• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon Fuels

    2018-07-02 01:34:00Boriaev
    火炸藥學(xué)報(bào) 2018年3期

    A.A.Boriaev

    (Saint Petersburg State University of Architecture and Civil Engineering, 4 Vtoraya Krasnoarmeyskaya St., Saint Petersburg, 199005, Russia)

    Introduction

    Appearance of free water in a hydrocarbon fuel during operation affects many performance properties: it reduces the corrosion resistance of structural materials, increases static, and promotes biochemical decomposition, fuel oxidation, release of hydrogen (which is an explosion hazard) in tribochemical reactions, etc. Emulsified water lowers an important performance characteristic—low-temperature pump ability—due to the deposition of ice crystals on fuel system pipeline filters at freezing temperatures.

    Dehydration is important for improving the quality of hydrocarbon fuels; this process requires modern, high-performance technologies[1-3].Kobyzev S. V.[1]proposes an expanded multi-element mathematical model of hydrocarbon fuel dehydration as a part of pre-launch preparation. The paper discloses the following models based on the proposed integrated mathematical model: the model of mass transfer into an isolated gas bubble, the model of mass transfer from the fuel liquid phase to the disperse gas phase within the preparation unit volume, the model of mass transfer on the liquid surface in the preparation unit, and the model of mass transfer on the liquid surface accounting for surface bubbling.

    Aleksandrov A. A. et al.[2]consider characteristics of hydrocarbon fuel dehydration processes based on fuel sparging and the cyclic technology of discharge and super saturation using dry nitrogen. The specific consumption of nitrogen and time for fuel dehydration operations was compared and gave recommendations on their application in fuel storage and preparation systems and at launch sites.

    Goncharov R. A. et al.[3]present results of theoretical studies of heat and mass transfer processes in devices for cooling and dehydration of hydrocarbon fuels at launch and technical areas of launch sites.

    The causes of reduced low-temperature pump ability and emulsion water in fuel cannot be eliminated without knowing the natural laws and specifics of how water dissolves in hydrocarbon fuels in the presence of oxidation products, which generally have a complex chemical composition that partially changes during storage. Of great importance references[4-11]studied the oxidation mechanism, which leads to a wide variety of chemical substances (oxidation products), as well as the effect of the hydrocarbon fuel oxidation factor on water solubility, which ultimately leads to various concentrations of chemical compounds that are products of oxidation reactions.

    Ma X. et al.[4]described the study of a novel oxidative desulfurization (ODS) method for liquid hydrocarbon fuels. The ODS method was applied to a model jet fuel and a real jet fuel (JP-8) in a batch system at ambient conditions. The remarkable advantages of the new ODS method are that ODS can be performed in the presence of O2at ambient conditions without using peroxides and aqueous solvent and thus without involving a biphasic oil-aqueous-solution system.

    Fernández-Tarrazo E et al.[5]explored the applicability of one-step irreversible Arrhenius kinetics of first-order reactions to a numerical description of the combustion of partially premixed hydrocarbons. Computations of planar premixed flames were used to select three model parameters: heat of reactionq, activation temperatureTa, and preexponential factorB.

    You X. et al.[6]proposed a detailed kinetic model for the combustion of normal alkanes up to n-dodecane above 850 K. The model was validated against experimental data. Combined with the base C1-C4model, the simplified model predicted fuel pyrolysis rate and product distribution, laminar flame speeds, and ignition delays as closely as the detailed reaction model.

    Murugan P. et al.[7]investigated low-temperature oxidation (LTO) of Fosterton crude oil mixed with its reservoir sand in a tubular reactor. The general model for an nthorder reaction was used to obtain the kinetic parameters of the coke oxidation reaction. The activation energy, frequency factor and order of the reactions were determined using the model.

    Al-Hamamre Z. et al.[8]stated that a very high temperature fuel-air mixture was necessary for the thermal partial oxidation of hydrocarbon fuels in order to have a high reaction temperature, which accelerated the reaction kinetics. For diesel fuel and due to the ignition delay time behavior, varying oxidation behavior may occur at various preheating temperatures.

    Li D. et al.[9]described enhanced autoxidation experiments of hydrocarbon fuels, which were performed simultaneously. The thermal-oxidation stabilities for these fuels under various conditions were compared using ultraviolet-visible spectrometry and infrared spectra.

    Thomas S. et al.[10]described pyrolysis and fuel-rich oxidation experiments in an isothermal laminar-flow reactor, using the model fuel catechol (ortho-dihydroxybenzene), a phenol-type compound representative of structural entities in coal, wood and biomass, to better understand the effects of oxygen on the formation and destruction of polycyclic aromatic hydrocarbons (PAH) during the burning of complex solid fuels. The PAH products, ranging in size from two to nine fused aromatic rings, had been analyzed by gas chromatography with flame-ionization and mass spectrometric detection, and by high-pressure liquid chromatography with diode-array ultraviolet-visible absorbance detection.

    Shakeri A. et al.[11]presented a new approach to reduce large detailed or skeletal mechanisms of hydrocarbon fuel oxidation to a low-cost skeletal mechanism. The method involved an integrated procedure including a Sensitivity Analysis (SA) and a Gradual Evaluation of Ignition Error (GEIE).

    According to the literature review, the composition of hydrocarbon fuel oxidation products depends on oxidation reaction conditions, and is characterized by various reaction mechanisms and the variety of generated chemical compounds, including significant concentrations of oxidation products, which can be considered surfactants based on their structures.

    The authors found no published data on the effect of the hydrocarbon fuel oxidation factor and, correspondingly, the effect of impurities generated from the liquid-phase oxidation reaction on the solubility of water in hydrocarbon fuels. As shown below, it is impossible to create an effective procedure for dehydrating hydrocarbon fuels without assessing the impact of oxidation factor, since during our experiments we found a significant difference in the nature of equilibrium water solubility curves for various batches of the same hydrocarbon fuel.

    Studying the solubility of water in hydrocarbon fuels is associated with an important performance characteristic: low-temperature pump ability, which causes various emergencies due to fuel supply failure[12].

    The conducted experiments determined the reasons for significant differences in the equilibrium solubility of water as a function of temperature for various batches of the same hydrocarbon fuel. The main reason is the different oxidation factors of product samples, resulting from the accumulation of oxidation products, which are natural surfactants, in hydrocarbon fuels. Surfactants are organic substances containing a hydrocarbon radical and one or several active polar groups. The surfactant hydrocarbon portion may consist of paraffinic, isoparaffinic, naphthenic aromatic, and other hydrocarbons of various structure. For the most common active groups are oxygen-containing (ether, carboxyl, hydroxyl, etc.) and nitrogen-containing (nitro-, amino-, amido-, etc.) groups.

    1 Experimental-theoretical studies

    It is known that water dissolved in a hydrocarbon liquid follows Henry′s law like a dissolved gas:

    (1)

    wherePiH2Ois the partial pressure of water vapor in the space above the fuel surface;PSH2Ois the saturated water vapor pressure; ψ is the relative humidity;Climis the limit or maximum possible value of water dissolution at a given temperature[12].

    The value ofClim=f(T) is similar to the Henry′s law constant for gases, which is a physical constant for individual liquid/gas systems, i.e. it is constant for hydrocarbon liquid/water systems.

    The limit solubilityClimdetermines the equilibrium solubility of water in the fuel and is a function of temperature. As for most liquid/gas systems, water solubility decreases as temperature decrease and, in accordance with thermodynamic laws of supersaturated solutions, free water forms in the product mass in the form of micro-droplets, followed by crystallization at temperatures below freezing. Ice crystals block up filters in fuel lines and stop fuel supply. This, in its turn, leads to emergencies. It should be noted that the equilibrium temperature corresponding toClimis referred to as the “cloud point”, since, during experimental determination of the solubility curve (to perform analysis), a slight decrease in temperature relative to the equilibrium temperature leads to clouding of the product due to formation of a new, finely dispersed phase (free water or ice). After experimental determination of the functionClim=f(T), it is easy to establish permissible limits for the dissolved water content in hydrocarbon fuels that exclude the possibility of ice crystal formation at specified low-temperature operating conditions.

    In the course of our experiments to determine the equilibrium functionClim=f(T) for hydrocarbon fuels, we found a significant difference in the nature of equilibrium water solubility curves for various batches of the same hydrocarbon fuel. Figure 1 shows experimental curves for the naphthene-base hydrocarbon fuel (Figure 1(a)) and T-6 hydrocarbon fuel (Figure 1(b)).

    The results made it more difficult to determine reasonable limits for the permissible water concentration in hydrocarbon fuels to prevent fuel system failure due to the formation of ice crystals when fuel temperature decreases. For example, at a residual water concentration in fuel ofCw=0.001%, ice crystals may form on curve 1 is possible only at temperatures below 40 ℃, on curves 2 and 3 — at temperatures below 14 ℃, and on curve 4 — at temperatures below 6 ℃ (Figure 1(a)). The same tendency is also observed for T-6 hydrocarbon fuel (Figure 1(b)).

    This fundamental difference in results requires an explanation to prevent emergencies in equipment operation and use of hydrocarbon fuels.

    We have previously ascertained that the hydrocarbon group composition has significant influence on water solubility in hydrocarbon fuels. The fractional composition of fuels and the content of mechanical impurities have a particular influence as well. However, their influence has a definite value which corresponds to the standards for production, while experiments have shown that permissible variations of these parameters in the standards could not have a significant effect on water solubility.

    Considering differences in storage conditions for study samples of hydrocarbon fuels from various batches, it was assumed that various oxidation factors of fuel samples may affect water solubility, despite the fact that analysis of the main parameters of oxidation factor using current standardized methods (presence of soluble gums, acidity—determination according to state standards (GOST) or technical specifications for fuels) showed there are practically no liquid-phase oxidation products. We assumed that surfactants accumulating in the fuel during its oxidation play the determining role in changes of the equilibrium water solubility in hydrocarbon fuels.

    Thus, the foregoing defines the need to carry out a set of experiments to confirm this assumption.

    This paper presents the results of experimental studies of the oxidation factor′s effect and the effect of artificially introduced surfactants on water solubility in naphthene-base fuel.

    According to standards, oxidation parameters of naphthene-base fuel (acidity and gums) must not exceed 0.5 and 2.0 mg per 100 mL, respectively. Experiments have shown that water solubility in hydrocarbon fuels can vary considerably (Figure 1). However, water solubility for products with zero parameters of acidity and gums varies over a wide range as well[13-14], which indicates insufficient sensitivity of the methods used to determine these parameters at low oxidation factors of hydrocarbon fuels[15-17].

    2 Experimental research

    To assess the effect of oxidation products on water solubility in hydrocarbon fuels, stripped, silica-gel-filtered naphthene-base fuel was selected from a certain batch, and samples with various oxidation factors were prepared under the same conditions (samples were prepared with air sparging through the product layer att=100 ℃). After oxidation, various physical and chemical parameters were determined for each fuel sample that reacted with a defined quantity of oxygen. Surface tension was determined in accordance with GOST R 50003-92 (ISO 304-85). Electrical and physical parameters (dielectric permittivity and dielectric loss tangent) were measured using an AC bridge with an automatic balancer and a transducer (three-electrode, contact, temperature-controlled sensor)[18].

    The data presented in Figure 2 show that an increase in fuel oxidation factor leads to changes in all parameters except surface tension at the product/air interface. The horizontal axis, showing the total quantity of reacted oxygen, can be divided into three characteristic regions: the first region is the interval of 0-55cm3/L, the second region is the interval of 55-88cm3/L and the third region is the interval of 88-165cm3/L. Gums and acidity (GOST parameters for fuel) begin to grow only in the third region, not reacting to oxidation prior to that. In the first region, the surface tension σ at the product/air interface and the dielectric loss tangent tan δ change most significantly. Their change indicates the appearance of oxygen compounds in the fuel. A sharp decrease in surface tension σ is evidence that these compounds are surfactants. Based upon the nature of changes in parameters (sharp inflections in the second region), surfactants are in the molecular, unassociated state (true surfactant solution in the hydrocarbon liquid up to an oxidation factor of 55cm3/L).

    Upon further oxidation in the second region, the surfactant concentration reaches critical micelle concentration (CMC), and the fuel can be considered a colloidal surfactant solution in the hydrocarbon liquid with all properties inherent to them, in particular the capacity for solubilization, i.e. for increase in solubility of any substance due to its introduction into micelles. In this case, the solubilization of water molecules into surfactant micelles is observed.

    Changes in electrical and physical parameters are notable as well. The tanδincreases more than three-fold upon increase in the oxidation factor in the first region. The value then drops sharply back to baseline and then increases slowly.

    According to the Debye theory, there is a relationship between tanδand the concentration of polar molecules (here, oxy groups):

    (2)

    whereκis the Boltzmann constant;εis dielectric permittivity;ωis angular frequency of measurement, andτis relaxation time.

    Therefore:

    tanδ=Bμ2C

    (3)

    whereBis a constant multiplier.

    Thus, the concentration of polar surfactant molecules in the first region increases (true solution) during fuel oxidation, and since the oxidation groups (-COOH,-O=O, -OH, etc.) have similar dipole momentμ, tanδincreases linearly in this region with surfactant concentration. Upon further oxidation, micelle structures begin to form at a certain point. Micelle formation leads to a sharp decrease in the dipole moment attributable to the monomer unitμ/n, wherenis the number of molecules in a micelle. A several-fold decrease in the dipole moment leads to a sharp drop in tanδ. Upon further increase in the number and size of micelles, the dipole moment remains practically unchanged, and the dielectric loss tangent begins to increase linearly again with surfactant concentration.

    The deviation of the dielectric permittivity diagram from linearity is also explained by the decrease in dipole moment per surfactant moleculeμ/n.

    Figures 3 and 4 present the infrared spectra of hydrocarbon fuel samples observed using a UV-1800 spectrometer.

    Water dissolved in non-polar solvents has an asymmetrical oscillation frequency ofυ= 3705cm-1and a symmetrical oscillation frequency ofυ=3614cm-1.Infrared spectra were determined for fuel samples with equilibrium solubility of 0.0006-0.0015%(mass fraction), and the spectral bands corresponding to these oscillations are almost negligible (absorption increases somewhat atυ=3630cm-1).The most pronounced absorption band in the spectrum is atυ=3550cm-1, increasing with fuel oxidation factor and “l(fā)imit dryness”.

    Experimental data support the conclusion that the absorption band atυ=3550cm-1corresponds to bound water molecules in non-polar organic solvents.

    The absorption band in the IR spectrum atυ=3550cm-1corresponding to water molecules bound to each other, and the relationship between its intensity and “l(fā)imit dryness” confirms micelle formation concentration upon fuel oxidation. Most likely, this band corresponds to the bound (solubilized) water located inside inverse surfactant micelles-products of liquid-phase oxidation.

    Apparently, the initial product contains a certain amount of neutral resins—substances of liquid or semi-liquid consistency with very weak surfactant properties. They have heterogeneous composition and are a mixture of various aromatic hydrocarbons with long chains, condensed aromatic and naphthenic aromatic compounds with short chains, phenolic and nitrogen bases, and other compounds.

    Neutral resins readily enter into oxidation, bodying and condensation reactions, reacting to form asphaltenes, carbenes, and carboids. Asphaltenes are quite strong surfactants at the hydrocarbon/water interface. Due to their surfactant properties, resinous asphaltenes play an important role in the production, transport, and refining of oil, increasing its wettability. Naphthenic (carboxylic) acids, which are widespread oil-soluble surfactants, are also oxidation products. Colloidal surfactants are of particular interest. The main distinctive feature of these substances is their ability to form thermodynamically stable heterogeneous disperse systems (associative or micellar colloids). The main characteristics of colloidal surfactants are high surface activity, capacity for spontaneous micelle formation, and capacity of surfactant solutions to solubilize, i.e. to increase the solubility of a substance because its molecules penetrate into micelles.

    3 Conclusions

    Thus, we can conclude that if CMC is achieved upon further oxidation of hydrocarbon liquids, micelle formation processes occur spontaneously in the solution, and the true solution becomes a colloidal system (sol). The resulting micelles are structured with hydrocarbon radicals of molecules toward the outside and hydrophilic (polar) groups toward the inside. Water molecules are located inside micelles and held so securely that water molecules do not aggregate as temperature decreases. These processes explain the experimental data we obtained showing significant differences in the equilibrium solubility of water as a function of temperature for various batches of the same hydrocarbon fuel.

    The conducted experiments determined the reasons for significant differences in the equilibrium solubility of water as a function of temperature for various batches of the same hydrocarbon fuel. The main reason is the different oxidation factors of product samples, resulting from the accumulation of oxidation products, which are natural surfactants, in hydrocarbon fuels. Surfactants are organic substances containing a hydrocarbon radical and one or several active polar groups. The surfactant hydrocarbon portion may consist of paraffinic, isoparaffinic, naphthenic aromatic, and other hydrocarbons of various structure. For the most common active groups are oxygen-containing (ether, carboxyl, hydroxyl, etc.) and nitrogen-containing (nitro-, amino-, amido-, etc.) groups. Thus, dehydration is important for improving the quality of hydrocarbon fuels; this process requires modern, high-performance technologies based on well-understood natural laws and specific mechanisms of how water dissolves in hydrocarbon fuels, one of which is the effect of liquid-phase oxidation impurities on water solubility.

    [1] Kobyzev S V. Modelirovanie obezvozhivanija uglevodorodnogo gorjuchego s primeneniem azota pri vypolnenii tehnologicheskih operacij podgotovki raketnogo topliva na startovom komplekse[J]. Engineering Bulletin of the Bauman Moscow State Technical University, 2014(11):11-15.

    [2] Aleksandrov A A, Zolin A V, Kobyzev S V, et al. Sravnitel′nyj analiz tehnologij obezvozhivanija raketnogo topliva s primeneniem azota dlja nazemnyh kompleksov kosmodromov [J]. Bulletin of the Bauman Moscow State Technical University, Mechanical Engineering Series, 2013 (1):12-22.

    [3] Goncharov R A, Zolin A V, Kobyzev S V, et al. Modelirovanie teplomassoobmennyh processov podgotovki uglevodorodnogo gorjuchego pered zapravkoj v toplivnye baki rakety na startovom komplekse [C]∥7thInternational Aerospace Congress. Moscow:Horuzhevskij A I, 2012:242-243.

    [4] Ma X, Zhou A, Song C. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption [J]. Catalysis Today, 2007, 123(1-4):276-284.

    [5] Fernández-Tarrazo E, Sánchez A L,Lián A,et al. A simple one-step chemistry model for partially premixed hydrocarbon combustion[J]. Combustion and Flame, 2006,147 (1/2):32-38.

    [6] You X, Egolfopoulos F N,Wang H. Detailed and simplified kinetic models of n-dodecane oxidation: the role of fuel cracking in aliphatic hydrocarbon combustion [J]. Proceedings of the Combustion Institute, 2009, 32(1):403-410.

    [7] Murugan P, Mahinpey N, Mani T, et al. Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil [J]. Energy, 2010 ,35 (5):2317-2322.

    [8] Al-Hamamre Z, Trimis D. Investigation of the intermediate oxidation regime of diesel fuel [J]. Combustion and Flame, 2009, 156(9):1791-1798.

    [9] Li D, Fang W, Xing Y, et al. Spectroscopic studies on thermal-oxidation stability of hydrocarbon fuels [J]. Fuel, 2008, 87 (15/16):3286-3291.

    [10] Thomas S, Wornat M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol [J].Fuel, 2008, 87(8):768-781.

    [11] Shakeri A,Mazaheri K, Owliya M. Using sensitivity analysis and gradual evaluation of ignition delay error to produce accurate low-cost skeletal mechanisms for oxidation of hydrocarbon fuels under high-temperature conditions [J]. Energy Fuels, 2017,31(10):11234-11252.

    [12] Borjaev A A, Korichev A A. Himmotologija. Avtomobil′nye topliva i processy, protekajushhie v toplivnyh sistemah avtomobil′noj tehniki [M]. Saint Petersburg: Publishing House of the Saint Petersburg State University of Service and Economics, 2014:208.

    [13] Kobyzev S V. Metodika rascheta koefficientov massootdachi pri osushke uglevodorodnogo raketnogo topliva [J]. Science and Education. Bauman Moscow State Technical University (electronic journal),2011(11). Available at: http:∥technomag.edu.ru/doc/245147.html (accessed: 24.09.2012).

    [14] Sorenson K L. Comparative studies on oxygen mass transfer for the design and development of a single-use fermentor [D].http:∥digitalcommons.usu.edu/etd/738 (accessed: 23.11.2017).2010.

    [15] Masood R M A, Rauh C, Delgado A. CFD simulation of bubble column flows: an explicit algebraic reynolds stress model approach [J]. International Journal of Multiphase Flow, 2014 (66):11-25.

    [16] Gilbert D E, Wagoner D E, Smith F. Guidelines for Development of a Quality Assurance Program: Determination of Phosphorus in Gasoline, Vol. XII[R].Washington D C.: US EPA,2013: 70.

    [17] Clark A Q, Smith A G, Threadgold S, et al. Dispersed water and particulates in jet fuel: size analysis under operational conditions and application to coaleser disarming [J]. Industrial & Engineering Chemical Research, 2011, 50(9): 5749-5765.

    [18] Litvinenko A N, Shlejfer A A. Sposob podgotovki otverzhdennogo uglevodorodnogo topliva k primeneniju i ustanovka dlja ego osushhestvlenija:RU,2289064 [P]. 1990.

    亚洲内射少妇av| 亚洲精品456在线播放app| 精品一区二区三区人妻视频| 日日撸夜夜添| 亚洲精品日韩av片在线观看| 亚洲精品,欧美精品| 91av网一区二区| 蜜臀久久99精品久久宅男| 男的添女的下面高潮视频| 男的添女的下面高潮视频| 99热网站在线观看| 免费观看的影片在线观看| 国产单亲对白刺激| 国产成人freesex在线| 神马国产精品三级电影在线观看| 国产av不卡久久| 色播亚洲综合网| 97精品久久久久久久久久精品| 午夜精品一区二区三区免费看| 国产成人精品福利久久| 男女下面进入的视频免费午夜| 偷拍熟女少妇极品色| 国产精品美女特级片免费视频播放器| 亚洲三级黄色毛片| 久久精品人妻少妇| 淫秽高清视频在线观看| 青春草国产在线视频| 成年女人在线观看亚洲视频 | 看免费成人av毛片| 欧美一级a爱片免费观看看| 精品一区二区三卡| 欧美高清性xxxxhd video| av线在线观看网站| 久久精品国产亚洲av天美| 精品亚洲乱码少妇综合久久| 观看免费一级毛片| 精品久久久久久久人妻蜜臀av| 免费看不卡的av| 国产一区有黄有色的免费视频 | 精品酒店卫生间| 精品国产露脸久久av麻豆 | 亚洲国产欧美人成| 偷拍熟女少妇极品色| 69av精品久久久久久| 老司机影院成人| 韩国av在线不卡| a级一级毛片免费在线观看| 欧美三级亚洲精品| 亚洲国产欧美人成| 婷婷色av中文字幕| 女人久久www免费人成看片| av国产免费在线观看| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 成人亚洲精品一区在线观看 | 黄色配什么色好看| 久久久久久久久大av| av卡一久久| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 一区二区三区四区激情视频| videos熟女内射| 99视频精品全部免费 在线| 亚洲国产av新网站| 毛片女人毛片| 国产激情偷乱视频一区二区| 亚洲精品乱码久久久久久按摩| 麻豆国产97在线/欧美| 人妻少妇偷人精品九色| 日日摸夜夜添夜夜添av毛片| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 国产 一区精品| 激情 狠狠 欧美| 99热这里只有是精品在线观看| 色5月婷婷丁香| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 七月丁香在线播放| 五月天丁香电影| 中文字幕久久专区| 国产三级在线视频| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 国产爱豆传媒在线观看| 综合色丁香网| 欧美成人精品欧美一级黄| 成年版毛片免费区| xxx大片免费视频| 男人爽女人下面视频在线观看| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 国产男人的电影天堂91| 国产中年淑女户外野战色| 精品久久久久久久人妻蜜臀av| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 国产精品蜜桃在线观看| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 麻豆国产97在线/欧美| 少妇熟女欧美另类| 亚洲性久久影院| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| 国产乱人偷精品视频| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 插阴视频在线观看视频| 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| 视频中文字幕在线观看| av黄色大香蕉| 亚洲精品日韩在线中文字幕| 观看美女的网站| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频 | 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看| 精品久久久久久久人妻蜜臀av| 亚洲乱码一区二区免费版| 嫩草影院新地址| 亚洲图色成人| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜爱| 天堂影院成人在线观看| 免费高清在线观看视频在线观看| av国产久精品久网站免费入址| 精品亚洲乱码少妇综合久久| 午夜福利高清视频| 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 插逼视频在线观看| 激情 狠狠 欧美| 久久久久久久大尺度免费视频| 亚洲成色77777| 黑人高潮一二区| 亚洲精品第二区| 欧美人与善性xxx| 亚洲怡红院男人天堂| 美女cb高潮喷水在线观看| 99久久精品一区二区三区| 久久99蜜桃精品久久| 男女视频在线观看网站免费| 可以在线观看毛片的网站| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 中文在线观看免费www的网站| 日韩,欧美,国产一区二区三区| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 国产精品一区www在线观看| 免费少妇av软件| 欧美最新免费一区二区三区| 亚洲精品自拍成人| videossex国产| 日韩一区二区视频免费看| 日韩欧美精品v在线| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 久久人人爽人人爽人人片va| 亚洲一区高清亚洲精品| 你懂的网址亚洲精品在线观看| 欧美另类一区| 观看免费一级毛片| 日本午夜av视频| 禁无遮挡网站| www.av在线官网国产| 七月丁香在线播放| 国产69精品久久久久777片| 亚洲成人av在线免费| 日韩av免费高清视频| 美女高潮的动态| 国产男女超爽视频在线观看| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| 免费高清在线观看视频在线观看| 久久国内精品自在自线图片| 日韩国内少妇激情av| 一级毛片 在线播放| 少妇熟女欧美另类| 亚洲欧美一区二区三区黑人 | 国内精品一区二区在线观看| 久久久精品94久久精品| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 成年人午夜在线观看视频 | 2018国产大陆天天弄谢| 精品久久久久久成人av| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 国产精品一区二区三区四区免费观看| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 精品人妻偷拍中文字幕| 69av精品久久久久久| 久久精品熟女亚洲av麻豆精品 | 国产成人aa在线观看| 国产伦一二天堂av在线观看| 看非洲黑人一级黄片| 国产一区二区亚洲精品在线观看| 日本-黄色视频高清免费观看| 高清日韩中文字幕在线| 日韩成人av中文字幕在线观看| 麻豆av噜噜一区二区三区| 人妻一区二区av| 国产精品无大码| 国产亚洲最大av| 国产精品久久久久久精品电影小说 | 久久久精品免费免费高清| 精品一区二区三区人妻视频| 国产精品日韩av在线免费观看| 亚洲国产色片| 国产在线一区二区三区精| 黄色配什么色好看| 国内揄拍国产精品人妻在线| 天天躁日日操中文字幕| 一本一本综合久久| 女人被狂操c到高潮| 久久亚洲国产成人精品v| 美女大奶头视频| 欧美日韩视频高清一区二区三区二| 免费黄色在线免费观看| 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 性插视频无遮挡在线免费观看| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 精品一区二区三区人妻视频| 高清日韩中文字幕在线| 一区二区三区免费毛片| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜添av毛片| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 久久精品夜色国产| 精品酒店卫生间| 日韩av不卡免费在线播放| 在线免费观看的www视频| 亚洲国产精品成人久久小说| 日韩成人伦理影院| 床上黄色一级片| 精品一区二区三区人妻视频| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 成人鲁丝片一二三区免费| 两个人的视频大全免费| 一级毛片我不卡| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 内地一区二区视频在线| 国产精品福利在线免费观看| 久久人人爽人人片av| 国产av码专区亚洲av| 免费观看性生交大片5| 天堂av国产一区二区熟女人妻| 搡女人真爽免费视频火全软件| 简卡轻食公司| 国内精品美女久久久久久| 日日摸夜夜添夜夜爱| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久 | 久久久欧美国产精品| 久久久久久久久大av| 国产一级毛片在线| 国产三级在线视频| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 男人和女人高潮做爰伦理| 黄色一级大片看看| 日本爱情动作片www.在线观看| 国产在线男女| 少妇的逼好多水| 国产大屁股一区二区在线视频| 黄片wwwwww| 人妻系列 视频| 欧美xxⅹ黑人| 一本久久精品| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 亚洲成人av在线免费| 免费观看性生交大片5| kizo精华| 激情 狠狠 欧美| 啦啦啦韩国在线观看视频| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 成人二区视频| 国产一区二区三区av在线| 午夜激情欧美在线| 亚洲精品aⅴ在线观看| 午夜老司机福利剧场| 伦理电影大哥的女人| 一个人免费在线观看电影| 18+在线观看网站| 一边亲一边摸免费视频| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 免费看av在线观看网站| 免费观看的影片在线观看| 久热久热在线精品观看| 亚洲最大成人中文| 精品国内亚洲2022精品成人| 伦精品一区二区三区| 在线观看一区二区三区| 日本欧美国产在线视频| 欧美+日韩+精品| 爱豆传媒免费全集在线观看| 人妻系列 视频| 成年女人看的毛片在线观看| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 色5月婷婷丁香| 亚洲国产精品专区欧美| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 久久精品久久久久久噜噜老黄| 免费黄色在线免费观看| 亚洲经典国产精华液单| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 午夜老司机福利剧场| 欧美97在线视频| 精品人妻视频免费看| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 九九在线视频观看精品| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 免费av不卡在线播放| 嫩草影院精品99| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在| 免费av观看视频| 22中文网久久字幕| 18禁在线播放成人免费| 成年av动漫网址| 精品少妇黑人巨大在线播放| 高清日韩中文字幕在线| 国产精品一二三区在线看| 不卡视频在线观看欧美| 日韩制服骚丝袜av| 国产乱来视频区| 久久热精品热| 久久国内精品自在自线图片| 国产亚洲一区二区精品| 免费大片18禁| 真实男女啪啪啪动态图| 亚洲精品成人久久久久久| 最近手机中文字幕大全| 午夜免费观看性视频| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 韩国av在线不卡| 人体艺术视频欧美日本| 97在线视频观看| 成年av动漫网址| 国产黄片美女视频| 少妇的逼好多水| 午夜精品国产一区二区电影 | 高清在线视频一区二区三区| 精品熟女少妇av免费看| 噜噜噜噜噜久久久久久91| 99热这里只有精品一区| 国产午夜福利久久久久久| 久久综合国产亚洲精品| 国产成人精品一,二区| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 午夜免费男女啪啪视频观看| 国产精品一及| 国产美女午夜福利| 男女边摸边吃奶| 久久精品国产亚洲网站| av免费观看日本| 欧美极品一区二区三区四区| 99热网站在线观看| 国产成人a区在线观看| 亚洲国产欧美在线一区| 波多野结衣巨乳人妻| 嫩草影院精品99| 伦精品一区二区三区| 久久精品久久精品一区二区三区| 亚洲av二区三区四区| 丰满少妇做爰视频| 成人毛片60女人毛片免费| 成人性生交大片免费视频hd| 久久99精品国语久久久| 日本三级黄在线观看| 亚洲国产精品专区欧美| 男女那种视频在线观看| 午夜激情久久久久久久| 久久久精品免费免费高清| 亚洲最大成人av| 国产伦一二天堂av在线观看| 午夜福利视频精品| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 成人鲁丝片一二三区免费| 少妇被粗大猛烈的视频| 在线观看人妻少妇| 麻豆国产97在线/欧美| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 亚洲最大成人中文| 精品久久久精品久久久| 边亲边吃奶的免费视频| 国产精品一二三区在线看| av国产免费在线观看| av线在线观看网站| 天堂√8在线中文| 99久久精品一区二区三区| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 老司机影院毛片| 午夜精品在线福利| 国产永久视频网站| 免费看日本二区| 亚洲国产av新网站| 精品国内亚洲2022精品成人| 深爱激情五月婷婷| 国产精品一区二区在线观看99 | 久久久久国产网址| 春色校园在线视频观看| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 少妇丰满av| 最近最新中文字幕大全电影3| 亚洲av福利一区| 少妇的逼水好多| 搡老妇女老女人老熟妇| 九九在线视频观看精品| 欧美xxⅹ黑人| 国产人妻一区二区三区在| 只有这里有精品99| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 免费av观看视频| 女人十人毛片免费观看3o分钟| 精品国产露脸久久av麻豆 | 人体艺术视频欧美日本| 狂野欧美白嫩少妇大欣赏| 国产 一区精品| 高清在线视频一区二区三区| 夫妻午夜视频| 亚洲最大成人中文| 午夜福利视频1000在线观看| 亚洲精品久久久久久婷婷小说| 欧美 日韩 精品 国产| av免费在线看不卡| 国产成人午夜福利电影在线观看| 色播亚洲综合网| 身体一侧抽搐| 免费看av在线观看网站| 高清日韩中文字幕在线| 看黄色毛片网站| 免费观看无遮挡的男女| 亚洲电影在线观看av| 乱系列少妇在线播放| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 一级a做视频免费观看| 久久精品国产亚洲av涩爱| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 欧美 日韩 精品 国产| 国产精品国产三级国产av玫瑰| 赤兔流量卡办理| 免费观看无遮挡的男女| 午夜福利网站1000一区二区三区| 亚洲精品中文字幕在线视频 | 国产精品伦人一区二区| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 少妇猛男粗大的猛烈进出视频 | 午夜激情久久久久久久| 十八禁网站网址无遮挡 | 麻豆久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 又大又黄又爽视频免费| 精品一区二区三卡| 国产av不卡久久| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久黄片| 最近视频中文字幕2019在线8| 亚洲精品一二三| 久久久精品欧美日韩精品| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 一区二区三区免费毛片| 国产午夜福利久久久久久| av女优亚洲男人天堂| 欧美xxⅹ黑人| 亚洲av免费高清在线观看| 永久免费av网站大全| 少妇熟女欧美另类| 国产精品无大码| 久久精品国产亚洲av天美| 黑人高潮一二区| 免费看不卡的av| 成人午夜高清在线视频| 精品不卡国产一区二区三区| 中文乱码字字幕精品一区二区三区 | 国产一区二区三区av在线| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 99热全是精品| 日本与韩国留学比较| 超碰97精品在线观看| 欧美日韩在线观看h| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩| 成年av动漫网址| 99久久中文字幕三级久久日本| 亚洲在线自拍视频| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 偷拍熟女少妇极品色| 国产成人freesex在线| 在线观看免费高清a一片| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 国产爱豆传媒在线观看| 99热全是精品| av国产免费在线观看| 久久精品国产亚洲av天美| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 国产精品三级大全| 日韩在线高清观看一区二区三区| 一夜夜www| 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 乱系列少妇在线播放| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 麻豆国产97在线/欧美| 亚洲av二区三区四区| 一级黄片播放器| 国产精品av视频在线免费观看| 国产又色又爽无遮挡免| 国产在视频线精品| 人人妻人人澡欧美一区二区| 免费黄频网站在线观看国产| 亚洲av一区综合| 国产免费一级a男人的天堂| 午夜福利成人在线免费观看| 久久久精品94久久精品| 99视频精品全部免费 在线| 免费看av在线观看网站| 一边亲一边摸免费视频| 免费av不卡在线播放| 天堂俺去俺来也www色官网 | 麻豆av噜噜一区二区三区| 777米奇影视久久| 色综合色国产| 免费在线观看成人毛片| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女aⅴ在线视频| 日韩 亚洲 欧美在线| 97人妻精品一区二区三区麻豆| 亚洲国产精品国产精品| 有码 亚洲区| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 免费大片黄手机在线观看| 午夜老司机福利剧场| 国产黄色免费在线视频| 成年免费大片在线观看| 国产一区二区三区av在线| 18禁动态无遮挡网站| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 一本一本综合久久| 成年女人看的毛片在线观看| 久久久久网色| 亚洲精品乱码久久久久久按摩| 亚洲精品中文字幕在线视频 | 天天躁夜夜躁狠狠久久av| 午夜久久久久精精品| 日韩成人av中文字幕在线观看| av网站免费在线观看视频 | 哪个播放器可以免费观看大片| 久久久精品免费免费高清|