视频免费观看在线观看| 九九久久精品国产亚洲av麻豆| 日本黄色片子视频| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 中文天堂在线官网| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 久久韩国三级中文字幕| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 在线观看免费视频网站a站| 桃花免费在线播放| av在线app专区| 日本午夜av视频| 亚洲精品成人av观看孕妇| 三级国产精品欧美在线观看| 2021少妇久久久久久久久久久| 国产白丝娇喘喷水9色精品| 久久午夜综合久久蜜桃| 国产成人午夜福利电影在线观看| 国产精品免费大片| 亚洲第一av免费看| 在线观看三级黄色| 少妇精品久久久久久久| 一本—道久久a久久精品蜜桃钙片| 99热这里只有精品一区| 五月伊人婷婷丁香| 亚洲精品中文字幕在线视频| av播播在线观看一区| 最近的中文字幕免费完整| 日本黄大片高清| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 99国产精品免费福利视频| 久久ye,这里只有精品| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 丝瓜视频免费看黄片| 欧美日韩在线观看h| 99热全是精品| av在线观看视频网站免费| 最近2019中文字幕mv第一页| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 老司机影院成人| .国产精品久久| av在线播放精品| 国产精品99久久久久久久久| 免费大片18禁| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品久久久久久| 国模一区二区三区四区视频| 九九在线视频观看精品| 美女内射精品一级片tv| 色网站视频免费| 精品少妇久久久久久888优播| 亚洲国产精品999| 日韩强制内射视频| 曰老女人黄片| 91久久精品电影网| 国产亚洲精品久久久com| 美女脱内裤让男人舔精品视频| 91精品国产国语对白视频| 免费看光身美女| 国产综合精华液| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频 | 在线免费观看不下载黄p国产| 满18在线观看网站| av女优亚洲男人天堂| 狠狠婷婷综合久久久久久88av| 最后的刺客免费高清国语| 久久国产精品大桥未久av| 美女内射精品一级片tv| 国产熟女欧美一区二区| 我要看黄色一级片免费的| 色网站视频免费| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| av在线播放精品| 久久鲁丝午夜福利片| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 国产黄片视频在线免费观看| 黄色配什么色好看| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 精品少妇内射三级| 老司机影院毛片| 大片免费播放器 马上看| 亚洲成色77777| 亚洲成人手机| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 亚洲av二区三区四区| 丝袜美足系列| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 好男人视频免费观看在线| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 中文字幕久久专区| 97在线视频观看| 国产av一区二区精品久久| 亚洲精品国产色婷婷电影| 熟女av电影| 黄色怎么调成土黄色| www.av在线官网国产| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 最近手机中文字幕大全| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲精品视频女| 99热全是精品| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 亚洲av男天堂| 男人添女人高潮全过程视频| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 一区二区三区乱码不卡18| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 人成视频在线观看免费观看| 午夜激情福利司机影院| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 在线观看三级黄色| kizo精华| 最近中文字幕高清免费大全6| 久久久久久久久久久免费av| 国产亚洲精品久久久com| 天天操日日干夜夜撸| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 99热这里只有精品一区| 国产欧美另类精品又又久久亚洲欧美| 考比视频在线观看| 国产黄片视频在线免费观看| 久热久热在线精品观看| 少妇人妻 视频| 极品少妇高潮喷水抽搐| 国产精品免费大片| 伦精品一区二区三区| 91久久精品国产一区二区成人| 人体艺术视频欧美日本| 欧美精品亚洲一区二区| 国产精品无大码| 欧美日韩亚洲高清精品| 中国三级夫妇交换| 欧美激情国产日韩精品一区| 热re99久久精品国产66热6| 伦理电影大哥的女人| 男女高潮啪啪啪动态图| 免费少妇av软件| www.色视频.com| 女的被弄到高潮叫床怎么办| 男女边摸边吃奶| 美女cb高潮喷水在线观看| 欧美激情极品国产一区二区三区 | 国产精品人妻久久久影院| 亚洲av综合色区一区| 91久久精品电影网| 国产在视频线精品| 国产在线视频一区二区| 一级毛片电影观看| 久久婷婷青草| 亚洲精品色激情综合| 欧美成人午夜免费资源| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 卡戴珊不雅视频在线播放| 免费看光身美女| av卡一久久| 日本黄大片高清| 麻豆乱淫一区二区| 国产伦精品一区二区三区视频9| 国产色婷婷99| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 曰老女人黄片| 欧美日韩精品成人综合77777| 高清在线视频一区二区三区| 一级a做视频免费观看| 伦精品一区二区三区| 精品卡一卡二卡四卡免费| 国产免费一级a男人的天堂| 国产亚洲一区二区精品| 精品久久久久久电影网| 午夜免费观看性视频| 欧美日韩视频高清一区二区三区二| .国产精品久久| 丝袜脚勾引网站| 免费观看a级毛片全部| 一个人免费看片子| 亚洲av电影在线观看一区二区三区| 色94色欧美一区二区| av女优亚洲男人天堂| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 91久久精品国产一区二区三区| 精品酒店卫生间| 亚洲精品日本国产第一区| 中文欧美无线码| 蜜桃久久精品国产亚洲av| 一级片'在线观看视频| 亚洲,欧美,日韩| videossex国产| 男女啪啪激烈高潮av片| 高清毛片免费看| 午夜激情久久久久久久| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 国产极品天堂在线| 国产深夜福利视频在线观看| 欧美少妇被猛烈插入视频| 亚洲无线观看免费| 一本久久精品| 久久99精品国语久久久| 精品亚洲成a人片在线观看| 亚洲欧洲精品一区二区精品久久久 | 观看av在线不卡| 国产成人精品一,二区| 久久综合国产亚洲精品| 狠狠婷婷综合久久久久久88av| 国产精品嫩草影院av在线观看| 国产黄频视频在线观看| 精品亚洲成国产av| 9色porny在线观看| 免费观看av网站的网址| 婷婷色av中文字幕| av免费在线看不卡| 人妻一区二区av| av电影中文网址| 在线观看免费日韩欧美大片 | 亚洲欧洲精品一区二区精品久久久 | 成人国产麻豆网| 久久这里有精品视频免费| 久久 成人 亚洲| 在线看a的网站| 国产精品蜜桃在线观看| 免费久久久久久久精品成人欧美视频 | 国产免费又黄又爽又色| 久久青草综合色| 国产女主播在线喷水免费视频网站| 欧美 日韩 精品 国产| 一级片'在线观看视频| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 看非洲黑人一级黄片| 亚洲精品久久成人aⅴ小说 | 精品人妻熟女毛片av久久网站| 日本欧美国产在线视频| 日韩中字成人| 成年女人在线观看亚洲视频| av卡一久久| 久久久午夜欧美精品| 乱码一卡2卡4卡精品| 人人澡人人妻人| 寂寞人妻少妇视频99o| 女的被弄到高潮叫床怎么办| 色哟哟·www| 国产免费现黄频在线看| 国产日韩欧美视频二区| 免费不卡的大黄色大毛片视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产在视频线精品| 欧美日韩视频精品一区| 日韩电影二区| 国产精品久久久久久av不卡| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 国产黄片视频在线免费观看| 成人毛片a级毛片在线播放| 中文字幕制服av| 男女高潮啪啪啪动态图| 九九在线视频观看精品| 亚洲精品456在线播放app| 精品久久久久久久久av| 欧美最新免费一区二区三区| 少妇熟女欧美另类| 亚州av有码| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 国产成人91sexporn| 麻豆成人av视频| 男人爽女人下面视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 国产在视频线精品| 国产熟女午夜一区二区三区 | 亚洲精品av麻豆狂野| 91午夜精品亚洲一区二区三区| av黄色大香蕉| 久久99热这里只频精品6学生| 久久热精品热| 日日啪夜夜爽| 精品少妇久久久久久888优播| 伊人亚洲综合成人网| av在线app专区| 久久99热这里只频精品6学生| 精品人妻偷拍中文字幕| 伊人久久国产一区二区| 国产综合精华液| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 精品少妇久久久久久888优播| 国产精品 国内视频| 十八禁高潮呻吟视频| 精品少妇久久久久久888优播| 日韩一本色道免费dvd| 国产色爽女视频免费观看| 黄色毛片三级朝国网站| 只有这里有精品99| 国产淫语在线视频| 成人无遮挡网站| 观看av在线不卡| 亚洲精华国产精华液的使用体验| 欧美 亚洲 国产 日韩一| 亚洲欧洲国产日韩|