• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳納米管負載的Pd-Ag-Sn催化劑對甲酸的電氧化

    2018-07-04 06:15:10張媛媛易清風(fēng)周秀林
    無機化學(xué)學(xué)報 2018年7期
    關(guān)鍵詞:秀林天虹機化

    張媛媛 易清風(fēng)*,,2 李 廣 周秀林

    (1湖南科技大學(xué)化學(xué)化工學(xué)院,湘潭 411201)

    (2理論有機化學(xué)與功能分子教育部重點實驗室,湘潭 411201)

    0 Introduction

    Nowadays,considerable attention to seeking renewable resources has been paid to reduce or even stop the rapid consumption of fossil fuels and the increasing emissions of automobile exhaust[1-3].As environmental friendly electrochemical energy devices,fuel cells have received extensive attention in view of their outstanding performances.Among them,direct formic acid fuel cell (DFAFC)possesses such significant advantages as lower operating temperatures,higher theoretical open circuit voltage and energy density,safer storage and transportation and less crossover rate of formic acid through Nafion membrane compared with direct methanol fuel cell (DMFC)[4-11].There are many factors affecting the performance of DFAFC,one of which is the electroactivity of the anode catalyst.A great number of reports have demonstrated that Pt and Pt-based catalysts exhibit excellent catalytic activity for formic acid oxidation in alkaline and acidic circumstances,including Pt/C[12]and Pt-M(M=Au,Li,Sb,Ru,Ir,Bi)[13-20]and so on.Nevertheless,extremely low natural reserve and the exorbitant cost of Pt severely limit the large-scale commercial applications of Pt or Pt-based catalysts in DFAFC[21-22].A large numbers of studies have shown that pure Pd or Pdbased catalysts are found to be more promising alternative anode electrocatalysts for DFAFC owing to lower price and greater abundance of the metal Pd on the earth′s crust compared with metal Pt[23-27].Li et al.[28]synthesized phosphorus doped carbon supported Pd catalyst (Pd/P-C)by liquid reduction method,which exhibits the better electrocatalyst activity (0.8 A·mg-1)and stability for formic acid oxidation in acid medium.It is generally accepted that formic acid oxidation on Pd catalyst takes place primarily through a direct pathway,leading to the direct formation of CO2.However,there is still a small amount of formic acid being oxidized by an indirect pathway,resulting in the gradual accumulation of intermediates on the surface of the catalyst during the process of formic acid oxidation.These intermediates will make the catalyst got poisoning and lead to the decline in catalyst activity and long-term stability[29-31].Inspired by this,an effective strategy has been implemented by alloying of other transition metals with Pd to enhance both the electrocatalytic activity and long-term stability of the Pd catalyst such as bimetallic Pd-Pt[32],Pd-Ag[33],Pd-Sn[34-35],Pd-Ni[36],Pd-Au[37],trimetallic Pd-Ni-Cu[29],Pd-Ni-Ag[38]and Pd-Pt-Ni[39].Typically,Lu et al.[40]have successfully synthesized nanoneedle-covered Pd-Ag nanotubes through a galvanic displacement reaction with Ag nanorods at 100 ℃ (PdAg-100)and room temperature (PdAg-25)and obtained higher catalytic activity and stability than bulk Pd.Liu and coworkers[41]have reported Pd-Sn nanoparticles supported on Vulcan XC-72 carbon by a microwave-assisted polyol process,and results indicate that Pd2Sn1/C and Pd1Sn1/C catalysts exhibit higher current density for formic acid oxidation compared with the prepared Pd/C catalyst.Carbon supported ternary PdNiCu catalyst was prepared by Hu et al.[29]and exhibit an increased electroactivity for formic acid oxidation compared to that of binary Pd-Ni and Pd-Cu catalysts.Multi-walled carbon nanotube (CNT)supported Pd1Cu1Sn1ternarymetallic nanocatalyst was also studied by Zhu et al.[42]through chemical reduction with NaBH4as a reducing agent and it reveals a higher mass activity of 534.83 mA·mg-1Pdtowards formic acid oxidation compared with bimetallic PdCu/CNTs and PdSn/CNTs.These studies have revealed that Pd-based bimetallic and ternary-metallic catalysts show a superior electrochemicalactivity and stability for formic acid oxidation compared with pure Pd catalyst in virtue of synergistic effect between metals,electronic or surface effects[22,43].However,ternary-metallic catalysts are more effective than the corresponding bimetallic catalysts in tuning the electronic properties and composition of catalytic surfaces.Furthermore,ternary Pd-based catalysts are able to further improve Pd usage efficiency and enhance their electrocatalytic performances.Consequently,it is necessary to develop novel ternary Pd-based catalysts with less cost and higher performance for formic acid oxidation.In addition,the choice of suitable support for Pd-based catalyst is also significant to reduce the Pd loading and improve the dispersion of catalyst nanoparticles,such as carbon black,graphene,carbon nanotubes,conductive polymers and so on.Recently,carbon nanotubes (CNTs)as a potential carbon carrier have been reported by many researchers for Pd-based catalysts[42,44-46].As a support,CNTs possess unique structure and properties like high specific surface area,outstanding electronic conductivity and high chemical stability,which would be conducive to the dispersion and stability of Pdbased catalyst particles and further enhance their electroactivity[44,47].Therefore,carbon nanotubes are a prominent support in the development of electrocatalysts.

    In this study,carbon nanotubes supported Pd and Pd-based binary/ternary catalysts(Pd/CNT,PdAg/CNT,PdSn/CNT,PdAgSn/CNT)weresuccessfully synthesized by the NaBH4reduction method.The electrochemical activities of the prepared catalysts towards formic acid oxidation in both acidic and alkaline media were evaluated by cyclic voltammetry(CV)and chronoamperometry (CA)techniques.The results demonstrate that ternary Pd-Ag-Sn catalysts exhibit much higherelectrochemicalactivityand stability towards formic acid oxidation in both acid and alkaline media.

    1 Experimental conditions

    1.1 Chemicals

    Palladium chloride,stan nouschloride,silver nitrate,sodium borohydride,ethylene-glycol,formic acid,sodium hydroxide and sulfuric acid were analytical purity grade and used as received without further purification.Water was deionized water subjected to the double distillation.Before used,multi-walled carbon nanotubes (CNTs,>90% (w/w),outside diameter:10~20 nm,length:5~20 μm )were added to a mixture of concentrated H2SO4and concentrated HNO3(the volume ratio was 3 ∶1),and heated at 60 ℃ under stirring for 8 h to obtain the acidified CNTs.

    1.2 Catalyst synthesis

    Catalystswere synthesized according to our recent report[48].Typically,the ternary Pd7Ag1Sn2/CNT catalyst was prepared via the following steps:A metal precursor composed of 8.9 mg PdCl2,1.2 mg AgNO3and 3.2 mg SnCl2was added to the mixing solvent of 12 mL ethylene glycol and 4 mL water.Then the solid salts were fully dispersed for 30 min with ultrasonication to make them be completely dissolved.Then,30 mg of the acidified carbon nanotubes was added to the resulting solution and the mixture was further treated with ultra-sonication to obtain a uniform black ink.3 mL of 50 g·L-1NaBH4dissolved in ethylene glycol was added dropwise to it under stirring to reduce the metal ions,and the mixture was stirred for 5 h.Finally,the resulting suspension was filtered,washed with water and dried at 40℃in vacuum for 10 h to obtain the Pd7Ag1Sn2/CNT catalyst.Other catalysts (Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag2Sn2/CNT and Pd7Ag3Sn2/CNT)were prepared according to this procedure by adjusting the metal molar ratio in the metal precursors.For synthesis of Pd/CNT catalyst,the precursor was composed of 8.9 mg PdCl2.For Pd7Ag3/CNT catalyst,the precursor was composed of 8.9 mg PdCl2and 3.6 mg AgNO3.For Pd7Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2and 3.2 mg SnCl2.For Pd7Ag2Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2,2.4 mg AgNO3and 3.2 mg SnCl2.For Pd7Ag3Sn2/CNT catalyst,the precursor was composed of 8.9 mg PdCl2,3.6 mg AgNO3and 3.2 mg SnCl2.

    1.3 Characterization

    In order to further explore the microstructure and particle size distribution of the prepared catalysts,transmission election microscopic (TEM)images were recorded with a JEM-2100F.The X-ray diffraction(XRD)profiles of the prepared catalysts were collected to analyze the compositions of the samples in a D/MAX2500X diffractometer (Japan)operating with Cu Kα radiation generated at 40 kV and 250 mA (λ=0.154 18 nm)and 2θ=20°~90°.The elemental compositions and valence states of the samples were investigated by X-ray photoelectron spectroscopy (XPS)operated with an ESCALAB 250Xi spectrometer(VG Scientific Ltd.,England).Inductively coupled plasma(ICP-AES-7510,Shimadzu)data of the nanoparticles were acquired to determine the Pd loading relative to the total mass of the catalyst.XRD profiles,XPS and ICP of the prepared catalysts were also investigated in our recent work[48].

    1.4 Electrochemical measurements

    All electrochemical measurements of the prepared catalysts for formic acid oxidation in both acid and alkaline media were conducted in a conventional three-electrode system using an AutoLab PGSTAT30/FRA electrochemical workstation(Eco Chimie,The Netherlands).The counter electrode was a Pt sheet.A Ag/AgCl in saturated KCl solution was used as the reference electrode,and all potentials reported in this work were quoted versus the Ag/AgCl reference.The working electrode was a glassy carbon (GC)coated with a film of catalyst,which was fabricated as follows:the glassy carbon(GC,3 mm diameter,from LanLiKe,TianJing,China)was firstly polished with a 0.3 μm alumina suspension to give a mirror surface.Then,5 mg oftheas-synthesized catalystwasdispersed ultrasonically in the mixed solution containing 0.94 mL of ethanol and 60 μL of 5% (w/w)Nafion solution to obtain a homogeneous ink.Finally,15 μL of this ink was dropped onto the top surface of the polished GC disc by a micropipette and dried at room temperature to get the working electrode.The blank CVs of the electrocatalysts were recorded in both 0.5 mol·L-1H2SO4solution and 1.0 mol·L-1NaOH solution,and the corresponding electrocatalytic activities towards formic acid oxidation were investigated both in the solution of 0.5 mol·L-1H2SO4in the presence of HCOOH and in 1.0 mol·L-1NaOH containing HCOOH.For the sake of comparison,electroactivity of the commercial Pd/C for formic acid oxidation was also examined under the same conditions.All measurements were performed at room temperature (22±2)℃).

    2 Results and discussion

    2.1 Physical characterization

    Fig.1 TEM images and the corresponding size distributions of the Pd/CNT (a),Pd7Ag3/CNT (b),Pd7Sn2/CNT (c)and Pd7Ag2Sn2/CNT (d)samples

    Fig.1(a~d)show the TEM images of the prepared Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT and Pd7Ag2Sn2/CNT catalysts as the typical samples.The corresponding inset is the particle size distribution histogram of the catalyst sample.It is evident from the images that the metallic nanoparticles have been successfully decorated on the surface of multi-walled CNTs for all prepared catalysts.In addition,Pd/CNT,Pd7Ag3/CNT and Pd7Sn2/CNT catalysts exhibit obvious agglomeration between the nanoparticles and some particles are even stacked together to form clumps as shown in Fig.1(a~c),and their average particle sizes (Daverage)are 3.6,4.7 and 3.7 nm,respectively.For the ternary Pd7Ag2Sn2/CNT catalyst,however,most of the nanoparticles are well uniformly dispersed on the surface of CNTs except for a small amount of agglomeration as indicated in Fig.1d.Furthermore,the ternary Pd-Ag-Sn catalyst exhibits a smaller average particle size of 2.3 nm compared to Pd/CNT and binary Pd-Ag(or Pd-Sn)catalysts.Results indicate that an appropriate amount of Ag and Sn additives can effectively improve the dispersion of the Pd nanoparticles in the ternary Pd-Ag-Sn catalysts.

    XRD patterns and XPS data of the prepared catalysts were recorded as indicated in Fig.2.Fig.2a shows that the peaks at 40.1°,46.6°,68.1°and 82.1°are attributed to characteristic diffraction peaks of face-centered cubic (fcc)crystalline Pd for Pd/CNT catalyst.However,a slight negative shift is observed with regard to the angle position of the Pd diffraction peaks on the Pd7Ag3/CNT and Pd7Ag2Sn2/CNT catalysts compared to the Pd/CNT catalyst,while the Pd7Sn2/CNT catalyst does not show such a shift.This reveals that the alloy formation between Pd and Ag arises in the binary Pd7Ag3/CNT and ternary Pd-Ag-Sn catalysts.As is shown in Fig.2b,the binding energies at 335.7 and 340.4 eV are ascribed to Pd3d3/2and Pd3d5/2spin orbit states of zero-valent Pd[49].But the other two distinct peaks located at 337.3 and 342.7 eV are related to Pd3d3/2and Pd3d5/2peaks of Pdギ,which is indexed to the Pd oxide.These results indicate that the prepared Pd-based catalysts contain the metal Pd and Pd oxide.Fig.3b shows the XPS spectra of 3d for Pd7Ag3/CNT and Pd7Ag2Sn2/CNT catalysts,and the two obvious peaks centered at 367.9 and 373.9 eV are related to Ag3d5/2and Ag3d3/2respectively[50],revealing that Ag ions are reduced completely during the preparation of the catalysts.Similarly,as indicated in Fig.3c,Sn3d XPS spectra are divided into two peaks located at 486.8 and 487.4 eV,which are associated with Sn and SnO2[51],confirming that the metal Sn in the Pd7Ag2Sn2/CNT and Pd7Sn2/CNT catalysts exists in the form of Sn and SnO2.

    Fig.2 XRD (a)and XPS (b~d)spectra of the Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT and Pd7Ag2Sn2/CNT samples:(b)Pd3d,(c)Ag3d,and (d)Sn3d

    2.2 Electrochemical performance analysis

    Fig.3a shows CV curves of the prepared catalysts and Pd/C in 0.5 mol·L-1H2SO4solution.All catalysts reveal a similar CV curve to Pd/C in acidic solution.A well-defined hydrogen adsorption/desorption peaks around 0 V arises on all samples,and the cathode characteristic reduction peak (rp)of the Pd oxides produced during the forward potential scan is vividly observed at ca.0.48 V for all the catalysts.Also,the rppeak current density on the Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT,Pd7Ag3Sn2/CNT catalysts is 6.6,6.9,10.4,8.6,11.5,15.2 and 12.2 mA·cm-2,respectively.Fig.3b shows cyclic CV curves of the prepared catalysts and Pd/C in 1.0 mol·L-1NaOH solution.Similarly,the cathode reduction peak (rn)at ca.-0.41 V is attributed to the formation of Pd oxides during the forward-going,and the rnpeak current density is 14.3,17.0,20.5,24.6,20.2,31.4 and 24.0 mA·cm-2for Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT Pd7Ag3Sn2/CNT catalysts,respectively.Based on the charge of PdO reduction peak in each CV,the electrochemical active surface area (ECSA)of Pd for the samples can be calculated by using the methods reported in the literature and corresponding results are listed in Table 1[42,52-53].Results reveal that Pd7Ag2Sn2/CNT catalyst possesses the largest ECSA value of 9.56 m2·g-1in H2SO4solution and 15.34 m2·g-1in NaOH solution among the prepared catalysts and Pd/C,which is consistent with the results observed from TEM images.

    Fig.3 CV curves of the samples in 0.5 mol·L-1H2SO4 (a)and in 1.0 mol·L-1NaOH (b)at a scan rate of 50 mV·s-1

    Table 1 ECSA values of Pd/C and the prepared samples in both 1 mol·L-1NaOH and 0.5 mol·L-1H2SO4solution

    Fig.4 CV curves of the samples in 0.5 mol·L-1H2SO4containing 0.5 mol·L-1HCOOH (a)and in 1.0 mol·L-1NaOH containing 0.5 mol·L-1HCOOH (b)at a scan rate of 50 mV·s-1

    Electrocatalytic activity of the prepared catalysts for formic acid oxidation was measured in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1formic acid by CV as indicated in Fig.4a.A characteristic anodic peaks jf1caused by formic acid oxidation is observed for all catalysts.In general,all the as-synthesized Pdbased catalysts exhibit better electrocatalytic activity for formic acid oxidation than Pd/C.Further,the ternary Pd7Ag2Sn2/CNT catalyst shows the largest jf1peak current density of 108.8 mA·cm-2,which is 6.7 times higher than the Pd/C catalyst.Also,the jf1peak current density on the binary Pd7Ag3/CNT and Pd7Sn2/CNT catalysts is 2.7 and 2.3 times larger than that of Pd/C catalyst respectively.This may be contributed to the synergistic effect between Pd and Ag/Sn[2,26].Furthermore,ternary Pd7Ag1Sn2/CNT and Pd7Ag2Sn2/CNT catalysts display an onset potential (OP)of ca.-0.06 V for formic acid oxidation in acidic media,which presents a negative shift compared to that of ca.-0.045 V on the other catalysts.Fig.4b shows the CV curves of all samples in 1.0 mol·L-1NaOH solution containing 0.5 mol·L-1formic acid.Compared to formic acid oxidation in acidic solution (Fig.4a),the formic acid oxidation in alkaline solution (Fig.4b)presents a much negative onset potential of ca.-0.82 V.Fig.4b also shows that during the forward-going scan,formic acid oxidation current density displays an almost linear increment with the positive shift of the anodic potential until an anodic peak jf2at ca.0.2 V arises.The anodic current density for formic acid oxidation in alkaline medium follows the order:Pd7Ag2Sn2/CNT>Pd7Ag1Sn2/CNT>Pd7Ag3/CNT>Pd7Ag3Sn2/CNT>Pd/CNT >Pd7Sn2/CNT >Pd/C.Obviously,the ternary Pd7Ag2Sn2/CNT catalyst presents the best electrocatalytic activity for formic acid oxidation in alkaline medium among the prepared catalysts.

    It is generally considered that there are two possible parallel pathways for the oxidation of formic acid[42,44]:(i)a “direct pathway”in which formic acid is directly oxidized to CO2without production of any intermediate and (ii)an “indirect pathway” which involves two steps including the dehydrogenation of formic acid and the adsorption of CO intermediate on the Pd catalyst surface.The choice of the pathway greatly depends on the properties of the catalyst used.Normally,the direct pathway prevails for formic acid oxidation on Pd-containing catalysts[54-55].The processes of formic acid oxidation in acidic solution are based on the following equations (1)~(3)[44]:

    During formic acid oxidation,the adsorbed HCOOad(HCOO-Pd)species are firstly formed via the adsorption of formic acid molecules on the surface of Pd-based catalysts and subsequent break of O-H bond in the adsorbed HCOOH (HCOOHad)(Equation (1).Then,decomposition of the HCOOadspecies produces CO2by breaking C-H bond (equation (2).In alkaline media,electro-oxidation of formic acid on Pd-based catalysts follows a similar mechanism to that in acidic media except that the adsorbed HCOOadspecies on Pd can be formed easier because of the neutralization reaction between HCOOH and NaOH,leading to the much negative onset potential of formic acid oxidation.In general,the addition of others metal or metal oxide to Pd catalyst can significantly improve its electroactivity due to the synergistic effect of different metals.It is noticed from Fig.4 that the Pd7Ag2Sn2/CNT catalyst displays the highest current density of formic acid oxidation in both acidic and alkaline media among the prepared catalysts,reflecting that the addition of proper amount of Ag or Sn isconducivetoenhancetheelectrochemical activity.It is known from the XRD data of the prepared catalysts that the alloying between Pd and Ag arises.Based on the so-called bifunctional mechanism therefore,the adsorption bond of intermediates like absorbed CO (COad)and COOH (COOHad)at the surface of catalysts,produced by formic oxidation during the forward scan,can be efficaciously weakened by the Pd-Ag bimetallic alloy.This makes the decomposition of formic acid to CO2go into easier.Furthermore,the presence of Pd-Ag alloy can also prominently reduce the accumulation of poisoningintermediates on the catalyst surface and release more Pd active sites.The presence of SnO2observed from the XPS data may also contribute to the removal of toxic intermediates to accelerate the adsorption and desorption of formic acid on the catalyst surface.

    Effect of formic acid concentration on the kinetic characterization of formic acid oxidation was further investigated.Fig.5a shows the CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4solution with different formic acid concentrations at 50 mV·s-1,and Fig.5b depictstherelationship between the anodic peak current density and HCOOH concentration.As can be seen from Fig.5b,the jp1peak current density exhibits a rapid rise with the formic acid concentration in the range of 0.5 to 1.8 mol·L-1,while it displays a decrease from 1.8 to 2.5 mol·L-1.In addition,the jp1peak potential shifts to more positive direction at the higher concentration of formic acid.In 1 mol·L-1NaOH solution,dependence of the jp2peak current density upon HCOOH concentration is also studied as indicated in Fig.6(a,b).A similar changing trend of the jp1peak current density vs HCOOH concentration to Fig.5b is observed,revealing that the HCOOH concentration hasthe same effecton electroactivity of the ternary Pd7Ag2Sn2/CNT catalyst in both acidic and alkaline media.At high concentrations of HCOOH,the jp1peak current density for the oxidation of formic acid on the Pd7Ag2Sn2/CNT catalystdecreases.Thismay be related to the saturated adsorption of HCOOH on Pd active sites at high concentrations of HCOOH.On the other hand,high concentrations of HCCOH may result in partial decomposition of HCOOH to produce CO(equation(4),which is absorbed on the surface of the catalyst and reduce the electroactivity of the catalyst.

    Fig.5 (a)CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4solution with different formic acid concentrations at 50 mV·s-1;(b)Relationship between the anodic peak current density and HCOOH concentration (CHCOOH)for ternary Pd7Ag2Sn2/CNT catalyst

    Fig.6 (a)CV curves of ternary Pd7Ag2Sn2/CNT catalyst in 1.0 mol·L-1NaOHsolution with different formic acid concentrations at 50 mV·s-1;(b)Relationship between the anodic peak current density and HCOOH concentration for ternary Pd7Ag2Sn2/CNT catalyst

    Fig.7(a,b)displays the CV curves for the oxidation of pre-adsorbed carbon monoxide (CO)on Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in order to investigate the anti-poisoning intermediates ability of the catalysts.It is shown from Fig.7a recorded in 0.5 mol·L-1H2SO4solution that an intense stripping peak of COadis observed on the catalysts.The peak potential of CO stripping on Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts is 0.792,0.726 and 0.722 V,respectively,reflecting that the prepared catalysts in this work have more negative CO stripping peak potential values than that of the Pd/C catalyst.The lower potential displays the weaker binding energy between Pd and COadon Pd/CNT and Pd7Ag2Sn2/CNT catalysts.Notably,the onset potential of CO oxidation for Pd7Ag2Sn2/CNT catalyst is measured at 0.67 V,showing a negative shift compared to that for Pd/C(0.72 V)and Pd/CNT (0.70 V).Results indicate that the COadon the surface of the Pd7Ag2Sn2/CNT catalyst can be more easily removed.Furthermore,the CO stripping isalso tested forPd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in mol·L-1NaOH solution as indicated in Fig.7b.It is worth noting that the Pd/CNT and Pd7Ag2Sn2/CNT catalysts also exhibit a more negative CO stripping peak potential at ca.-0.19 V compared to Pd/C catalyst(ca.-0.139 V).These results show that the ternary Pd7Ag2Sn2/CNT catalyst possesses much better resistance to COadpoisoning than the Pd/C and Pd/CNT catalysts.

    The long-term electrocatalytic activity of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts is evaluated by CA measurement in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1HCOOH at different potentials as depicted in Fig.8.The current density of the studied catalysts exhibits a continuous decay in the initial stage at both 0.05 (Fig.8a)and 0.1 V (Fig.8b).This may be attributed to the adsorption of CO-like intermediates on the surface of the catalysts,leading to the decline on the number of the active sites[22,56].However,the Pd7Ag2Sn2/CNT catalystexhibits a significantly slower decay rate of current density than the Pd/C and Pd/CNT catalysts.Additionally,at the end of electrolysis (at 3 600 s),the current density on the ternary Pd7Ag2Sn2/CNT catalyst is 5.8 mA·cm-2at 0.05 V or 14.2 mA·cm-2at 0.1 V,which is still the highest among the studied catalysts.Fig.9 also shows CA curves of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in 1 mol·L-1NaOH solution containing 0.5 mol·L-1HCOOH at the potentials of-0.75 and-0.45 V.Apparently,the current density of ternary Pd7Ag2Sn2/CNT catalyst is 13.7 mA·cm-2at-0.75 V after 3 600 s as shown in Fig.9a,which is almost 3.3 and 7.2 times larger than that of the Pd/C (4.2 mA·cm-2)and Pd/CNT (1.9 mA·cm-2)catalysts,respectively.In addition,it can be also observed from Fig.9b that ternary Pd7Ag2Sn2/CNT catalysthas the highest current density among the studied catalysts at the potential of-0.45 V after 3 600 s.The above results demonstrate that the as-synthesized ternary Pd7Ag2Sn2/CNT catalyst displays excellent electrocatalytic activity and more outstanding durability towards formic acid oxidation in both acidic and alkaline media,which is consistent with the results derived from CV analyses.

    Fig.7 CO stripping curves of the Pd/C,Pd/CNT and Pd7Ag2Sn2/CNT catalysts in 0.5 mol·L-1H2SO4 (a)and 1.0 mol·L-1NaOH (b)at a scan rate of 50 mV·s-1

    Fig.8 Chronoamperometric responses of the Pd7Ag2Sn2/CNT catalyst in 0.5 mol·L-1H2SO4comtaining 0.5 mol·L-1HCOOH at 0.05 V (a)and 0.1 V (b)

    Fig.9 Chronoamperometric responses of the Pd7Ag2Sn2/CNT catalyst in 1.0 mol·L-1NaOH comtaining 0.5 mol·L-1HCOOH at-0.75 V (a)and-0.45 V (b)

    Fig.10 shows the CV profiles of the prepared catalysts where the current density is based on the mass of Pd to show the Pd usage efficiency for formic acid oxidation.It can be found from Fig.10a that during the forward-going scan the anodic peak mass current density of the Pd/C,Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT, Pd7Ag1Sn2/CNT, Pd7Ag2Sn2/CNT and Pd7Ag3Sn2/CNT catalysts towards formic acid oxidation in 0.5 mol·L-1H2SO4solution containing 0.5 mol·L-1HCOOH is 153,274,474,431,1 030,1 364 and 767 mA·respectively,which indicates that the ternary Pd7Ag2Sn2/CNT catalyst has the highest Pd mass current density among the prepared catalysts.Zhu et al.[42]prepared the ternary PdCuSn/CNTs catalyst with the mass current density of 534.8 mA·Binary PdCo/CFC catalyst was also synthesized with the mass current density of 1 220 mA·by Vafaei and co-workers[57].Compared with the reported catalysts,the ternary Pd7Ag2Sn2/CNT catalyst prepared in this work exhibits excellent electrocatalytic activity and higherPd usageefficiencyforformicacid oxidation.Additionally,the ternary Pd7Ag2Sn2/CNT catalyst also displays the highest Pd mass current density in 1 mol·L-1NaOH solution containing 0.5 mol·L-1HCOOH as indicated in Fig.10b,which is as high as 2 640 mA·mg-1Pd.These results reveal that the ternary Pd7Ag2Sn2/CNT catalyst can be applied to DFAFCs as a promising anodic catalyst for formic acid oxidation in both acidic and alkaline media due to the synergetic effect between Pd and Ag/Sn.

    Fig.10 CV curves based on the Pd mass current density in 0.5 mol·L-1H2SO4containing 0.5 mol·L-1HCOOH (a)and in 1.0 mol·L-1NaOH containing 0.5 mol·L-1HCOOH (b)based on Fig.4

    3 Conclusions

    In summary,carbon nanotube-supported Pdbased catalysts including Pd/CNT,binary Pd-Ag/CNT and ternary Pd-Ag-Sn/CNT were synthesized by the conventional NaBH4reduction method.The metal nanoparticles of ternary Pd7Ag2Sn2/CNT catalyst are uniformly dispersed on the surface of the carbon nanotubes with an average size of about 2.3 nm.Among the catalysts investigated,the ternary Pd7Ag2Sn2/CNT catalyst has the best catalytic performance and stability towards formic acid oxidation in both acidic and alkaline media.These outstanding features may be ascribed to the formation of Pd-Ag alloy and the presence of SnO2,which are conducive to the reducing of the accumulation of poisoning-intermediates and the releasing of the active sites of Pd during the formic acid electro-oxidation.Meanwhile,the ternary Pd7Ag2Sn2/CNT catalyst exhibits the highest Pd mass current density of 1 364 mA·mg-1in H2SO4solution or 2 640 mA·mg-1in NaOH solution,showing the ultra high usage efficiency of Pd in the prepared Pdbased catalysts towards formic acid oxidation.Results imply that the ternary Pd-Ag-Sn catalyst may be a very promising anodic electrocatalyst for direct formic acid fuel cells.

    Acknowledgement:Financial support by the National Natural Science Foundation of China (Grant No.21376070)is gratefully acknowledged.

    :

    [1]Lu X Y,Zheng L,Zhang M S,et al.Electrochim.Acta,2017,238:194-201

    [2]Xu H,Yan B,Zhang K,et al.Appl.Surf.Sci.,2017,416:191-199

    [3]Budischak C,Sewell D,Thomson H,et al.J.Power Sources,2013,225(3):60-74

    [4]Miao K H,LuoY,Zou J S,et al.Electrochim.Acta,2017,251:588-594

    [5]El-Nagar G A,Dawood K M,El-Deab M S,et al.Appl.Catal.,B,2017,213:118-126

    [6]Yi Q F,Zou T,Zhang Y Y,et al.J.Power Sources,2016,321:219-225

    [7]Yu X W,Pickup P G.J.Power Sources,2008,182(1):124-132

    [8]Rhee Y W,Ha S Y,Masel R I.J.Power Sources,2003,117(1/2):35-38

    [9]ZOU Tao(鄒濤),YI Qing-Feng(易清風(fēng)),ZHANG Yuan-Yuan(張媛媛),et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報),2017,38(1):101-107

    [10]Winjobi O,Zhang Z Y,Liang C H,et al.Electrochim.Acta,2010,55(13):4217-4221

    [11]Yi Q F,Zhang J J,Chen A C,et al.J.Appl.Electrochem.,2008,38(5):695-701

    [12]Zhu C X,Liu D,Chen Z,et al.J.Colloid Interface Sci.,2018,511:77-83

    [13]Cabello G,Davoglio R A,Hartl F W,et al.Electrochim.Acta,2017,224:56-63

    [14]Han Y,Ouyang Y J,Xie Z H,et al.J.Mater.Sci.Technol.,2016,32(7):639-645

    [15]Awaludin Z,Okajima T,Ohsaka T.Electrochem.Commun.,2013,31:100-103

    [16]Yang H Z,Dai L,Xu D,et al.Electrochim.Acta,2010,55(27):8000-8004

    [17]Yi Q F,Chen A C,Huang W,et al.Electrochem.Commun.,2007,9(7):1513-1518

    [18]Choi J H,Jeong K J,Dong Y J,et al.J.Power Sources,2006,163(1):71-75

    [19]Yi Q F,Li L,Yu W Q,et al.J.Alloys Compd.,2008,466(1/2):52-58

    [20]ZHANG Li-Juan(張麗娟),XIA Ding-Guo(夏定國).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2006,22(6):1085-1089

    [21]Li R X,Ma Z Z,Zhang F,et al.Electrochim.Acta,2016,220:193-204

    [22]Xu H,Zhang K,Yan B,et al.J.Power Sources,2017,356:27-35

    [23]Xin Z L,Wang S H,Wang J,et al.Electrochem.Commun.,2016,67:26-30

    [24]Wang Y R,He Q L,Wei H G,et al.Electrochim.Acta,2015,184:452-465

    [25]Krishna R,Fernandes D M,Marinoiu A,et al.Int.J.Hydrogen Energy,2017,42(37):23639-23646

    [26]CHEN Ying(陳瀅),TANG Ya-Wen(唐亞文),GAO Ying(高穎),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2008,24(4):560-564

    [27]SHEN Juan-Zhang (沈 娟章),TANG Ya-Wen (唐 亞文),LU Tian-Hong (陸 天虹).Chinese J.Inorg.Chem.(無 機化 學(xué) 學(xué)報),2012,28(2):326-330

    [28]Li J D,Tian Q F,Jiang S Y,et al.Electrochim.Acta,2016,213:21-30

    [29]Hu S Z,Munoz F,Noborikawa J,et al.Appl.Catal.,B,2016,180:758-765

    [30]Jiang K,Zhang H X,Zou S Z,et al.Phys.Chem.Chem.Phys.,2014,16(38):20360-20376

    [31]Haan J L,Stafford K M,Masel R I.J.Phys.Chem.C,2010,114(26):11665-11672

    [32]Yi Q F,Huang W,Liu X P,et al.J.Electroanal.Chem.,2008,619(1):197-205

    [33]Liu D,Xie M L,Wang C M,et al.Nano Res.,2016,9(6):1590-1599

    [34]Tu D D,Wu B,Wang B X,et al.Appl.Catal.,B,2011,103(1/2):163-168

    [35]Yi Q F,Chen Q H,Yang Z.J.Power Sources,2015,298:171-176

    [36]Zhang Y Y,Yi Q F,Zou T,et al.Ionics,2017,23:3169-3176

    [37]Suo Y G,Hsing I M.Electrochim.Acta,2011,56:2174-2183

    [38]Yurderi M,Bulut A,Zahmakirana M,et al.Appl.Catal.,B,2014,160(7):514-524

    [39]Zhang J M,Wang R X,Nong R J,et al.Int.J.Hydrogen Energy,2017,42(10):7226-7234

    [40]Lu Y Z,Chen W.J.Phys.Chem.C,2010,114(49):21190-21200

    [41]Liu Z L,Zhang X H.Electrochem.Commun.,2009,11(8):1667-1670

    [42]Zhu F C,Ma G S,Bai Z C,et al.J.Power Sources,2013,242(22):610-620

    [43]Shen Y Y,Sun Y,Zhou L N,et al.J.Mater.Chem.A,2014,2(9):2977-2984

    [44]Marin?ek M,?ala M,Jancˇar B.J.Power Sources,2013,235(8):111-116

    [45]Yi Q F,Chu H,Tang M X,et al.J.Electroanal.Chem.,2015,739:178-186

    [46]Cazares-ávila E,Ruiz-Ruiz E J,Hernández-Ramírez A,et al.Int.J.Hydrogen Energy,2017,42(51):30349-30358

    [47]Carmo M,Paganin V A,Rosolen J M,et al.J.Power Sources,2005,142(1):169-176

    [48]Zhang Y Y,Yi Q F,Deng Z L,et al.Catal.Lett.,2018,148:1190-1201

    [49]Xiong B,Zhou Y K,Zhao Y Y,et al.Carbon,2013,52(2):181-192

    [50]Yang Z Z,Wang X L,Kang X,et al.Electrochim.Acta,2017,236:72-81

    [51]Lewera A,Barczuk P J,Skorupska K,et al.J.Electroanal.Chem.,2011,662(1):93-99

    [52]Kakaei K,Dorraji M.Electrochim.Acta,2014,143:207-215

    [53]Li S S,Wang A J,Hu Y Y,et al.J.Mater.Chem.A,2014,2(43):18177-18183

    [54]Ha S,Larsen R,Masel R I.J.Power Sources,2005,144(1):28-34

    [55]Wang Y Y,Qi Y Y,Zhang D J.Comput.Theor.Chem.,2014,1049:51-54

    [56]Zhang S X,Qing M,Zhang H,et al.Electrochem.Commun.,2009,11(11):2249-2252

    [57]Vafaei M,Rezaei M,Tabaian S H,et al.J.Solid State Electrochem.,2015,19(1):289-298

    猜你喜歡
    秀林天虹機化
    尼的呀 尼的呀
    歌海(2024年5期)2024-01-01 00:00:00
    WANG Xiaoping. Chinese Literature and Culture in the Age of Global Capitalism:Renaissance or Rehabilitation?
    高速公路工程中瀝青混凝土拌合站配置和管理
    科學(xué)家(2022年4期)2022-05-10 02:10:11
    基于“脾胃內(nèi)傷”辨治隱源性機化性肺炎
    平江農(nóng)田宜機化改造出實效
    重慶市農(nóng)機總站召開農(nóng)田宜機化改造技術(shù)培訓(xùn)暨工作推進座談會
    電腦迷(2020年11期)2020-12-16 17:45:40
    李秀林攝影作品
    李秀林攝影作品
    局灶性機化性肺炎與周圍型肺癌MSCT鑒別診斷分析
    雄安千年秀林
    ——近自然造林開先河
    99久久久亚洲精品蜜臀av| 亚洲成av人片在线播放无| 精品国产三级普通话版| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 中文精品一卡2卡3卡4更新| 国产精品不卡视频一区二区| 日韩亚洲欧美综合| 精品国产三级普通话版| 女同久久另类99精品国产91| 久久久久久久久久久丰满| 日日摸夜夜添夜夜爱| 搡女人真爽免费视频火全软件| 久久久久国产网址| 免费黄网站久久成人精品| 午夜亚洲福利在线播放| 在线观看一区二区三区| 亚洲色图av天堂| 欧美极品一区二区三区四区| 最后的刺客免费高清国语| 美女黄网站色视频| 日本-黄色视频高清免费观看| 国内久久婷婷六月综合欲色啪| av视频在线观看入口| 3wmmmm亚洲av在线观看| 国产精品99久久久久久久久| 嘟嘟电影网在线观看| 美女内射精品一级片tv| 亚洲熟妇中文字幕五十中出| 大又大粗又爽又黄少妇毛片口| 老司机影院成人| 听说在线观看完整版免费高清| 国产黄a三级三级三级人| 亚洲美女视频黄频| 国产一区二区在线观看日韩| 亚洲精品乱码久久久v下载方式| 久久久久久久午夜电影| 99久久精品热视频| 久久久午夜欧美精品| 国产视频内射| 日日干狠狠操夜夜爽| 国产高清视频在线观看网站| 夜夜看夜夜爽夜夜摸| 真实男女啪啪啪动态图| 人妻久久中文字幕网| 国模一区二区三区四区视频| 97人妻精品一区二区三区麻豆| 成人特级黄色片久久久久久久| 亚洲不卡免费看| 一个人观看的视频www高清免费观看| 乱人视频在线观看| 久久久久久九九精品二区国产| 啦啦啦韩国在线观看视频| 99热这里只有是精品在线观看| 亚洲av一区综合| 欧美bdsm另类| 九九在线视频观看精品| 欧美变态另类bdsm刘玥| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 午夜福利高清视频| 夜夜看夜夜爽夜夜摸| 成人特级黄色片久久久久久久| 少妇高潮的动态图| 三级男女做爰猛烈吃奶摸视频| 成年免费大片在线观看| 99久久中文字幕三级久久日本| 波多野结衣高清无吗| 色哟哟哟哟哟哟| 非洲黑人性xxxx精品又粗又长| 日韩av在线大香蕉| 亚洲最大成人av| 高清日韩中文字幕在线| 在线观看66精品国产| 少妇高潮的动态图| 岛国毛片在线播放| 成人二区视频| 国内精品宾馆在线| 99在线人妻在线中文字幕| www日本黄色视频网| 神马国产精品三级电影在线观看| 中文字幕av成人在线电影| 成人综合一区亚洲| 级片在线观看| 如何舔出高潮| 99久久精品国产国产毛片| 在线观看免费视频日本深夜| 99久国产av精品| 麻豆成人午夜福利视频| 欧美zozozo另类| 一级毛片电影观看 | 又黄又爽又刺激的免费视频.| 国产亚洲欧美98| 六月丁香七月| 中国国产av一级| 丰满人妻一区二区三区视频av| 自拍偷自拍亚洲精品老妇| 欧美三级亚洲精品| 久久久久久久久久成人| 亚洲欧美日韩高清在线视频| 中出人妻视频一区二区| 国产老妇伦熟女老妇高清| 中国美女看黄片| 99九九线精品视频在线观看视频| 爱豆传媒免费全集在线观看| 只有这里有精品99| 成人毛片60女人毛片免费| 免费无遮挡裸体视频| 国产午夜精品论理片| 国产色爽女视频免费观看| 禁无遮挡网站| 国产精品日韩av在线免费观看| 久久久久久大精品| 最近中文字幕高清免费大全6| 最近中文字幕高清免费大全6| 最近中文字幕高清免费大全6| 国模一区二区三区四区视频| 一级二级三级毛片免费看| 日韩欧美一区二区三区在线观看| 精品一区二区免费观看| 哪里可以看免费的av片| 久久久久久伊人网av| 亚洲精品日韩在线中文字幕 | 超碰av人人做人人爽久久| 91在线精品国自产拍蜜月| 婷婷色综合大香蕉| 99国产极品粉嫩在线观看| 97人妻精品一区二区三区麻豆| 2022亚洲国产成人精品| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜添av毛片| 国产精品久久电影中文字幕| 成熟少妇高潮喷水视频| 日本在线视频免费播放| 十八禁国产超污无遮挡网站| 精品人妻熟女av久视频| 女人十人毛片免费观看3o分钟| 成人漫画全彩无遮挡| 精品久久久久久久久av| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 国产成人a区在线观看| 啦啦啦韩国在线观看视频| 麻豆成人av视频| 看免费成人av毛片| 国内精品美女久久久久久| 岛国毛片在线播放| 国产精品不卡视频一区二区| 日韩一区二区视频免费看| 国产伦理片在线播放av一区 | 亚洲在线自拍视频| 高清毛片免费看| 成熟少妇高潮喷水视频| 啦啦啦观看免费观看视频高清| 特大巨黑吊av在线直播| 少妇熟女欧美另类| 特大巨黑吊av在线直播| 最近2019中文字幕mv第一页| 成人午夜高清在线视频| 欧美xxxx黑人xx丫x性爽| 免费看美女性在线毛片视频| av在线天堂中文字幕| а√天堂www在线а√下载| 午夜亚洲福利在线播放| a级毛片免费高清观看在线播放| 婷婷六月久久综合丁香| 国产高清激情床上av| 日韩精品有码人妻一区| 免费观看a级毛片全部| 精品人妻视频免费看| 2021天堂中文幕一二区在线观| 日韩精品青青久久久久久| 午夜福利在线在线| 2021天堂中文幕一二区在线观| 深夜a级毛片| 亚洲综合色惰| 欧美性猛交╳xxx乱大交人| 观看美女的网站| 国产精品精品国产色婷婷| 日日啪夜夜撸| 欧美又色又爽又黄视频| 只有这里有精品99| 国产 一区精品| 色综合亚洲欧美另类图片| 99国产极品粉嫩在线观看| 天天躁夜夜躁狠狠久久av| 久久99精品国语久久久| 丰满人妻一区二区三区视频av| 日本免费a在线| 一本一本综合久久| 欧美成人免费av一区二区三区| 久久久精品大字幕| 亚洲人成网站在线播| 欧美xxxx性猛交bbbb| 好男人在线观看高清免费视频| 亚洲精品456在线播放app| 老师上课跳d突然被开到最大视频| 久久精品久久久久久久性| 久久人人爽人人片av| 免费看av在线观看网站| 高清在线视频一区二区三区 | 亚洲国产欧美人成| 一区二区三区四区激情视频 | www.av在线官网国产| 日韩,欧美,国产一区二区三区 | 国产成人精品一,二区 | 亚洲精品成人久久久久久| 免费电影在线观看免费观看| 一级二级三级毛片免费看| 少妇的逼好多水| 黑人高潮一二区| 久久久久久国产a免费观看| 国产一区二区三区在线臀色熟女| 搡老妇女老女人老熟妇| 免费搜索国产男女视频| 99riav亚洲国产免费| 亚洲欧美日韩高清专用| 国产中年淑女户外野战色| 91精品国产九色| 精品人妻一区二区三区麻豆| 大又大粗又爽又黄少妇毛片口| 中文字幕av在线有码专区| 伊人久久精品亚洲午夜| 女同久久另类99精品国产91| 亚洲中文字幕一区二区三区有码在线看| 国内少妇人妻偷人精品xxx网站| 亚洲欧美精品专区久久| 亚洲欧洲国产日韩| 亚洲国产欧洲综合997久久,| 成人特级av手机在线观看| 超碰av人人做人人爽久久| 久久6这里有精品| 一本一本综合久久| 99热这里只有是精品在线观看| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| 特级一级黄色大片| 在线观看免费视频日本深夜| 国内少妇人妻偷人精品xxx网站| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影| 久久精品影院6| 久久久精品94久久精品| 欧美精品国产亚洲| 久久久久久大精品| 高清毛片免费观看视频网站| 狂野欧美白嫩少妇大欣赏| 亚洲天堂国产精品一区在线| 欧美不卡视频在线免费观看| 精品人妻视频免费看| 精品一区二区免费观看| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 久久久久网色| 级片在线观看| h日本视频在线播放| 国产精品一区二区三区四区免费观看| 三级经典国产精品| 男人舔奶头视频| 精品一区二区免费观看| АⅤ资源中文在线天堂| 国产成人精品婷婷| 18禁在线无遮挡免费观看视频| 亚洲成a人片在线一区二区| 欧美潮喷喷水| 亚洲性久久影院| 99视频精品全部免费 在线| 日本与韩国留学比较| 国产真实伦视频高清在线观看| 一区福利在线观看| 少妇裸体淫交视频免费看高清| 国产精品一区www在线观看| 国产亚洲欧美98| 欧美高清性xxxxhd video| 黄色欧美视频在线观看| 国产精品乱码一区二三区的特点| 国产极品精品免费视频能看的| 亚洲国产精品sss在线观看| 高清日韩中文字幕在线| 夜夜爽天天搞| 少妇熟女欧美另类| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 夜夜爽天天搞| 99热6这里只有精品| 高清毛片免费看| 久久亚洲国产成人精品v| 亚洲国产高清在线一区二区三| 人人妻人人澡欧美一区二区| 亚洲精品色激情综合| 狠狠狠狠99中文字幕| 亚洲欧美中文字幕日韩二区| 欧美高清性xxxxhd video| 亚洲最大成人中文| 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 国产精品日韩av在线免费观看| 一本一本综合久久| 丝袜喷水一区| 日本黄色视频三级网站网址| 99久久精品热视频| 日韩欧美精品免费久久| 老女人水多毛片| 中文资源天堂在线| 欧美+亚洲+日韩+国产| 久久婷婷人人爽人人干人人爱| 丝袜美腿在线中文| 亚洲av电影不卡..在线观看| 成人午夜精彩视频在线观看| 一个人看视频在线观看www免费| 日本免费一区二区三区高清不卡| 国产精品,欧美在线| av视频在线观看入口| 在线免费观看不下载黄p国产| 成熟少妇高潮喷水视频| 亚洲精华国产精华液的使用体验 | 搡老妇女老女人老熟妇| 如何舔出高潮| 看片在线看免费视频| 日本黄色视频三级网站网址| 国产精品,欧美在线| 天美传媒精品一区二区| 一级黄片播放器| 联通29元200g的流量卡| 日本免费一区二区三区高清不卡| 国产国拍精品亚洲av在线观看| 久久久国产成人免费| 99久久人妻综合| 国产免费男女视频| 久久热精品热| 亚洲国产欧美在线一区| 嫩草影院入口| 人妻久久中文字幕网| 久久亚洲国产成人精品v| 午夜福利高清视频| 国产精品人妻久久久影院| 欧美成人a在线观看| 婷婷色av中文字幕| 青春草视频在线免费观看| 你懂的网址亚洲精品在线观看 | 欧美三级亚洲精品| 久久99热这里只有精品18| 欧美zozozo另类| 国产精品伦人一区二区| 国产成人午夜福利电影在线观看| av在线蜜桃| 亚州av有码| 国产成人影院久久av| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 中国国产av一级| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久av不卡| 观看免费一级毛片| 一进一出抽搐gif免费好疼| 久久久精品94久久精品| 久久草成人影院| 精品国内亚洲2022精品成人| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 国产亚洲精品久久久com| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 床上黄色一级片| 在线观看午夜福利视频| 精品人妻一区二区三区麻豆| 亚洲中文字幕日韩| 亚洲av免费在线观看| 精品免费久久久久久久清纯| 麻豆精品久久久久久蜜桃| 可以在线观看毛片的网站| 22中文网久久字幕| 99九九线精品视频在线观看视频| 99久国产av精品| 日本熟妇午夜| 国产一区二区三区av在线 | 国产一级毛片在线| 伊人久久精品亚洲午夜| 日本色播在线视频| 日韩高清综合在线| 欧美一级a爱片免费观看看| 又粗又爽又猛毛片免费看| 国产男人的电影天堂91| 日韩强制内射视频| 99riav亚洲国产免费| 午夜爱爱视频在线播放| 啦啦啦观看免费观看视频高清| 国产免费一级a男人的天堂| av又黄又爽大尺度在线免费看 | 成人国产麻豆网| 欧美成人一区二区免费高清观看| 级片在线观看| 变态另类成人亚洲欧美熟女| 亚洲av男天堂| 一区二区三区免费毛片| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久久免费av| 美女国产视频在线观看| 禁无遮挡网站| 国产大屁股一区二区在线视频| 中文欧美无线码| 超碰av人人做人人爽久久| 亚洲av不卡在线观看| 网址你懂的国产日韩在线| 精品99又大又爽又粗少妇毛片| 一个人看的www免费观看视频| www.色视频.com| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 岛国在线免费视频观看| 99热精品在线国产| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 亚洲人成网站在线播| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 亚洲经典国产精华液单| 成人毛片60女人毛片免费| 国产精品精品国产色婷婷| 午夜精品国产一区二区电影 | 又爽又黄a免费视频| 国产精品.久久久| 久久国产乱子免费精品| 午夜免费激情av| 日本三级黄在线观看| 夫妻性生交免费视频一级片| 天堂√8在线中文| 国产中年淑女户外野战色| 看免费成人av毛片| 麻豆国产97在线/欧美| 久久精品国产99精品国产亚洲性色| 国内精品一区二区在线观看| 国产精品免费一区二区三区在线| 精品人妻熟女av久视频| 亚洲在久久综合| 亚洲国产欧洲综合997久久,| 一级av片app| 国语自产精品视频在线第100页| 国产成年人精品一区二区| 99热6这里只有精品| 大香蕉久久网| 欧美精品国产亚洲| 亚洲一区高清亚洲精品| 免费av不卡在线播放| 亚洲精品粉嫩美女一区| 一级av片app| 熟女电影av网| 久久久久久大精品| 成年av动漫网址| av在线蜜桃| 欧美日韩乱码在线| 丝袜喷水一区| 欧美日本亚洲视频在线播放| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 少妇丰满av| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 伦理电影大哥的女人| 国产精品人妻久久久影院| 欧美3d第一页| 国产午夜福利久久久久久| 欧美zozozo另类| 精品久久久噜噜| 久久国产乱子免费精品| 精品一区二区三区视频在线| 岛国毛片在线播放| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 给我免费播放毛片高清在线观看| 亚洲欧美日韩东京热| 欧美一区二区国产精品久久精品| 级片在线观看| 男女下面进入的视频免费午夜| 热99re8久久精品国产| 亚洲色图av天堂| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 国产一区二区三区av在线 | 国产毛片a区久久久久| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 日本色播在线视频| 老司机影院成人| 国产精品.久久久| 乱人视频在线观看| 成人美女网站在线观看视频| 亚洲成人精品中文字幕电影| av女优亚洲男人天堂| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 国产久久久一区二区三区| 日本五十路高清| 麻豆国产av国片精品| 国产高清不卡午夜福利| 欧美性猛交╳xxx乱大交人| 久久草成人影院| 天堂中文最新版在线下载 | 男女下面进入的视频免费午夜| 久久久国产成人免费| 免费无遮挡裸体视频| 天美传媒精品一区二区| 人人妻人人看人人澡| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 亚洲精品日韩在线中文字幕 | 国产探花极品一区二区| 久久久久久久久久黄片| 人妻久久中文字幕网| 此物有八面人人有两片| 日韩高清综合在线| 不卡视频在线观看欧美| 丰满乱子伦码专区| 国产成人a区在线观看| 热99在线观看视频| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av涩爱 | 久久人妻av系列| 久久精品久久久久久噜噜老黄 | 免费看日本二区| 91av网一区二区| 国产精品蜜桃在线观看 | 高清日韩中文字幕在线| 26uuu在线亚洲综合色| 午夜免费激情av| 婷婷亚洲欧美| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂 | 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 深夜精品福利| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 欧美3d第一页| 午夜福利在线在线| 可以在线观看的亚洲视频| 日本-黄色视频高清免费观看| 亚洲精品影视一区二区三区av| 日韩国内少妇激情av| 乱人视频在线观看| 天堂av国产一区二区熟女人妻| 国产精品人妻久久久影院| 男女那种视频在线观看| 美女国产视频在线观看| 如何舔出高潮| 免费观看a级毛片全部| 99久国产av精品| 日产精品乱码卡一卡2卡三| 亚洲国产精品成人久久小说 | 99国产精品一区二区蜜桃av| 不卡视频在线观看欧美| 一夜夜www| 天天一区二区日本电影三级| 嫩草影院新地址| 少妇熟女aⅴ在线视频| av在线播放精品| 看免费成人av毛片| av在线播放精品| 久久精品国产亚洲av涩爱 | 免费人成在线观看视频色| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 真实男女啪啪啪动态图| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 中文在线观看免费www的网站| 久久精品国产清高在天天线| 国产又黄又爽又无遮挡在线| 久久久久久久久久黄片| 成人综合一区亚洲| 国产一区二区在线av高清观看| 免费观看精品视频网站| 美女国产视频在线观看| 高清在线视频一区二区三区 | 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| www.av在线官网国产| 亚洲aⅴ乱码一区二区在线播放| 看十八女毛片水多多多| 美女内射精品一级片tv| 变态另类成人亚洲欧美熟女| 97热精品久久久久久| 中文亚洲av片在线观看爽| 日本欧美国产在线视频| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| 免费看a级黄色片| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲| 亚洲人成网站在线播| 精品一区二区免费观看|