晏濤, 郜玉忠
(錦州醫(yī)科大學(xué)附屬第一醫(yī)院骨關(guān)節(jié)病區(qū),遼寧錦州121001)
非創(chuàng)傷性股骨頭壞死(non-traumatic osteonecrosis of femoral head,NOFH)是一種進(jìn)行性病理過程,由于股骨頭供血受阻、局部循環(huán)中斷和軟骨下骨供血受損導(dǎo)致骨壞死和塌陷,最終致髖關(guān)節(jié)功能受損和永久性殘疾[1-2];早期癥狀不明顯,患者總是錯過最佳的治療時機[3].此外,Weinstein[4]認(rèn)為股骨頭壞死不能逆轉(zhuǎn),早期診斷和治療干預(yù)非常重要.非創(chuàng)傷性股骨頭壞死的病因和發(fā)病機制尚不清楚,缺乏預(yù)防和早期診斷治療股骨頭壞死的有效方法.
股骨頭壞死病因?qū)W機制假說眾多,脂類代謝紊亂、凝血循環(huán)障礙、髓內(nèi)高壓、細(xì)胞功能障礙學(xué)說等,有研究表明,基因多態(tài)性與股骨頭壞死有關(guān),Lin等[5]最新研究發(fā)現(xiàn)與免疫系統(tǒng)調(diào)節(jié)相關(guān)的Fcer1A和Il7R基因和與肌肉系統(tǒng)過程相關(guān)的Tnn2、Mylpf和Myl1基因可能與類固醇誘導(dǎo)的股骨頭壞死機制相關(guān).甲狀旁腺激素受體1(parathyroid hormone receptor 1,PTHR1)可能通過與維生素D受體(vitam in D receptor,VDR)相互作用而參與糖皮質(zhì)激素誘導(dǎo)的股骨頭缺血壞死[6].信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子1(signal transducers and activators of transcription1,STAT1)-蛋白酶 3途徑在類固醇誘發(fā)的股骨頭壞死病程中通過上調(diào)蛋白酶3的表達(dá)和STAT1的激活發(fā)揮關(guān)鍵作用,并促使股骨頭壞死[7].
本研究根據(jù)Liu等[8]公開發(fā)表的基因表達(dá)譜數(shù)據(jù)進(jìn)行非創(chuàng)傷性股骨頭壞死的生物信息學(xué)分析.篩選非創(chuàng)傷性股骨頭壞死和健康對照組織之間的差異表達(dá)基因,并對基因功能、信號通路及蛋白質(zhì)-蛋白質(zhì)相互作用(protein-protein interaction,PPI)網(wǎng)絡(luò)進(jìn)行分析,可能有助了解非創(chuàng)傷性股骨頭壞死發(fā)病的分子機制及生物學(xué)信息.
非創(chuàng)傷性股骨頭壞死的基因芯片數(shù)據(jù)GSE74089(Liu等,2016)從公共數(shù)據(jù)庫GEO下載(https://www.ncbi.nlm.nih.gov/geo/).以 necrosis of femoral head為數(shù)據(jù)檢索關(guān)鍵詞,研究類型為Expression profiling by array,限制種屬為 Homo sapiens,是1個基于Agilent-026652全基因組微陣列4x44K v2的芯片平臺:GPL13497.此芯片共包含有8例股骨頭髖關(guān)節(jié)軟骨標(biāo)本.
基因表達(dá)譜的原始數(shù)據(jù)集利用Perl(practical extraction and report language)工具優(yōu)先基因ID轉(zhuǎn)換后,提取基因矩陣相關(guān)數(shù)據(jù).將整理后的數(shù)據(jù)用R語 言 的 limma包 (http://bioconductor.org/biocLite.R)分析,嚴(yán)格按照RMA算法對原始數(shù)據(jù)進(jìn)行背景校正、標(biāo)準(zhǔn)化及表達(dá)值計算,最終篩選出股骨頭壞死組與健康對照組之間差異表達(dá)基因,并繪制火山圖.差異表達(dá)基因需同時滿足以下篩選條件:(1)采用t檢驗,定義校正后P<0.05;表示差異倍數(shù)(fold change).
DAVID(database for annotation,visualization and integrated discovery)是在線生物信息學(xué)分析工具(https://david.ncifcrf.gov/),擁有一系列功能注釋工具,可為大規(guī)模的基因進(jìn)行生物功能富集分析.通過上傳差異表達(dá)基因進(jìn)行基因本體論(gene ontology,GO)功能注釋分析.用 R語言的GOplot包進(jìn)行差異基因功能可視化繪圖.設(shè)定P<0.05和FDR<0.05為顯著性基因富集的臨界值.用R語言的RSQLite、cluster Profiler包進(jìn)行KEGG(kyoto encyclopedia of genes and genomes)通路的富集分析.應(yīng)用統(tǒng)計學(xué)檢驗,設(shè)置條件:P<0.005,找出與整個基因組背景相比,在差異表達(dá)基因中顯著性富集的通路.
STRING(search tool for the retrieval of interacting genes/proteins,https://string-db.org/)數(shù)據(jù)庫是利用已知或預(yù)測的蛋白質(zhì)相互作用數(shù)據(jù)組成的網(wǎng)絡(luò)資源,包括直接和間接的蛋白質(zhì)相互作用.通過STRING對壞死股骨頭軟骨差異表達(dá)基因進(jìn)行蛋白-蛋白相互作用(PPI)網(wǎng)絡(luò)分析,核心蛋白是PPI網(wǎng)絡(luò)中蛋白質(zhì)作用的重要節(jié)點,為少數(shù)具有許多相互作用的中樞蛋白.設(shè)置條件:combined score>0.9.用Cytoscape軟件可視化PPI網(wǎng)絡(luò)圖.將互作網(wǎng)絡(luò)數(shù)據(jù)用R語言barplot包繪圖,顯示前20個互作網(wǎng)絡(luò)中突出的中心節(jié)點蛋白并進(jìn)一步GO功能富集分析.
依據(jù)差異表達(dá)基因篩選條件,與健康對照組對比,股骨頭壞死組共獲得1 315個差異表達(dá)基因,其中上調(diào)基因809個,下調(diào)基因506個(圖1).數(shù)據(jù)結(jié)果表明,用差異表達(dá)基因可以將股骨頭壞死組從健康對照組中區(qū)分開來.
通過GO功能富集分析,809個上調(diào)基因中有14個基因富集呈顯著性(P<0.05,F(xiàn)DR<0.05),506個下調(diào)基因中有12個基因富集呈顯著性(P<0.05,F(xiàn)DR<0.05).結(jié)果顯示,上調(diào)的差異表達(dá)基因主要涉及細(xì)胞外基質(zhì)、膠原纖維組織、蛋白質(zhì)細(xì)胞外基質(zhì)、膠原蛋白三聚體、膠原分解代謝過程、細(xì)胞外基質(zhì)組織、胞外空間、泛素-蛋白轉(zhuǎn)移酶活性(FBXW7、HACE1)、蛋白結(jié)合(FBXW7、HACE1)等功能類別;下調(diào)的差異表達(dá)基因主要涉及通過 MHCⅡ類抗原加工和呈遞肽或多糖抗原、MHCⅡ類蛋白復(fù)合物、MHCⅡ類受體活性、免疫球蛋白產(chǎn)生涉及免疫球蛋白介導(dǎo)的免疫應(yīng)答、內(nèi)質(zhì)網(wǎng)膜腔側(cè)的組成、干擾素-γ介導(dǎo)的信號通路、抗原加工和表現(xiàn)、通過MHCⅡ類抗原處理和呈遞外源肽抗原等功能類別(表 1).采用DAVID進(jìn)一步對股骨頭壞死樣本的全部1315個差異基因行GO功能富集分析顯示,6個GO功能富集顯著相關(guān),主要涉及蛋白質(zhì)細(xì)胞外基質(zhì)(proteinaceous extracellular matrix)、胞外空間(extracellular space)、細(xì)胞外基質(zhì)(extracellular matrix)、膠原蛋白三聚體(collagen trimer)、細(xì)胞外基質(zhì)組織(extracellular matrix organization)、膠原纖維組織(collagen fibril organization).從6類GO功能富集中選取顯著表達(dá)的40個差異基因,用R語言GOplot包繪制基因聚類分布情況(圖2).
圖1 差異表達(dá)基因火山圖Fig.1 Volcano plot of differentially expressed genes
表1 上、下調(diào)差異表達(dá)基因前12個GO功能分析結(jié)果Table 1 The top 12 enriched GO terms of the UP-and down-regulated differentially expressed genes
BP(biological process,生物學(xué)過程);CC(cellular component,細(xì)胞組分);MP(molecular function,分子功能);GO(gene ontology,基因本體論).
圖2 差異表達(dá)基因的前6個GO功能富集和弦圖(top40)Fig.2 The top 6 enriched GO terms of the 40 differentially distinctly expressed genes are enriched in the chord plot
為了解差異基因參與的代謝通路及具體的生物學(xué)功能,進(jìn)行KEGG通路分析.結(jié)果顯示上調(diào)差異表達(dá)基因主要富集了黏著斑(VEGFC)、蛋白質(zhì)消化吸收、松弛素信號通路、糖尿病并發(fā)癥AGE-RAGE信號通路、PI3K-Akt信號通路、Hippo信號通路、凋亡信號通路(如SGK1)、癌癥途徑、Hedgehog信號通路、轉(zhuǎn)化生長因子β信號通路等;而下調(diào)的差異表達(dá)基因主要富集途徑如抗原加工和表現(xiàn)(HLA-DRB4)、同種異體移植排斥反應(yīng)、移植物抗宿主病、造血細(xì)胞譜系、細(xì)胞粘附分子(CAMs)、HLA-DRB4、Th1/Th2細(xì)胞分化、Th17細(xì)胞分化、補體和凝血級聯(lián)反應(yīng)等(表2).
表2 差異表達(dá)基因的KEGG通路分析Table 2 KEGG pathway analysis of differentially expressed genes
為闡釋涉及股骨頭壞死差異基因分子機制,通過STRING數(shù)據(jù)庫構(gòu)建了蛋白互作網(wǎng)絡(luò),用cytoscape軟件繪制蛋白互作網(wǎng)絡(luò)圖.PPI網(wǎng)絡(luò)由391個節(jié)點和1 213個交互組成(圖3).紅色、綠色節(jié)點分別表示股骨頭壞死樣本相較于健康對照組高、低表達(dá)的基因.蛋白互作網(wǎng)絡(luò)交互密集的20個中心節(jié)點蛋白依次為:GNB5、GNG12、GNG13、GNG8、BTRC、ADCY7、BDKRB1、SAA1、UBE2N、SOCS3、UBE2B、DET1、FBXL4、FBXO32、FBXW7、GCGR、HACE1、HERC1、KBTBD13、KLHL2(圖4).根據(jù)GO富集分析,這些差異表達(dá)基因主要參與蛋白質(zhì)泛素化(HACE1、FBXW7),異三聚體G蛋白復(fù)合物(GNG8)和泛素-蛋白轉(zhuǎn)移酶活性(HACE1、FBXW7)(表3).
圖3 上、下調(diào)差異基因構(gòu)建的蛋白互作網(wǎng)絡(luò)圖Fig.3 Protein-protein interaction network constructed with the up-and down-regulated differentially expressed genes
隨著新一代高通量基因芯片技術(shù)的發(fā)展,生物信息學(xué)正在改變?nèi)藗冄芯可镝t(yī)學(xué)的傳統(tǒng)方式,高通量測序技術(shù)以及數(shù)據(jù)分析技術(shù)已成為探索生物學(xué)底層機制和研究人類復(fù)雜疾病診斷、治療及預(yù)后的重要工具.本研究主要通過生物信息學(xué)技術(shù)對GEO數(shù)據(jù)庫下載的非創(chuàng)傷性股骨頭壞死基因芯片(GSE74089)進(jìn)行數(shù)據(jù)分析,并使用R語言包挖掘數(shù)據(jù),探索可作為股骨頭壞死診斷、發(fā)病機制的潛在關(guān)鍵基因,是NOFH中基于人關(guān)節(jié)軟骨的第一個基因表達(dá)譜生物信息學(xué)研究,本研究結(jié)果可能為NOFH的發(fā)病機制及治療措施提供新的選擇依據(jù).
在本研究中,共獲得809個上調(diào)差異表達(dá)基因和506個下調(diào)差異表達(dá)基因.根據(jù)GO顯著富集結(jié)果分析,差異表達(dá)基因主要參與細(xì)胞外基質(zhì)、胞外空間、膠原蛋白三聚體、膠原纖維組織等.這些顯著富集的細(xì)胞外基質(zhì)相關(guān)基因和膠原基因均為上調(diào)基因,有研究表明此類基因的突變可能與關(guān)節(jié)炎及股骨頭的壞死發(fā)生、發(fā)展密切相關(guān)[8].圖2中COL5A1編碼V型膠原的α鏈?zhǔn)墙Y(jié)締組織的次要組分.在動物研究中,發(fā)現(xiàn)COL5A1的功能障礙產(chǎn)生異常關(guān)節(jié)表型,如關(guān)節(jié)松弛和早發(fā)性骨關(guān)節(jié)炎[9].ASPN編碼軟骨細(xì)胞外蛋白質(zhì),能夠通過阻斷軟骨細(xì)胞中轉(zhuǎn)化生長因子(TGF)-β受體相互作用來負(fù)調(diào)節(jié)關(guān)節(jié)軟骨的軟骨形成[10].OGN編碼骨膠原能夠誘導(dǎo)異位骨形成和調(diào)節(jié)心血管發(fā)育[11-12].CRTAC1編碼軟骨酸性蛋白1在關(guān)節(jié)軟骨的深部區(qū)域表達(dá).CRTAC1作為區(qū)分軟骨細(xì)胞與成骨細(xì)胞和間充質(zhì)干細(xì)胞的生物標(biāo)志物[13].
KEGG通路分析中,黏著斑(focal adhesion)是細(xì)胞骨架中的一種重要的結(jié)構(gòu),細(xì)胞依靠“黏著斑”特殊結(jié)構(gòu)來保持其正常形態(tài)和發(fā)揮其正常功能[14].黏著斑可能參與骨壞死早期時調(diào)節(jié)細(xì)胞生長的過程.蛋白質(zhì)消化吸收(protein digestion and absorption)與股骨頭缺血壞死后期骨質(zhì)平衡破壞、關(guān)節(jié)軟骨塌陷有關(guān).松弛素信號通路(relaxin signaling pathway)具有多效性作用,包括血管擴張,抗纖維化和血管生成作用[15].與股骨頭壞死患者微血管病變、血液循環(huán)障礙、凝血機制異常密切相關(guān).轉(zhuǎn)化生長因子 β信號通路(TGF-beta signaling pathway)中的轉(zhuǎn)化生長因子-β(TGF-β)家族成員,包括TGF-β,激活素和骨形態(tài)發(fā)生蛋白(BMP),廣泛調(diào)節(jié)細(xì)胞的增殖,凋亡,分化和遷移功能[16].大量研究證實BMP有誘導(dǎo)成骨作用,其中BMP-2成骨誘導(dǎo)作用最強,是最有前途的骨誘導(dǎo)物質(zhì)[17].類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis)系慢性自身免疫性關(guān)節(jié)疾病,本身就可以進(jìn)展為股骨頭壞死,如有激素或類固醇的誘導(dǎo),發(fā)生骨壞死的比率將明顯增加[18].骨髓造血細(xì)胞為股骨頭骨組織的重要組成部分,造血細(xì)胞系(hematopoietic cell lineage)中骨髓造血細(xì)胞的病理改變可影響股骨頭壞死的發(fā)展.抗原加工和表現(xiàn)(antigen processing and presentation)、Th1和 Th2細(xì)胞分化(Th1 and Th2 cell differentiation)及 Th17細(xì)胞分化(Th17 cell differentiation)均涉及免疫系統(tǒng).Okazaki等[19]已經(jīng)證明股骨頭壞死與免疫系統(tǒng)的破壞有關(guān),免疫失調(diào)可導(dǎo)致骨代謝異常,骨量減少及骨小梁塌陷,最終導(dǎo)致骨壞死.
從PPI網(wǎng)絡(luò)交互密集的20個中心節(jié)點蛋白進(jìn)行潛在關(guān)節(jié)基因挖掘,發(fā)現(xiàn)了HACE1、FBXW7、GNG8、SAA1前4名潛在基因.在本研究中,上調(diào)的HACE1、FBXW7主要涉及蛋白質(zhì)泛素化.HACE1是HECT家族E3連接酶,通過介導(dǎo)Rac1的泛素化,激活泛素 -蛋白酶體途徑[20].HACE1生物學(xué)功能廣泛,可通過介導(dǎo)核因子E2相關(guān)因子2(NRF2)發(fā)揮抗氧化應(yīng)激作用.氧化應(yīng)激是缺血性損傷的重要病理機制,Ichiseki等[21]研究發(fā)現(xiàn),短暫氧化應(yīng)激即可加重骨壞死.Murata等[22]研究證實,激素可能通過氧化應(yīng)激途徑產(chǎn)生骨壞死.有研究報道HACE1的喪失可增加體內(nèi)外活性氧(ROS)水平,HACE1的喪失導(dǎo)致ROS依賴性谷氨酰胺成癮[23].活性氧(ROS)增加可促進(jìn)股骨頭壞死發(fā)生,而抗氧化劑的使用可在一定程度上抑制這一病理過程[24].最近研究發(fā)現(xiàn),當(dāng)Rac1與Rac1依賴性NADPH氧化酶復(fù)合物結(jié)合時,HACE1特異性地靶向活化Rac1,以降低ROS產(chǎn)生[25].FBXW7基因編碼的蛋白是F-box蛋白家族的一員.FBXW7可通過調(diào)節(jié)內(nèi)皮Notch信號途徑控制血管形成[26].同時FBXW7是脂肪細(xì)胞分化的負(fù)調(diào)節(jié)因子,F(xiàn)BXW7的上調(diào)有助于脂肪細(xì)胞肥大相關(guān)的 G0/G1期細(xì)胞周期停滯[27].Onoyama等[28]研究認(rèn)為FBXW7在調(diào)節(jié)肝臟的脂肪生成和細(xì)胞增殖和分化中發(fā)揮著關(guān)鍵作用.目前沒有證據(jù)表明HACE1和FBXW7與股骨頭壞死的發(fā)病機制有關(guān).因此,推測HACE1和FBXW7可能通過蛋白質(zhì)泛素化過程參與股骨頭壞死的進(jìn)展.
此外,在 PPI網(wǎng)絡(luò)模塊中,下調(diào)的GNG8、SAA1分別涉及異三聚體G蛋白復(fù)合物與炎癥反應(yīng)的負(fù)調(diào)節(jié)過程.GNG8(鳥嘌呤核苷酸結(jié)合蛋白8)是細(xì)胞跨內(nèi)皮遷移過程中一個極為重要的趨化因子.GNG8通過細(xì)胞膜G蛋白磷酸化和去磷酸化參與多細(xì)胞信號轉(zhuǎn)導(dǎo)[29].G蛋白偶聯(lián)受體(GPCR)在內(nèi)皮細(xì)胞的增殖、遷移和管腔形成,以及成血管細(xì)胞的遷移、分化等過程中發(fā)揮作用[30-31].Li等[32]發(fā)現(xiàn) FIZZ1(炎癥區(qū)域分子 1)可以通過上調(diào)GNG8、ATG9A和P13K/Akt通路基因表達(dá)來提高大鼠主動脈內(nèi)皮細(xì)胞的血管生成能力.目前,改善股骨頭及其周圍血液循環(huán)、促再血管化及促成骨是早期股骨頭壞死治療的研究熱點.SAA1(血清淀粉樣蛋白1)是一種新的促炎性脂肪細(xì)胞因子,也是一種炎癥信號的觸發(fā)劑.Wang等[33]研究發(fā)現(xiàn)SAA1是動脈粥樣硬化和心肌梗死的候選基因.最近幾項研究報道了SAA1基因多態(tài)性與頸動脈粥樣硬化癥[34]、脂質(zhì)水平[35]、尿酸水平[36]和外周動脈疾?。?7]的關(guān)系.Xu等[38]也報道SAA1基因多態(tài)性與脂質(zhì)水平相關(guān).SAA1基因多態(tài)性也與中國人群的骨質(zhì)疏松有關(guān),與SAA基因多態(tài)性引起的脂質(zhì)紊亂有關(guān)[39].本研究中,兩個基因富集于血管生成及脂質(zhì)代謝過程,GNG8、SAA1之間的相互作用可能在股骨頭壞死發(fā)展中起重要作用.
綜上,采用生物信息學(xué)的方法在股骨頭壞死樣品中共鑒定出809個上調(diào)與506個下調(diào)差異表達(dá)基因.HACE1、FBXW7、GNG8和SAA1等基因以及松弛素信號通路、轉(zhuǎn)化生長因子β信號通路等可能與非創(chuàng)傷性股骨頭缺血壞死的病理機制密切相關(guān).為股骨頭缺血壞死發(fā)病機制的研究與治療提供參考.
[1]CHAN K L,MOK CC.Glucocorticoid-induced avascular bone necrosis:diagnosis and management[J].Open Orthopaedics Journal,2012,6(1):449.
[2]WEINSTEIN R S. Clinical practice. Glucocorticoidinduced bone disease[J].New England Journal of Medicine,2011,365(1):62-70.
[3]WU B,DONG Z,Li S,et al.Steroid-induced ischemic bone necrosis of femoral head:treatment strategies[J].Pakistan Journal of Medical Sciences,2015,31(2):471.
[4]WEINSTEIN R S.Glucocorticoid-induced osteoporosis and osteonecrosis[J].Endocrinology& Metabolism Clinics of North America,2012,41(3):595.
[5]LIN Z,LIN Y.Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile[J].Gene,2017,627:322.
[6]HUANG G,WEIY,ZHAO G,et al.Microarray-based screening of differentially expressed genes in glucocorticoid?induced avascular necrosis[J].Mol Med Rep,2017,15(6):3583-3590.
[7]XU X,WEN H,HU Y,et al.STAT1-caspase 3 pathway in the apoptotic process associated with steroid-induced necrosis of the femoral head[J].Journal of Molecular Histology,2014,45(4):473-485.
[8]LIU R,LIU Q,WANG K,et al.Comparative analysis of gene expression profiles in normal hip human cartilage and cartilage from patients with necrosis of the femoral head[J].Arthritis Research&Therapy,2016,18(1):98.
[9]SUN M,CONNIZZO B K,ADAMSSM,et al.Targeted deletion of collagen V in tendons and ligaments results in a classic ehlers-danlos syndrome joint phenotype[J].American Journal of Pathology,2015,185(5):1436.
[10]NAKAJIMA M, KIZAWA H, SAITOH M, et al.Mechanisms for asporin function and regulation in articular cartilage[J].Journal of Biological Chemistry,2007,282(44):32185-32192.
[11]TANAKA K,MATSUMOTO E,HIGASHIMAKI Y,et al.Role of osteoglycin in the linkage between muscle and bone[J].Journal of Biological Chemistry,2012,287(15):11616-11628.
[12]PETRETTO E, SARWAR R, GRIEVE I, et al.Integrated genomic approaches implicate osteoglycin(Ogn)in the regulation of left ventricular mass[J].Nature Genetics,2008,40(5):546-552.
[13]STECK E,BRAUN J,PELTTARIK,et al.Chondrocyte secreted crtac1:a glycosylated extracellular matrix molecule of human articular cartilage[J]. Matrix Biology,2007,26(1):30.
[14]DJINOVIC-CARUGO K,GAUTEL M,YLANNE J,et al. The spectrin repeat: a structural platform for cytoskeletal protein assemblies[J].Febs Letters,2002,513(1):119.
[15]SAMUEL CS,HEWITSON TD,UNEMORIEN,et al.Drugs of the future:the hormone relaxin[J].Cellular&Molecular Life Sciences Cmls,2007,64(12):1539-1557.
[16]MIYAZONO K,KUSANAGI K,INOUE H.Divergence and convergence of TGF-beta/BMP signaling[J].Journal of Cellular Physiology,2001,187(3):265.
[17]SEKIYA I,LARSON B L,VUORISTO J T,et al.Adipogenic differentiation of human adult stem cells from bonemarrow stroma(MSCs)?[J].Journal of Bone&Mineral Research the Official Journal of the American Society for Bone& Mineral Research,2004,19(2):256.
[18]VUGT R M V,SIJBRANDIJ E S,BIJLSMA JW J.Magnetic resonance imaging of the femoral head to detect avascular necrosis in active rheumatoid arthritis treated with methylprednisolone pulse therapy[J].Scandinavian Journal of Rheumatology,1996,25(2):74.
[19]OKAZAKI S, NISHITANI Y, NAGOYA S, et al.Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway[J].Rheumatology,2009,48(3):227.
[20]GACON G,METTOUCHIA,LEMICHEZ E.The tumor suppressor HACE1 targets Rac1 to ubiquitin-mediated proteasomal degradation[J].Med Sci,2012,28(1):39-41.
[21]ICHISEKI T, KANEUJI A, UEDA Y, et al.Osteonecrosis development in a novel rat model characterized by a single application of oxidative stress[J].Arthritis&Rheumatism,2011,63(7):2138.
[22]MURATA M, KUMAGAI K, MIYATA N, et al.Osteonecrosis in stroke-prone spontaneously hypertensive rats:effect of glucocorticoid[J].Journal of Orthopaedic Science,2007,12(3):289-295.
[23]CETINBASN,DAUGAARD M,MULLEN A R,et al.Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction[J].Oncogene,2015,34(30):4005-4010.
[24]LIU H,YANG X,ZHANGY,et al.Fullerolantagonizes dexamethasone-induced oxidative stress and adipogenesis while enhancing osteogenesis in a cloned bone marrow mesenchymal stem cell[J].Journal of Orthopaedic Research,2012,30(7):1051-1057.
[25]DAUGAARD M,NITSCH R,RAZAGHI B,et al.Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes[J]. Nature Communications,2013,4(4):2180.
[26]IZUMI N,HELKER C,EHLING M,et al.Fbxw7 controls angiogenesis by regulating endothelial notch activity[J].Plos One,2012,7(7):e41116.
[27]NAKATSUKA A,WADA J,HIDA K,et al.RXR antagonism induces G0/G1 cell cycle arrest and ameliorates obesity by up-regulating the p53-p21(Cip1)pathway in adipocytes[J].Journal of Pathology,2012,226(5):784.
[28]ONOYAMA I,SUZUKI A,MATSUMOTO A,et al.Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver[J].Journal of Clinical Investigation,2011,121(1):342-354.
[29]RYBA N J,TIRINDELLI R.A novel GTP-binding protein gamma-subunit,G gamma 8,is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia[J].Journal of Biological Chemistry,1995,270(12):6757-6767.
[30]SILLE F C,THOMAS R,SMITH M T,et al.Post-GWAS functional characterization of susceptibility variants for chronic lymphocytic leukemia[J].PLoS One.2012,7(1):e29632.
[31]HERBERT SP,STAINIER D Y R.Molecular control of endothelial cell behaviour during blood vessel morphogenesis[J].Nature Reviews Molecular Cell Biology,2011,12(9):551-564.
[32]LIX,YANG Y,F(xiàn)ANG J,et al.FIZZ1 could enhance the angiogenic ability of rat aortic endothelial cells[J].International Journal of Clinical&Experimental Pathology,2013,6(9):1847-1853.
[33]WANG B Y,HANG JY,ZHONG Y,et al.Association of genetic polymorphisms of SAA1(rs12218) with myocardial infarction in a Chinese population[J].Genetics& Molecular Research Gmr,2014,13(2):3693-3696.
[34]XIANG X,MA Y T,YANG Y N,et al.Polymorphisms in the SAA1/2 gene are associated with carotid intima media thickness in healthy han chinese subjects:the cardiovascular risk survey[J].Plos One,2010,5(11):e13997.
[35]XIE X,MA Y T,YANG Y N,et al.Association of genetic polymorphisms of serum amyloid protein A1 with plasma high density lipoproteins cholesterol[J].Zhonghua Yi Xue Za Zhi,2010,90(26):1824-1826.
[36]XIE X,MA Y T,YANG Y N,et al.Serum uric acid levels are associated with polymorphism in the SAA1 gene in chinese subjects[J].Plos One,2012,7(6):1634-1634.
[37]XIE X,MA Y T,YANG Y N,et al.Polymorphisms in the SAA1 gene are associated with ankle-to-brachial index in han chinese healthy subjects[J].Blood Press,2011,20(4):232-238.
[38]XU X L,SUN X T,PANG L,et al.Rs12218 In SAA1 gene was associated with serum lipid levels[J].Lipids in Health&Disease,2013,12(1):1-4.
[39]FENG Z P,LI X Y,RONG J,et al.Associations of SAA1 gene polymorphism with lipid lelvels and osteoporosis in chinese women[J].Lipids in Health&Disease,2013,12(1):1-5.