• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳納米管負載的Pd-Ag-Sn催化劑對甲酸的電氧化

    2018-07-04 06:15:10張媛媛易清風(fēng)周秀林
    無機化學(xué)學(xué)報 2018年7期
    關(guān)鍵詞:秀林天虹機化

    張媛媛 易清風(fēng)*,,2 李 廣 周秀林

    (1湖南科技大學(xué)化學(xué)化工學(xué)院,湘潭 411201)

    (2理論有機化學(xué)與功能分子教育部重點實驗室,湘潭 411201)

    0 Introduction

    Nowadays,considerable attention to seeking renewable resources has been paid to reduce or even stop the rapid consumption of fossil fuels and the increasing emissions of automobile exhaust[1-3].As environmental friendly electrochemical energy devices,fuel cells have received extensive attention in view of their outstanding performances.Among them,direct formic acid fuel cell (DFAFC)possesses such significant advantages as lower operating temperatures,higher theoretical open circuit voltage and energy density,safer storage and transportation and less crossover rate of formic acid through Nafion membrane compared with direct methanol fuel cell (DMFC)[4-11].There are many factors affecting the performance of DFAFC,one of which is the electroactivity of the anode catalyst.A great number of reports have demonstrated that Pt and Pt-based catalysts exhibit excellent catalytic activity for formic acid oxidation in alkaline and acidic circumstances,including Pt/C[12]and Pt-M(M=Au,Li,Sb,Ru,Ir,Bi)[13-20]and so on.Nevertheless,extremely low natural reserve and the exorbitant cost of Pt severely limit the large-scale commercial applications of Pt or Pt-based catalysts in DFAFC[21-22].A large numbers of studies have shown that pure Pd or Pdbased catalysts are found to be more promising alternative anode electrocatalysts for DFAFC owing to lower price and greater abundance of the metal Pd on the earth′s crust compared with metal Pt[23-27].Li et al.[28]synthesized phosphorus doped carbon supported Pd catalyst (Pd/P-C)by liquid reduction method,which exhibits the better electrocatalyst activity (0.8 A·mg-1)and stability for formic acid oxidation in acid medium.It is generally accepted that formic acid oxidation on Pd catalyst takes place primarily through a direct pathway,leading to the direct formation of CO2.However,there is still a small amount of formic acid being oxidized by an indirect pathway,resulting in the gradual accumulation of intermediates on the surface of the catalyst during the process of formic acid oxidation.These intermediates will make the catalyst got poisoning and lead to the decline in catalyst activity and long-term stability[29-31].Inspired by this,an effective strategy has been implemented by alloying of other transition metals with Pd to enhance both the electrocatalytic activity and long-term stability of the Pd catalyst such as bimetallic Pd-Pt[32],Pd-Ag[33],Pd-Sn[34-35],Pd-Ni[36],Pd-Au[37],trimetallic Pd-Ni-Cu[29],Pd-Ni-Ag[38]and Pd-Pt-Ni[39].Typically,Lu et al.[40]have successfully synthesized nanoneedle-covered Pd-Ag nanotubes through a galvanic displacement reaction with Ag nanorods at 100 ℃ (PdAg-100)and room temperature (PdAg-25)and obtained higher catalytic activity and stability than bulk Pd.Liu and coworkers[41]have reported Pd-Sn nanoparticles supported on Vulcan XC-72 carbon by a microwave-assisted polyol process,and results indicate that Pd2Sn1/C and Pd1Sn1/C catalysts exhibit higher current density for formic acid oxidation compared with the prepared Pd/C catalyst.Carbon supported ternary PdNiCu catalyst was prepared by Hu et al.[29]and exhibit an increased electroactivity for formic acid oxidation compared to that of binary Pd-Ni and Pd-Cu catalysts.Multi-walled carbon nanotube (CNT)supported Pd1Cu1Sn1ternarymetallic nanocatalyst was also studied by Zhu et al.[42]through chemical reduction with NaBH4as a reducing agent and it reveals a higher mass activity of 534.83 mA·mg-1Pdtowards formic acid oxidation compared with bimetallic PdCu/CNTs and PdSn/CNTs.These studies have revealed that Pd-based bimetallic and ternary-metallic catalysts show a superior electrochemicalactivity and stability for formic acid oxidation compared with pure Pd catalyst in virtue of synergistic effect between metals,electronic or surface effects[22,43].However,ternary-metallic catalysts are more effective than the corresponding bimetallic catalysts in tuning the electronic properties and composition of catalytic surfaces.Furthermore,ternary Pd-based catalysts are able to further improve Pd usage efficiency and enhance their electrocatalytic performances.Consequently,it is necessary to develop novel ternary Pd-based catalysts with less cost and higher performance for formic acid oxidation.In addition,the choice of suitable support for Pd-based catalyst is also significant to reduce the Pd loading and improve the dispersion of catalyst nanoparticles,such as carbon black,graphene,carbon nanotubes,conductive polymers and so on.Recently,carbon nanotubes (CNTs)as a potential carbon carrier have been reported by many researchers for Pd-based catalysts[42,44-46].As a support,CNTs possess unique structure and properties like high specific surface area,outstanding electronic conductivity and high chemical stability,which would be conducive to the dispersion and stability of Pdbased catalyst particles and further enhance their electroactivity[44,47].Therefore,carbon nanotubes are a prominent support in the development of electrocatalysts.

    In this study,carbon nanotubes supported Pd and Pd-based binary/ternary catalysts(Pd/CNT,PdAg/CNT,PdSn/CNT,PdAgSn/CNT)weresuccessfully synthesized by the NaBH4reduction method.The electrochemical activities of the prepared catalysts towards formic acid oxidation in both acidic and alkaline media were evaluated by cyclic voltammetry(CV)and chronoamperometry (CA)techniques.The results demonstrate that ternary Pd-Ag-Sn catalysts exhibit much higherelectrochemicalactivityand stability towards formic acid oxidation in both acid and alkaline media.

    1 Experimental conditions

    1.1 Chemicals

    Palladium chloride,stan nouschloride,silver nitrate,sodium borohydride,ethylene-glycol,formic acid,sodium hydroxide and sulfuric acid were analytical purity grade and used as received without further purification.Water was deionized water subjected to the double distillation.Before used,multi-walled carbon nanotubes (CNTs,>90% (w/w),outside diameter:10~20 nm,length:5~20 μm )were added to a mixture of concentrated H2SO4and concentrated HNO3(the volume ratio was 3 ∶1),and heated at 60 ℃ under stirring for 8 h to obtain the acidified CNTs.

    1.2 Catalyst synthesis

    Catalystswere synthesized according to our recent report[48].Typically,the ternary Pd7Ag1Sn2/CNT catalyst was prepared via the following steps:A metal precursor composed of 8.9 mg PdCl2,1.2 mg AgNO3and 3.2 mg SnCl2was added to the mixing solvent of 12 mL ethylene glycol and 4 mL water.Then the solid salts were fully dispersed for 30 min with ultrasonication to make them be completely dissolved.Then,30 mg of the acidified carbon nanotubes was added to the resulting solution and the mixture was further treated with ultra-sonication to obtain a uniform black ink.3 mL of 50 g·L-1NaBH4dissolved in ethylene glycol was added dropwise to it under stirring to reduce the metal ions,and the mixture was stirred for 5 h.Finally,the resulting suspension was filtered,washed with water and dried at 40℃in vacuum for 10 h to obtain the Pd7Ag1Sn2/CNT catalyst.Other catalysts (Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag2Sn2/CNT and Pd7Ag3Sn2/CNT)were prepared according to this procedure by adjusting the metal molar ratio in the metal precursors.For synthesis of Pd/CNT catalyst,the precursor was composed of 8.9 mg PdCl2.For Pd7Ag3/CNT catalyst,the precursor was composed of 8.9 mg PdCl2and 3.6 mg AgNO3.For Pd7Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2and 3.2 mg SnCl2.For Pd7Ag2Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2,2.4 mg AgNO3and 3.2 mg SnCl2.For Pd7Ag3Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2,3.6 mg AgNO3and 3.2 mg SnCl2.

    1.3 Characterization

    In order to further explore the microstructure and particle size distribution of the prepared catalysts,transmission election microscopic (TEM)images were recorded with a JEM-2100F.The X-ray diffraction(XRD)profiles of the prepared catalysts were collected to analyze the compositions of the samples in a D/MAX2500X diffractometer (Japan)operating with Cu Kα radiation generated at 40 kV and 250 mA (λ=0.154 18 nm)and 2θ=20°~90°.The elemental compositions and valence states of the samples were investigated by X-ray photoelectron spectroscopy (XPS)operated with an ESCALAB 250Xi spectrometer(VG Scientific Ltd.,England).Inductively coupled plasma(ICP-AES-7510,Shimadzu)data of the nanoparticles were acquired to determine the Pd loading relative to the total mass of the catalyst.XRD profiles,XPS and ICP of the prepared catalysts were also investigated in our recent work[48].

    1.4 Electrochemical measurements

    All electrochemical measurements of the prepared catalysts for formic acid oxidation in both acid and alkaline media were conducted in a conventional three-electrode system using an AutoLab PGSTAT30/FRA electrochemical workstation(Eco Chimie,The Netherlands).The counter electrode was a Pt sheet.A Ag/AgCl in saturated KCl solution was used as the reference electrode,and all potentials reported in this work were quoted versus the Ag/AgCl reference.The working electrode was a glassy carbon (GC)coated with a film of catalyst,which was fabricated as follows:the glassy carbon(GC,3 mm diameter,from LanLiKe,TianJing,China)was firstly polished with a 0.3 μm alumina suspension to give a mirror surface.Then,5 mg oftheas-synthesized catalystwasdispersed ultrasonically in the mixed solution containing 0.94 mL of ethanol and 60 μL of 5% (w/w)Nafion solution to obtain a homogeneous ink.Finally,15 μL of this ink was dropped onto the top surface of the polished GC disc by a micropipette and dried at room temperature to get the working electrode.The blank CVs of the electrocatalysts were recorded in both 0.5 mol·L-1H2SO4solution and 1.0 mol·L-1NaOH solution,and the corresponding electrocatalytic activities towards formic acid oxidation were investigated both in the solution of 0.5 mol·L-1H2SO4in the presence of HCOOH and in 1.0 mol·L-1NaOH containing HCOOH.For the sake of comparison,electroactivity of the commercial Pd/C for formic acid oxidation was also examined under the same conditions.All measurements were performed at room temperature (22±2)℃).

    2 Results and discussion

    2.1 Physical characterization

    Fig.1 TEM images and the corresponding size distributions of the Pd/CNT (a),Pd7Ag3/CNT (b),Pd7Sn2/CNT (c)and Pd7Ag2Sn2/CNT (d)samples

    Fig.1(a~d)show the TEM images of the prepared Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT and Pd7Ag2Sn2/CNT catalysts as the typical samples.The corresponding inset is the particle size distribution histogram of the catalyst sample.It is evident from the images that the metallic nanoparticles have been successfully decorated on the surface of multi-walled CNTs for all prepared catalysts.In addition,Pd/CNT,Pd7Ag3/CNT and Pd7Sn2/CNT catalysts exhibit obvious agglomeration between the nanoparticles and some particles are even stacked together to form clumps as shown in Fig.1(a~c),and their average particle sizes (Daverage)are 3.6,4.7 and 3.7 nm,respectively.For the ternary Pd7Ag2Sn2/CNT catalyst,however,most of the nanoparticles are well uniformly dispersed on the surface of CNTs except for a small amount of agglomeration as indicated in Fig.1d.Furthermore,the ternary Pd-Ag-Sn catalyst exhibits a smaller average particle size of 2.3 nm compared to Pd/CNT and binary Pd-Ag(or Pd-Sn)catalysts.Results indicate that an appropriate amount of Ag and Sn additives can effectively improve the dispersion of the Pd nanoparticles in the ternary Pd-Ag-Sn catalysts.

    XRD patterns and XPS data of the prepared catalysts were recorded as indicated in Fig.2.Fig.2a shows that the peaks at 40.1°,46.6°,68.1°and 82.1°are attributed to characteristic diffraction peaks of face-centered cubic (fcc)crystalline Pd for Pd/CNT catalyst.However,a slight negative shift is observed with regard to the angle position of the Pd diffraction peaks on the Pd7Ag3/CNT and Pd7Ag2Sn2/CNT catalysts compared to the Pd/CNT catalyst,while the Pd7Sn2/CNT catalyst does not show such a shift.This reveals that the alloy formation between Pd and Ag arises in the binary Pd7Ag3/CNT and ternary Pd-Ag-Sn catalysts.As is shown in Fig.2b,the binding energies at 335.7 and 340.4 eV are ascribed to Pd3d3/2and Pd3d5/2spin orbit states of zero-valent Pd[49].But the other two distinct peaks located at 337.3 and 342.7 eV are related to Pd3d3/2and Pd3d5/2peaks of Pdギ,which is indexed to the Pd oxide.These results indicate that the prepared Pd-based catalysts contain the metal Pd and Pd oxide.Fig.3b shows the XPS spectra of 3d for Pd7Ag3/CNT and Pd7Ag2Sn2/CNT catalysts,and the two obvious peaks centered at 367.9 and 373.9 eV are related to Ag3d5/2and Ag3d3/2respectively[50],revealing that Ag ions are reduced completely during the preparation of the catalysts.Similarly,as indicated in Fig.3c,Sn3d XPS spectra are divided into two peaks located at 486.8 and 487.4 eV,which are associated with Sn and SnO2[51],confirming that the metal Sn in the Pd7Ag2Sn2/CNT and Pd7Sn2/CNT catalysts exists in the form of Sn and SnO2.

    Fig.2 XRD (a)and XPS (b~d)spectra of the Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT and Pd7Ag2Sn2/CNT samples:(b)Pd3d,(c)Ag3d,and (d)Sn3d

    2.2 Electrochemical performance analysis

    Fig.3a shows CV curves of the prepared catalysts and Pd/C in 0.5 mol·L-1H2SO4solution.All catalysts reveal a similar CV curve to Pd/C in acidic solution.A well-defined hydrogen adsorption/desorption peaks around 0 V arises on all samples,and the cathode characteristic reduction peak (rp)of the Pd oxides produced during the forward potential scan is vividly observed at ca.0.48 V for all the catalysts.Also,the rppeak current density on the Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT,Pd7Ag3Sn2/CNT catalysts is 6.6,6.9,10.4,8.6,11.5,15.2 and 12.2 mA·cm-2,respectively.Fig.3b shows cyclic CV curves of the prepared catalysts and Pd/C in 1.0 mol·L-1NaOH solution.Similarly,the cathode reduction peak (rn)at ca.-0.41 V is attributed to the formation of Pd oxides during the forward-going,and the rnpeak current density is 14.3,17.0,20.5,24.6,20.2,31.4 and 24.0 mA·cm-2for Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT Pd7Ag3Sn2/CNT catalysts,respectively.Based on the charge of PdO reduction peak in each CV,the electrochemical active surface area (ECSA)of Pd for the samples can be calculated by using the methods reported in the literature and corresponding results are listed in Table 1[42,52-53].Results reveal that Pd7Ag2Sn2/CNT catalyst possesses the largest ECSA value of 9.56 m2·g-1in H2SO4solution and 15.34 m2·g-1in NaOH solution among the prepared catalysts and Pd/C,which is consistent with the results observed from TEM images.

    Fig.3 CV curves of the samples in 0.5 mol·L-1H2SO4 (a)and in 1.0 mol·L-1NaOH (b)at a scan rate of 50 mV·s-1

    Table 1 ECSA values of Pd/C and the prepared samples in both 1 mol·L-1NaOH and 0.5 mol·L-1H2SO4solution

    Fig.4 CV curves of the samples in 0.5 mol·L-1H2SO4containing 0.5 mol·L-1HCOOH (a)and in 1.0 mol·L-1NaOH containing 0.5 mol·L-1HCOOH (b)at a scan rate of 50 mV·s-1

    Electrocatalytic activity of the prepared catalysts for formic acid oxidation was measured in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1formic acid by CV as indicated in Fig.4a.A characteristic anodic peaks jf1caused by formic acid oxidation is observed for all catalysts.In general,all the as-synthesized Pdbased catalysts exhibit better electrocatalytic activity for formic acid oxidation than Pd/C.Further,the ternary Pd7Ag2Sn2/CNT catalyst shows the largest jf1peak current density of 108.8 mA·cm-2,which is 6.7 times higher than the Pd/C catalyst.Also,the jf1peak current density on the binary Pd7Ag3/CNT and Pd7Sn2/CNT catalysts is 2.7 and 2.3 times larger than that of Pd/C catalyst respectively.This may be contributed to the synergistic effect between Pd and Ag/Sn[2,26].Furthermore,ternary Pd7Ag1Sn2/CNT and Pd7Ag2Sn2/CNT catalysts display an onset potential (OP)of ca.-0.06 V for formic acid oxidation in acidic media,which presents a negative shift compared to that of ca.-0.045 V on the other catalysts.Fig.4b shows the CV curves of all samples in 1.0 mol·L-1NaOH solution containing 0.5 mol·L-1formic acid.Compared to formic acid oxidation in acidic solution (Fig.4a),the formic acid oxidation in alkaline solution (Fig.4b)presents a much negative onset potential of ca.-0.82 V.Fig.4b also shows that during the forward-going scan,formic acid oxidation current density displays an almost linear increment with the positive shift of the anodic potential until an anodic peak jf2at ca.0.2 V arises.The anodic current density for formic acid oxidation in alkaline medium follows the order:Pd7Ag2Sn2/CNT>Pd7Ag1Sn2/CNT>Pd7Ag3/CNT>Pd7Ag3Sn2/CNT>Pd/CNT >Pd7Sn2/CNT >Pd/C.Obviously,the ternary Pd7Ag2Sn2/CNT catalyst presents the best electrocatalytic activity for formic acid oxidation in alkaline medium among the prepared catalysts.

    It is generally considered that there are two possible parallel pathways for the oxidation of formic acid[42,44]:(i)a “direct pathway”in which formic acid is directly oxidized to CO2without production of any intermediate and (ii)an “indirect pathway” which involves two steps including the dehydrogenation of formic acid and the adsorption of CO intermediate on the Pd catalyst surface.The choice of the pathway greatly depends on the properties of the catalyst used.Normally,the direct pathway prevails for formic acid oxidation on Pd-containing catalysts[54-55].The processes of formic acid oxidation in acidic solution are based on the following equations (1)~(3)[44]:

    During formic acid oxidation,the adsorbed HCOOad(HCOO-Pd)species are firstly formed via the adsorption of formic acid molecules on the surface of Pd-based catalysts and subsequent break of O-H bond in the adsorbed HCOOH (HCOOHad)(Equation (1).Then,decomposition of the HCOOadspecies produces CO2by breaking C-H bond (equation (2).In alkaline media,electro-oxidation of formic acid on Pd-based catalysts follows a similar mechanism to that in acidic media except that the adsorbed HCOOadspecies on Pd can be formed easier because of the neutralization reaction between HCOOH and NaOH,leading to the much negative onset potential of formic acid oxidation.In general,the addition of others metal or metal oxide to Pd catalyst can significantly improve its electroactivity due to the synergistic effect of different metals.It is noticed from Fig.4 that the Pd7Ag2Sn2/CNT catalyst displays the highest current density of formic acid oxidation in both acidic and alkaline media among the prepared catalysts,reflecting that the addition of proper amount of Ag or Sn isconducivetoenhancetheelectrochemical activity.It is known from the XRD data of the prepared catalysts that the alloying between Pd and Ag arises.Based on the so-called bifunctional mechanism therefore,the adsorption bond of intermediates like absorbed CO (COad)and COOH (COOHad)at the surface of catalysts,produced by formic oxidation during the forward scan,can be efficaciously weakened by the Pd-Ag bimetallic alloy.This makes the decomposition of formic acid to CO2go into easier.Furthermore,the presence of Pd-Ag alloy can also prominently reduce the accumulation of poisoningintermediates on the catalyst surface and release more Pd active sites.The presence of SnO2observed from the XPS data may also contribute to the removal of toxic intermediates to accelerate the adsorption and desorption of formic acid on the catalyst surface.

    Effect of formic acid concentration on the kinetic characterization of formic acid oxidation was further investigated.Fig.5a shows the CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4solution with different formic acid concentrations at 50 mV·s-1,and Fig.5b depictstherelationship between the anodic peak current density and HCOOH concentration.As can be seen from Fig.5b,the jp1peak current density exhibits a rapid rise with the formic acid concentration in the range of 0.5 to 1.8 mol·L-1,while it displays a decrease from 1.8 to 2.5 mol·L-1.In addition,the jp1peak potential shifts to more positive direction at the higher concentration of formic acid.In 1 mol·L-1NaOH solution,dependence of the jp2peak current density upon HCOOH concentration is also studied as indicated in Fig.6(a,b).A similar changing trend of the jp1peak current density vs HCOOH concentration to Fig.5b is observed,revealing that the HCOOH concentration hasthe same effecton electroactivity of the ternary Pd7Ag2Sn2/CNT catalyst in both acidic and alkaline media.At high concentrations of HCOOH,the jp1peak current density for the oxidation of formic acid on the Pd7Ag2Sn2/CNT catalystdecreases.Thismay be related to the saturated adsorption of HCOOH on Pd active sites at high concentrations of HCOOH.On the other hand,high concentrations of HCCOH may result in partial decomposition of HCOOH to produce CO(equation(4),which is absorbed on the surface of the catalyst and reduce the electroactivity of the catalyst.

    Fig.5 (a)CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4solution with different formic acid concentrations at 50 mV·s-1;(b)Relationship between the anodic peak current density and HCOOH concentration (CHCOOH)for ternary Pd7Ag2Sn2/CNT catalyst

    Fig.6 (a)CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 1.0 mol·L-1NaOHsolution with different formic acid concentrations at 50 mV·s-1;(b)Relationship between the anodic peak current density and HCOOH concentration for ternary Pd7Ag2Sn2/CNT catalyst

    Fig.7(a,b)displays the CV curves for the oxidation of pre-adsorbed carbon monoxide (CO)on Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in order to investigate the anti-poisoning intermediates ability of the catalysts.It is shown from Fig.7a recorded in 0.5 mol·L-1H2SO4solution that an intense stripping peak of COadis observed on the catalysts.The peak potential of CO stripping on Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts is 0.792,0.726 and 0.722 V,respectively,reflecting that the prepared catalysts in this work have more negative CO stripping peak potential values than that of the Pd/C catalyst.The lower potential displays the weaker binding energy between Pd and COadon Pd/CNT and Pd7Ag2Sn2/CNT catalysts.Notably,the onset potential of CO oxidation for Pd7Ag2Sn2/CNT catalyst is measured at 0.67 V,showing a negative shift compared to that for Pd/C(0.72 V)and Pd/CNT (0.70 V).Results indicate that the COadon the surface of the Pd7Ag2Sn2/CNT catalyst can be more easily removed.Furthermore,the CO stripping isalso tested forPd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in mol·L-1NaOH solution as indicated in Fig.7b.It is worth noting that the Pd/CNT and Pd7Ag2Sn2/CNT catalysts also exhibit a more negative CO stripping peak potential at ca.-0.19 V compared to Pd/C catalyst(ca.-0.139 V).These results show that the ternary Pd7Ag2Sn2/CNT catalyst possesses much better resistance to COadpoisoning than the Pd/C and Pd/CNT catalysts.

    The long-term electrocatalytic activity of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts is evaluated by CA measurement in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1HCOOH at different potentials as depicted in Fig.8.The current density of the studied catalysts exhibits a continuous decay in the initial stage at both 0.05 (Fig.8a)and 0.1 V (Fig.8b).This may be attributed to the adsorption of CO-like intermediates on the surface of the catalysts,leading to the decline on the number of the active sites[22,56].However,the Pd7Ag2Sn2/CNT catalystexhibits a significantly slower decay rate of current density than the Pd/C and Pd/CNT catalysts.Additionally,at the end of electrolysis (at 3 600 s),the current density on the ternary Pd7Ag2Sn2/CNT catalyst is 5.8 mA·cm-2at 0.05 V or 14.2 mA·cm-2at 0.1 V,which is still the highest among the studied catalysts.Fig.9 also shows CA curves of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in 1 mol·L-1NaOH solution containing 0.5 mol·L-1HCOOH at the potentials of-0.75 and-0.45 V.Apparently,the current density of ternary Pd7Ag2Sn2/CNT catalyst is 13.7 mA·cm-2at-0.75 V after 3 600 s as shown in Fig.9a,which is almost 3.3 and 7.2 times larger than that of the Pd/C (4.2 mA·cm-2)and Pd/CNT (1.9 mA·cm-2)catalysts,respectively.In addition,it can be also observed from Fig.9b that ternary Pd7Ag2Sn2/CNT catalysthas the highest current density among the studied catalysts at the potential of-0.45 V after 3 600 s.The above results demonstrate that the as-synthesized ternary Pd7Ag2Sn2/CNT catalyst displays excellent electrocatalytic activity and more outstanding durability towards formic acid oxidation in both acidic and alkaline media,which is consistent with the results derived from CV analyses.

    Fig.7 CO stripping curves of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in 0.5 mol·L-1H2SO4 (a)and 1.0 mol·L-1NaOH (b)at a scan rate of 50 mV·s-1

    Fig.8 Chronoamperometric responses of the Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4comtaining 0.5 mol·L-1HCOOH at 0.05 V (a)and 0.1 V (b)

    Fig.9 Chronoamperometric responses of the Pd7Ag2Sn2/CNT catalyst in 1.0 mol·L-1NaOH comtaining 0.5 mol·L-1HCOOH at-0.75 V (a)and-0.45 V (b)

    Fig.10 shows the CV profiles of the prepared catalysts where the current density is based on the mass of Pd to show the Pd usage efficiency for formic acid oxidation.It can be found from Fig.10a that during the forward-going scan the anodic peak mass current density of the Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT, Pd7Ag1Sn2/CNT, Pd7Ag2Sn2/CNT and Pd7Ag3Sn2/CNT catalysts towards formic acid oxidation in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1HCOOH is 153,274,474,431,1 030,1 364 and 767 mA·respectively,which indicates that the ternary Pd7Ag2Sn2/CNT catalyst has the highest Pd mass current density among the prepared catalysts.Zhu et al.[42]prepared the ternary PdCuSn/CNTs catalyst with the mass current density of 534.8 mA·Binary PdCo/CFC catalyst was also synthesized with the mass current density of 1 220 mA·by Vafaei and co-workers[57].Compared with the reported catalysts,the ternary Pd7Ag2Sn2/CNT catalyst prepared in this work exhibits excellent electrocatalytic activity and higherPd usageefficiencyforformicacid oxidation.Additionally,the ternary Pd7Ag2Sn2/CNT catalyst also displays the highest Pd mass current density in 1 mol·L-1NaOH solution containing 0.5 mol·L-1HCOOH as indicated in Fig.10b,which is as high as 2 640 mA·mg-1Pd.These results reveal that the ternary Pd7Ag2Sn2/CNT catalyst can be applied to DFAFCs as a promising anodic catalyst for formic acid oxidation in both acidic and alkaline media due to the synergetic effect between Pd and Ag/Sn.

    Fig.10 CV curves based on the Pd mass current density in 0.5 mol·L-1H2SO4containing 0.5 mol·L-1HCOOH (a)and in 1.0 mol·L-1NaOH containing 0.5 mol·L-1HCOOH (b)based on Fig.4

    3 Conclusions

    In summary,carbon nanotube-supported Pdbased catalysts including Pd/CNT,binary Pd-Ag/CNT and ternary Pd-Ag-Sn/CNT were synthesized by the conventional NaBH4reduction method.The metal nanoparticles of ternary Pd7Ag2Sn2/CNT catalyst are uniformly dispersed on the surface of the carbon nanotubes with an average size of about 2.3 nm.Among the catalysts investigated,the ternary Pd7Ag2Sn2/CNT catalyst has the best catalytic performance and stability towards formic acid oxidation in both acidic and alkaline media.These outstanding features may be ascribed to the formation of Pd-Ag alloy and the presence of SnO2,which are conducive to the reducing of the accumulation of poisoning-intermediates and the releasing of the active sites of Pd during the formic acid electro-oxidation.Meanwhile,the ternary Pd7Ag2Sn2/CNT catalyst exhibits the highest Pd mass current density of 1 364 mA·mg-1in H2SO4solution or 2 640 mA·mg-1in NaOH solution,showing the ultra high usage efficiency of Pd in the prepared Pdbased catalysts towards formic acid oxidation.Results imply that the ternary Pd-Ag-Sn catalyst may be a very promising anodic electrocatalyst for direct formic acid fuel cells.

    Acknowledgement:Financial support by the National Natural Science Foundation of China (Grant No.21376070)is gratefully acknowledged.

    :

    [1]Lu X Y,Zheng L,Zhang M S,et al.Electrochim.Acta,2017,238:194-201

    [2]Xu H,Yan B,Zhang K,et al.Appl.Surf.Sci.,2017,416:191-199

    [3]Budischak C,Sewell D,Thomson H,et al.J.Power Sources,2013,225(3):60-74

    [4]Miao K H,LuoY,Zou J S,et al.Electrochim.Acta,2017,251:588-594

    [5]El-Nagar G A,Dawood K M,El-Deab M S,et al.Appl.Catal.,B,2017,213:118-126

    [6]Yi Q F,Zou T,Zhang Y Y,et al.J.Power Sources,2016,321:219-225

    [7]Yu X W,Pickup P G.J.Power Sources,2008,182(1):124-132

    [8]Rhee Y W,Ha S Y,Masel R I.J.Power Sources,2003,117(1/2):35-38

    [9]ZOU Tao(鄒濤),YI Qing-Feng(易清風(fēng)),ZHANG Yuan-Yuan(張媛媛),et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報),2017,38(1):101-107

    [10]Winjobi O,Zhang Z Y,Liang C H,et al.Electrochim.Acta,2010,55(13):4217-4221

    [11]Yi Q F,Zhang J J,Chen A C,et al.J.Appl.Electrochem.,2008,38(5):695-701

    [12]Zhu C X,Liu D,Chen Z,et al.J.Colloid Interface Sci.,2018,511:77-83

    [13]Cabello G,Davoglio R A,Hartl F W,et al.Electrochim.Acta,2017,224:56-63

    [14]Han Y,Ouyang Y J,Xie Z H,et al.J.Mater.Sci.Technol.,2016,32(7):639-645

    [15]Awaludin Z,Okajima T,Ohsaka T.Electrochem.Commun.,2013,31:100-103

    [16]Yang H Z,Dai L,Xu D,et al.Electrochim.Acta,2010,55(27):8000-8004

    [17]Yi Q F,Chen A C,Huang W,et al.Electrochem.Commun.,2007,9(7):1513-1518

    [18]Choi J H,Jeong K J,Dong Y J,et al.J.Power Sources,2006,163(1):71-75

    [19]Yi Q F,Li L,Yu W Q,et al.J.Alloys Compd.,2008,466(1/2):52-58

    [20]ZHANG Li-Juan(張麗娟),XIA Ding-Guo(夏定國).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2006,22(6):1085-1089

    [21]Li R X,Ma Z Z,Zhang F,et al.Electrochim.Acta,2016,220:193-204

    [22]Xu H,Zhang K,Yan B,et al.J.Power Sources,2017,356:27-35

    [23]Xin Z L,Wang S H,Wang J,et al.Electrochem.Commun.,2016,67:26-30

    [24]Wang Y R,He Q L,Wei H G,et al.Electrochim.Acta,2015,184:452-465

    [25]Krishna R,Fernandes D M,Marinoiu A,et al.Int.J.Hydrogen Energy,2017,42(37):23639-23646

    [26]CHEN Ying(陳瀅),TANG Ya-Wen(唐亞文),GAO Ying(高穎),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2008,24(4):560-564

    [27]SHEN Juan-Zhang (沈 娟章),TANG Ya-Wen (唐 亞文),LU Tian-Hong (陸 天虹).Chinese J.Inorg.Chem.(無 機化 學(xué) 學(xué)報),2012,28(2):326-330

    [28]Li J D,Tian Q F,Jiang S Y,et al.Electrochim.Acta,2016,213:21-30

    [29]Hu S Z,Munoz F,Noborikawa J,et al.Appl.Catal.,B,2016,180:758-765

    [30]Jiang K,Zhang H X,Zou S Z,et al.Phys.Chem.Chem.Phys.,2014,16(38):20360-20376

    [31]Haan J L,Stafford K M,Masel R I.J.Phys.Chem.C,2010,114(26):11665-11672

    [32]Yi Q F,Huang W,Liu X P,et al.J.Electroanal.Chem.,2008,619(1):197-205

    [33]Liu D,Xie M L,Wang C M,et al.Nano Res.,2016,9(6):1590-1599

    [34]Tu D D,Wu B,Wang B X,et al.Appl.Catal.,B,2011,103(1/2):163-168

    [35]Yi Q F,Chen Q H,Yang Z.J.Power Sources,2015,298:171-176

    [36]Zhang Y Y,Yi Q F,Zou T,et al.Ionics,2017,23:3169-3176

    [37]Suo Y G,Hsing I M.Electrochim.Acta,2011,56:2174-2183

    [38]Yurderi M,Bulut A,Zahmakirana M,et al.Appl.Catal.,B,2014,160(7):514-524

    [39]Zhang J M,Wang R X,Nong R J,et al.Int.J.Hydrogen Energy,2017,42(10):7226-7234

    [40]Lu Y Z,Chen W.J.Phys.Chem.C,2010,114(49):21190-21200

    [41]Liu Z L,Zhang X H.Electrochem.Commun.,2009,11(8):1667-1670

    [42]Zhu F C,Ma G S,Bai Z C,et al.J.Power Sources,2013,242(22):610-620

    [43]Shen Y Y,Sun Y,Zhou L N,et al.J.Mater.Chem.A,2014,2(9):2977-2984

    [44]Marin?ek M,?ala M,Jancˇar B.J.Power Sources,2013,235(8):111-116

    [45]Yi Q F,Chu H,Tang M X,et al.J.Electroanal.Chem.,2015,739:178-186

    [46]Cazares-ávila E,Ruiz-Ruiz E J,Hernández-Ramírez A,et al.Int.J.Hydrogen Energy,2017,42(51):30349-30358

    [47]Carmo M,Paganin V A,Rosolen J M,et al.J.Power Sources,2005,142(1):169-176

    [48]Zhang Y Y,Yi Q F,Deng Z L,et al.Catal.Lett.,2018,148:1190-1201

    [49]Xiong B,Zhou Y K,Zhao Y Y,et al.Carbon,2013,52(2):181-192

    [50]Yang Z Z,Wang X L,Kang X,et al.Electrochim.Acta,2017,236:72-81

    [51]Lewera A,Barczuk P J,Skorupska K,et al.J.Electroanal.Chem.,2011,662(1):93-99

    [52]Kakaei K,Dorraji M.Electrochim.Acta,2014,143:207-215

    [53]Li S S,Wang A J,Hu Y Y,et al.J.Mater.Chem.A,2014,2(43):18177-18183

    [54]Ha S,Larsen R,Masel R I.J.Power Sources,2005,144(1):28-34

    [55]Wang Y Y,Qi Y Y,Zhang D J.Comput.Theor.Chem.,2014,1049:51-54

    [56]Zhang S X,Qing M,Zhang H,et al.Electrochem.Commun.,2009,11(11):2249-2252

    [57]Vafaei M,Rezaei M,Tabaian S H,et al.J.Solid State Electrochem.,2015,19(1):289-298

    猜你喜歡
    秀林天虹機化
    尼的呀 尼的呀
    歌海(2024年5期)2024-01-01 00:00:00
    WANG Xiaoping. Chinese Literature and Culture in the Age of Global Capitalism:Renaissance or Rehabilitation?
    高速公路工程中瀝青混凝土拌合站配置和管理
    科學(xué)家(2022年4期)2022-05-10 02:10:11
    基于“脾胃內(nèi)傷”辨治隱源性機化性肺炎
    平江農(nóng)田宜機化改造出實效
    重慶市農(nóng)機總站召開農(nóng)田宜機化改造技術(shù)培訓(xùn)暨工作推進座談會
    電腦迷(2020年11期)2020-12-16 17:45:40
    李秀林攝影作品
    李秀林攝影作品
    局灶性機化性肺炎與周圍型肺癌MSCT鑒別診斷分析
    雄安千年秀林
    ——近自然造林開先河
    九色亚洲精品在线播放| av.在线天堂| 一级爰片在线观看| 无遮挡黄片免费观看| 精品亚洲乱码少妇综合久久| 一级爰片在线观看| 精品人妻熟女毛片av久久网站| 国产av一区二区精品久久| 久久久精品区二区三区| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃| 韩国精品一区二区三区| 搡老岳熟女国产| 91精品三级在线观看| 国产在线免费精品| 久久99一区二区三区| 91国产中文字幕| 日日撸夜夜添| 欧美另类一区| 777米奇影视久久| 国产欧美亚洲国产| 丁香六月天网| 国产淫语在线视频| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠躁躁| 自线自在国产av| 女的被弄到高潮叫床怎么办| 丝袜喷水一区| 另类亚洲欧美激情| 亚洲精品美女久久av网站| 亚洲成人av在线免费| 国产免费福利视频在线观看| 观看av在线不卡| av又黄又爽大尺度在线免费看| 精品一区二区三区av网在线观看 | 国产欧美日韩综合在线一区二区| 又粗又硬又长又爽又黄的视频| 国产成人av激情在线播放| 国产免费一区二区三区四区乱码| www日本在线高清视频| 久久久久精品性色| 免费黄色在线免费观看| 在线观看www视频免费| 熟妇人妻不卡中文字幕| 欧美精品高潮呻吟av久久| 一边摸一边抽搐一进一出视频| 国产成人a∨麻豆精品| 我的亚洲天堂| 成人漫画全彩无遮挡| 国产精品三级大全| 成人国产av品久久久| 国产毛片在线视频| 秋霞伦理黄片| 91成人精品电影| 超碰97精品在线观看| 国产精品99久久99久久久不卡 | 天天影视国产精品| 如何舔出高潮| 亚洲自偷自拍图片 自拍| 国产精品欧美亚洲77777| 国产极品粉嫩免费观看在线| 国产伦人伦偷精品视频| 久久国产精品大桥未久av| 国产欧美亚洲国产| 亚洲精品中文字幕在线视频| netflix在线观看网站| 成人国产av品久久久| 久久精品国产亚洲av涩爱| 久久狼人影院| bbb黄色大片| 日韩av在线免费看完整版不卡| 亚洲第一区二区三区不卡| 色94色欧美一区二区| 欧美激情高清一区二区三区 | 国产亚洲最大av| 最新在线观看一区二区三区 | 另类亚洲欧美激情| 午夜福利视频在线观看免费| 丰满饥渴人妻一区二区三| 国产 精品1| 亚洲 欧美一区二区三区| 国产精品免费大片| 最新在线观看一区二区三区 | 亚洲国产毛片av蜜桃av| 欧美精品亚洲一区二区| 国产精品久久久久成人av| 久久久久人妻精品一区果冻| 国产亚洲午夜精品一区二区久久| 亚洲精品,欧美精品| 成年美女黄网站色视频大全免费| 中文字幕人妻丝袜一区二区 | 日本午夜av视频| 91aial.com中文字幕在线观看| 男女免费视频国产| 精品免费久久久久久久清纯 | av在线播放精品| 精品第一国产精品| av国产精品久久久久影院| 9191精品国产免费久久| 一二三四在线观看免费中文在| 丝瓜视频免费看黄片| h视频一区二区三区| 国产乱人偷精品视频| 精品人妻在线不人妻| 国产伦人伦偷精品视频| 99香蕉大伊视频| 最近最新中文字幕免费大全7| 男人操女人黄网站| 亚洲av欧美aⅴ国产| a级毛片在线看网站| 日韩中文字幕视频在线看片| 色视频在线一区二区三区| 九色亚洲精品在线播放| 欧美亚洲日本最大视频资源| 欧美在线黄色| 日韩熟女老妇一区二区性免费视频| 欧美日韩一区二区视频在线观看视频在线| av免费观看日本| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| 精品久久久精品久久久| 久久精品亚洲熟妇少妇任你| 久久人人97超碰香蕉20202| 久久久精品免费免费高清| 国产av精品麻豆| 国产黄频视频在线观看| 久久ye,这里只有精品| 国产在视频线精品| 亚洲成人一二三区av| 亚洲国产精品国产精品| 18禁国产床啪视频网站| 精品福利永久在线观看| 一区二区av电影网| av天堂久久9| 亚洲国产av新网站| 丰满乱子伦码专区| 黑人欧美特级aaaaaa片| 啦啦啦中文免费视频观看日本| 日本av手机在线免费观看| 久久久久精品性色| 九九爱精品视频在线观看| 精品国产一区二区三区四区第35| 天天添夜夜摸| 亚洲精品aⅴ在线观看| 日本av免费视频播放| 女人精品久久久久毛片| 久久久精品94久久精品| 毛片一级片免费看久久久久| 黄色毛片三级朝国网站| 在线观看免费高清a一片| 一级毛片我不卡| 日韩一区二区三区影片| 新久久久久国产一级毛片| 免费看不卡的av| 欧美日韩亚洲综合一区二区三区_| 交换朋友夫妻互换小说| 国产极品粉嫩免费观看在线| xxx大片免费视频| 人人澡人人妻人| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 日本黄色日本黄色录像| 欧美xxⅹ黑人| 视频区图区小说| 男女边吃奶边做爰视频| 欧美久久黑人一区二区| 一区二区三区四区激情视频| 色婷婷久久久亚洲欧美| 色吧在线观看| 欧美中文综合在线视频| av一本久久久久| 亚洲国产欧美网| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 亚洲欧美一区二区三区黑人| 永久免费av网站大全| av.在线天堂| 久久久久精品久久久久真实原创| 精品国产一区二区久久| 777米奇影视久久| 午夜福利视频精品| 久久久久久人人人人人| 亚洲第一青青草原| a级毛片在线看网站| 日韩一卡2卡3卡4卡2021年| 亚洲欧洲日产国产| 亚洲婷婷狠狠爱综合网| 99热全是精品| av视频免费观看在线观看| 久久人妻熟女aⅴ| 国产女主播在线喷水免费视频网站| 成人国语在线视频| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡| 制服丝袜香蕉在线| 69精品国产乱码久久久| 久久久精品94久久精品| 久久久精品区二区三区| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 蜜桃国产av成人99| 人人妻人人爽人人添夜夜欢视频| 汤姆久久久久久久影院中文字幕| 国产精品免费大片| 一级a爱视频在线免费观看| 国产日韩欧美在线精品| 黄色视频不卡| 国产极品天堂在线| 国产片内射在线| 在线 av 中文字幕| 亚洲伊人色综图| 中文字幕人妻丝袜一区二区 | 在线观看三级黄色| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 九草在线视频观看| av免费观看日本| 日本av手机在线免费观看| 国产在视频线精品| 久久久久久人妻| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久精品精品| 亚洲精品中文字幕在线视频| 人妻一区二区av| 国产黄频视频在线观看| 久久综合国产亚洲精品| 97精品久久久久久久久久精品| 丝袜喷水一区| 亚洲成人av在线免费| 日韩一卡2卡3卡4卡2021年| 一区二区三区四区激情视频| 女人被躁到高潮嗷嗷叫费观| 久久av网站| 交换朋友夫妻互换小说| 久久精品久久久久久噜噜老黄| 激情五月婷婷亚洲| 又黄又粗又硬又大视频| 亚洲成人一二三区av| 国产色婷婷99| 久久人妻熟女aⅴ| 日韩伦理黄色片| 国产av国产精品国产| 飞空精品影院首页| 欧美黄色片欧美黄色片| 男女边摸边吃奶| 大码成人一级视频| 国产成人免费无遮挡视频| 如何舔出高潮| 国产色婷婷99| 亚洲欧美一区二区三区黑人| 91aial.com中文字幕在线观看| 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 欧美日韩视频高清一区二区三区二| 少妇人妻精品综合一区二区| 老熟女久久久| 久久久国产精品麻豆| 美女高潮到喷水免费观看| 国产av精品麻豆| 日韩av不卡免费在线播放| 午夜老司机福利片| 丁香六月欧美| 熟妇人妻不卡中文字幕| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站 | 在线观看三级黄色| 欧美人与性动交α欧美软件| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 日本wwww免费看| 综合色丁香网| 男人爽女人下面视频在线观看| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 日韩av免费高清视频| 色播在线永久视频| 国产乱来视频区| 日韩一区二区视频免费看| a级毛片在线看网站| 激情五月婷婷亚洲| 又黄又粗又硬又大视频| 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 国产免费又黄又爽又色| 一级片免费观看大全| 国产男女内射视频| 国产精品久久久久久精品电影小说| 一区福利在线观看| 视频在线观看一区二区三区| 久久久久久久精品精品| 高清在线视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕免费大全7| 久久久久久久久免费视频了| 一边摸一边抽搐一进一出视频| 亚洲精品一区蜜桃| 国产精品久久久人人做人人爽| 国产av码专区亚洲av| av福利片在线| av一本久久久久| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 亚洲,欧美精品.| 国产av码专区亚洲av| 日本一区二区免费在线视频| 欧美精品av麻豆av| 久久久久人妻精品一区果冻| 欧美国产精品va在线观看不卡| 熟妇人妻不卡中文字幕| 午夜免费男女啪啪视频观看| 色94色欧美一区二区| 国产极品天堂在线| 天堂8中文在线网| 日韩中文字幕欧美一区二区 | 久久久国产一区二区| 女人爽到高潮嗷嗷叫在线视频| 日本欧美国产在线视频| 韩国精品一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲精品美女久久久久99蜜臀 | 十八禁网站网址无遮挡| 亚洲第一区二区三区不卡| 免费观看a级毛片全部| 国产精品女同一区二区软件| 不卡av一区二区三区| 飞空精品影院首页| 国产成人精品福利久久| 最近中文字幕2019免费版| 亚洲精品久久久久久婷婷小说| 久久这里只有精品19| 亚洲av电影在线观看一区二区三区| 9热在线视频观看99| 国产精品久久久av美女十八| 国产在线免费精品| 最新的欧美精品一区二区| 国产一区二区在线观看av| 人人澡人人妻人| a级毛片黄视频| 亚洲成人免费av在线播放| 久久婷婷青草| 国产熟女欧美一区二区| 精品国产一区二区久久| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区久久| 18禁观看日本| 精品人妻熟女毛片av久久网站| 汤姆久久久久久久影院中文字幕| 亚洲国产中文字幕在线视频| www日本在线高清视频| 午夜福利视频在线观看免费| 亚洲欧美成人精品一区二区| 这个男人来自地球电影免费观看 | 亚洲四区av| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| 日韩大码丰满熟妇| 欧美中文综合在线视频| av女优亚洲男人天堂| 午夜影院在线不卡| 国产高清不卡午夜福利| 哪个播放器可以免费观看大片| 熟女少妇亚洲综合色aaa.| 99久国产av精品国产电影| 少妇精品久久久久久久| 亚洲中文av在线| 婷婷色综合大香蕉| 最近中文字幕高清免费大全6| 中文字幕精品免费在线观看视频| a 毛片基地| 女人高潮潮喷娇喘18禁视频| videos熟女内射| 色网站视频免费| 国产精品无大码| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 国产伦理片在线播放av一区| 黄片无遮挡物在线观看| 日本vs欧美在线观看视频| 欧美少妇被猛烈插入视频| 欧美日韩av久久| 久热这里只有精品99| 亚洲人成电影观看| 国产精品 欧美亚洲| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 国产免费福利视频在线观看| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 国产精品.久久久| 99精品久久久久人妻精品| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 熟女av电影| 丝袜人妻中文字幕| av一本久久久久| 悠悠久久av| 亚洲av日韩精品久久久久久密 | 午夜福利视频精品| 亚洲国产欧美日韩在线播放| 最新的欧美精品一区二区| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 国产在线视频一区二区| 日韩一卡2卡3卡4卡2021年| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 制服诱惑二区| xxxhd国产人妻xxx| 亚洲国产看品久久| 在线观看免费日韩欧美大片| 夜夜骑夜夜射夜夜干| 日本欧美视频一区| 日韩大码丰满熟妇| 99久国产av精品国产电影| 赤兔流量卡办理| 亚洲色图 男人天堂 中文字幕| 欧美久久黑人一区二区| 亚洲国产成人一精品久久久| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | 老汉色∧v一级毛片| 亚洲,欧美,日韩| 中文字幕人妻熟女乱码| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看| 免费不卡黄色视频| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| 精品免费久久久久久久清纯 | 国产精品免费视频内射| 国产av一区二区精品久久| 七月丁香在线播放| 9热在线视频观看99| 中文字幕人妻丝袜一区二区 | 亚洲精品日本国产第一区| 日韩电影二区| 亚洲精品日韩在线中文字幕| 啦啦啦在线免费观看视频4| 亚洲图色成人| 国产熟女欧美一区二区| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 美女主播在线视频| 91老司机精品| 亚洲欧美一区二区三区久久| 两个人免费观看高清视频| 亚洲精品视频女| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 韩国av在线不卡| 久久99一区二区三区| 青青草视频在线视频观看| videosex国产| 嫩草影院入口| 男的添女的下面高潮视频| 在线观看www视频免费| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 91成人精品电影| 免费av中文字幕在线| 日韩欧美一区视频在线观看| 日韩成人av中文字幕在线观看| 国产男女超爽视频在线观看| 一级毛片我不卡| 老鸭窝网址在线观看| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 国产精品久久久av美女十八| 成人影院久久| 蜜桃在线观看..| 美女福利国产在线| 成人免费观看视频高清| a级毛片黄视频| 精品福利永久在线观看| 999精品在线视频| 91aial.com中文字幕在线观看| 亚洲av在线观看美女高潮| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 欧美日韩视频高清一区二区三区二| 国产淫语在线视频| 2018国产大陆天天弄谢| 深夜精品福利| 成人影院久久| 欧美黄色片欧美黄色片| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 国产乱来视频区| 日韩制服骚丝袜av| 久久人人97超碰香蕉20202| 亚洲国产av影院在线观看| 午夜福利乱码中文字幕| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 美女中出高潮动态图| 日本av手机在线免费观看| 18禁国产床啪视频网站| 天堂8中文在线网| 久久婷婷青草| 色视频在线一区二区三区| 亚洲成人av在线免费| 日韩免费高清中文字幕av| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| a级毛片在线看网站| 狠狠精品人妻久久久久久综合| bbb黄色大片| 亚洲精品久久成人aⅴ小说| 国产精品 欧美亚洲| 国产毛片在线视频| 欧美人与性动交α欧美软件| 大香蕉久久成人网| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久av网站| 国产精品女同一区二区软件| 欧美日本中文国产一区发布| 欧美另类一区| 亚洲,欧美,日韩| 在线观看免费高清a一片| 精品国产乱码久久久久久男人| 男人爽女人下面视频在线观看| 日韩人妻精品一区2区三区| 伊人久久大香线蕉亚洲五| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 久久天躁狠狠躁夜夜2o2o | 天美传媒精品一区二区| 中文字幕人妻丝袜制服| 亚洲精品国产av成人精品| 伊人亚洲综合成人网| 中文字幕制服av| 色婷婷av一区二区三区视频| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 毛片一级片免费看久久久久| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 在线精品无人区一区二区三| 国产成人欧美在线观看 | 美国免费a级毛片| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 精品国产乱码久久久久久小说| 日本欧美视频一区| 男女边吃奶边做爰视频| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| 午夜av观看不卡| av线在线观看网站| 青春草亚洲视频在线观看| 久久鲁丝午夜福利片| a 毛片基地| 欧美日韩成人在线一区二区| 亚洲国产毛片av蜜桃av| 国产激情久久老熟女| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 国产精品无大码| 老汉色∧v一级毛片| 狂野欧美激情性xxxx| 久久婷婷青草| 国产国语露脸激情在线看| 女人爽到高潮嗷嗷叫在线视频| 交换朋友夫妻互换小说| 欧美成人午夜精品| 精品久久蜜臀av无| 亚洲人成网站在线观看播放| 国产1区2区3区精品| 大陆偷拍与自拍| 在线观看www视频免费| 国产黄色免费在线视频| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 亚洲国产日韩一区二区| 精品国产国语对白av| 国产av码专区亚洲av| 如何舔出高潮| 少妇被粗大猛烈的视频| 男人添女人高潮全过程视频| 中国三级夫妇交换| 国产欧美亚洲国产| 欧美人与性动交α欧美软件| 免费在线观看黄色视频的| 一级爰片在线观看| 久久韩国三级中文字幕| 久久人妻熟女aⅴ| 国产爽快片一区二区三区| 亚洲av电影在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 97精品久久久久久久久久精品| e午夜精品久久久久久久| 亚洲国产日韩一区二区| 日本爱情动作片www.在线观看| 久久免费观看电影| 国产亚洲一区二区精品| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 亚洲一区中文字幕在线| 欧美最新免费一区二区三区|