王照巖,楊玉玲,楊志一,尹崇高,李洪利,劉雨清△
(濰坊醫(yī)學(xué)院 1病理學(xué)教研室, 2醫(yī)學(xué)研究實(shí)驗(yàn)中心, 3護(hù)理學(xué)院, 山東 濰坊 261053)
乳腺癌是全球女性腫瘤相關(guān)死亡的主要疾病,每年有超過(guò)150萬(wàn)的新確診病例[1]。盡管通過(guò)手術(shù)、放療和化療的聯(lián)合應(yīng)用,已大大提高了早期乳腺癌患者的生存率,但晚期患者的臨床生存率仍不容樂(lè)觀[2]。因此,研究乳腺癌遠(yuǎn)處轉(zhuǎn)移的分子機(jī)制,為提高病人的生存率提供新的理論依據(jù)。
微小RNA(microRNA,miRNA,miR)是一種非編碼單鏈RNA分子,大約由22個(gè)核苷酸組成,可通過(guò)對(duì)靶基因的mRNA進(jìn)行特異性堿基配對(duì),調(diào)控靶基因的翻譯過(guò)程,從而調(diào)節(jié)轉(zhuǎn)錄后基因表達(dá)[3]。上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是上皮細(xì)胞獲得間充質(zhì)特征的一種現(xiàn)象,通過(guò)EMT,具有間質(zhì)特征的腫瘤細(xì)胞明顯增強(qiáng)了侵襲與遷移能力。新的研究表明,EMT在腫瘤細(xì)胞遷移的早期過(guò)程起著關(guān)鍵作用,并可通過(guò)多種信號(hào)通路促進(jìn)癌細(xì)胞的侵襲轉(zhuǎn)移[4]。miRNA在EMT中扮演著重要的角色,如miR-655[5]和miR-208[6]通過(guò)誘導(dǎo)EMT的發(fā)生促進(jìn)腫瘤細(xì)胞的侵襲轉(zhuǎn)移。生長(zhǎng)因子受體結(jié)合蛋白2(growth factor receptor-bound protein 2,GRB2)相關(guān)結(jié)合蛋白2(GRB2-associated-binding protein 2,GAB2)是DOS/GAB家族的成員,通過(guò)整合多種信號(hào)通路,參與多種類型腫瘤的發(fā)生發(fā)展過(guò)程。本課題組先前研究發(fā)現(xiàn),miR-125a-5p能夠通過(guò)調(diào)控GAB2抑制乳腺癌細(xì)胞的侵襲與轉(zhuǎn)移[7]。但miR-125a-5p能否通過(guò)其它機(jī)制對(duì)乳腺癌細(xì)胞EMT影響的研究尚不清楚。因此,本研究進(jìn)一步探討miR-125a-5p通過(guò)糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK-3β)/Snail信號(hào)通路對(duì)乳腺癌細(xì)胞EMT的作用,為抑制乳腺癌細(xì)胞發(fā)生遠(yuǎn)處轉(zhuǎn)移提供有價(jià)值的miRNA分子,同時(shí)也為乳腺癌治療提供新的靶點(diǎn)。
抗波形蛋白(vimentin)和上皮鈣黏著蛋白(E-cadherin)單克隆抗體購(gòu)自Santa Cruz;抗Snail、p-GSK-3β和GSK-3β抗體購(gòu)自Cell Signaling Technology;表皮生長(zhǎng)因子(epidermal growth factor,EGF)購(gòu)自Peprotech;Lipofectamine 2000脂質(zhì)體轉(zhuǎn)染試劑購(gòu)自Invitrogen;Transwell小室購(gòu)自 Corning;Matrigel購(gòu)自BD;胎牛血清和RPMI-1640培養(yǎng)基購(gòu)自HyClone;MDA-MB-231、MCF-7和MCF-10A細(xì)胞購(gòu)自ATCC。
2.1細(xì)胞培養(yǎng) 細(xì)胞培養(yǎng)參照先前文獻(xiàn)[8]。按文獻(xiàn)[9]將細(xì)胞分組:(1)MDA-MB-231/NC組,轉(zhuǎn)入空載質(zhì)粒;(2)MDA-MB-231/miR-125a-5p組,轉(zhuǎn)入miR-125a-5p過(guò)表達(dá)質(zhì)粒;(3)MDA-MB-231/miR-125a-5p+Con組,同時(shí)轉(zhuǎn)入miR-125a-5p過(guò)表達(dá)質(zhì)粒和GAB2過(guò)表達(dá)對(duì)照質(zhì)粒;(4)MDA-MB-231/miR-125a-5p+GAB2組,同時(shí)轉(zhuǎn)入miR-125a-5p過(guò)表達(dá)質(zhì)粒和GAB2過(guò)表達(dá)質(zhì)粒。
2.2RT-qPCR實(shí)驗(yàn) RNA提取及逆轉(zhuǎn)錄過(guò)程參照先前文獻(xiàn)[10]。 PCR條件為95 ℃ 5 s、63 ℃ 30 s、72 ℃ 30 s進(jìn)行35個(gè)循環(huán)。以U6作為內(nèi)參照,U6的上游引物為5′-GCTTCGGCAGCACATATACTAAAAT-3′,下游引物為5′-CGCTTCACGAAT TTGCGTGTCAT-3′。miR-125a-5p的上游引物為5′-AGCGCGTCCCTGAGACCCTTTAAC-3′,下游引物為5′-ATCCAGTGCAGGGTCCGAGG-3′,莖環(huán)結(jié)構(gòu)序列為5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAG-3′。
2.3趨化運(yùn)動(dòng)實(shí)驗(yàn) 用EGF按4種不同濃度(0、1、10和100 μg/L)分別刺激MDA-MB-231細(xì)胞24 h,Transwell上室中加入細(xì)胞懸液,于5% CO2、37 ℃條件下培養(yǎng)24 h,固定、洗滌、Giemsa染色并拍照計(jì)數(shù),所有實(shí)驗(yàn)均重復(fù)3次。
2.4Transwell侵襲實(shí)驗(yàn) 實(shí)驗(yàn)過(guò)程參照先前文獻(xiàn)[11]。隨機(jī)選取5個(gè)高倍鏡視野拍照計(jì)數(shù),計(jì)算平均值為實(shí)驗(yàn)的最終結(jié)果,所有實(shí)驗(yàn)均重復(fù)3次。
2.5核質(zhì)分離 按核質(zhì)分離試劑盒說(shuō)明書(shū)對(duì)培養(yǎng)24 h后的各組細(xì)胞進(jìn)行提取核蛋白,將所得的蛋白應(yīng)用Western blot檢測(cè)Snail蛋白在各組細(xì)胞中的表達(dá)。實(shí)驗(yàn)重復(fù)3次。
2.6Western blot實(shí)驗(yàn) 將轉(zhuǎn)染后的細(xì)胞抽提蛋白。上樣,電泳,轉(zhuǎn)膜,封閉,滴加 I 抗4 ℃過(guò)夜,滴加 II 抗,TBST洗膜,曝光??贵w配制如下:β-actin(1∶1 000)、Snail(1∶500)、p-GSK-3β(1∶500)、GSK-3β(1∶500)、nucleolin(1∶500)、E-cadherin(1∶500)、vimentin(1∶500)。
采用SPSS 22.0進(jìn)行統(tǒng)計(jì)學(xué)處理,實(shí)驗(yàn)數(shù)據(jù)均用均數(shù)±標(biāo)準(zhǔn)差(mean±SD),兩組間定量資料采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
RT-qPCR檢測(cè)結(jié)果顯示,與人正常乳腺上皮細(xì)胞MCF-10A相比,乳腺癌細(xì)胞MDA-MB-231和MCF-7中的miR-125a-5p表達(dá)明顯降低(P<0.05)。結(jié)果表明,miR-125a-5p在MDA-MB-231和MCF-7細(xì)胞中低表達(dá),見(jiàn)圖1。
Figure 1. The expression of miR-125a-5p in normal breast epithelial cells and breast cancer cells. Mean±SD.n=3.*P<0.05vsMCF-10A group.
圖1miR-125a-5p在人正常乳腺上皮細(xì)胞和乳腺癌細(xì)胞中的表達(dá)情況
RT-qPCR檢測(cè)結(jié)果顯示,與MDA-MB-231/NC組細(xì)胞相比,MDA-MB-231/miR-125a-5p組細(xì)胞中miR-125a-5p的水平明顯增高(P<0.05),提示轉(zhuǎn)染成功,見(jiàn)圖2。
Figure 2. The transfection efficiency of miR-125a-5p in MDA-MB-231 cells. Mean±SD.n=3.*P<0.05vsMDA-MB-231/NC group.
圖2miR-125a-5p在乳腺癌細(xì)胞MDA-MB-231中的轉(zhuǎn)染效率
趨化運(yùn)動(dòng)實(shí)驗(yàn)結(jié)果顯示,用0、1、10和100 μg/L的4種濃度的EGF刺激MDA-MB-231細(xì)胞后,與未用EGF刺激的MDA-MB-231細(xì)胞相比,其它3種濃度刺激的MDA-MB-231細(xì)胞趨化能力明顯增強(qiáng),其中,EGF濃度為10 μg/L時(shí)刺激趨化能力最強(qiáng)(P<0.05),見(jiàn)圖3。
Figure 3. The optimal stimulation concentration of EGF in MDA-MB-231 cells was at 10 μg/L. Mean±SD.n=3.*P<0.05vs0 μg/L group.
圖3EGF刺激乳腺癌細(xì)胞MDA-MB-231的最適濃度為10μg/L
Transwell侵襲實(shí)驗(yàn)結(jié)果顯示,用EGF刺激24 h后,與MDA-MB-231/NC組細(xì)胞相比,MDA-MB-231/miR-125a-5p組細(xì)胞穿過(guò)基底膜的細(xì)胞數(shù)明顯減少;而MDA-MB-231/miR-125a-5p+GAB2組細(xì)胞穿過(guò)基底膜的細(xì)胞數(shù)比MDA-MB-231/miR-125a-5p+Con組細(xì)胞明顯增多(P<0.05),表明miR-125a-5p能明顯降低MDA-MB-231細(xì)胞的侵襲能力,見(jiàn)圖4。
Western blot檢測(cè)EMT相關(guān)標(biāo)志物的表達(dá)情況。結(jié)果顯示,用EGF刺激后,在MDA-MB-231/miR-125a-5p組中,E-cadherin的表達(dá)量比MDA-MB-231/NC組細(xì)胞中的表達(dá)量明顯上調(diào),而vimentin的表達(dá)量顯著下調(diào)(P<0.05);與MDA-MB-231/miR-125a-5p+Con組相比,MDA-MB-231/miR-125a-5p+GAB2組細(xì)胞中E-cadherin的表達(dá)量顯著下調(diào),vimentin的表達(dá)量明顯上調(diào)(P<0.05),表明miR-125a-5p可有效抑制MDA-MB-231細(xì)胞的EMT,見(jiàn)圖5。
用10 μg/L EGF刺激乳腺癌細(xì)胞MDA-MB-231,Western blot檢測(cè)結(jié)果顯示,與MDA-MB-231/NC組細(xì)胞相比,MDA-MB-231/miR-125a-5p組細(xì)胞中的p-GSK-3β和Snail蛋白水平明顯下調(diào)(P<0.05);而MDA-MB-231/miR-125a-5p+GAB2組細(xì)胞中的p-GSK-3β和Snail蛋白水平與MDA-MB-231/miR-125a-5p+Con組細(xì)胞相比明顯上調(diào)(P<0.05),表明miR-125a-5p通過(guò)GSK-3β/Snail信號(hào)通路,抑制MDA-MB-231細(xì)胞中Snail的入核,見(jiàn)圖6、7。
Figure 4. miR-125a-5p inhibited the invasion ability of breast cancer cells (Giemsa staining, scale bar=100 μm). Mean±SD.n=3.*P<0.05vsMDA-MB-231/NC;△P<0.05vsMDA-MB-231/mir-125a-5p+Con.
圖4miR-125a-5p抑制乳腺癌細(xì)胞的侵襲能力
Figure 5. miR-125a-5p inhibited epithelial-mesenchymal transition in breast cancer cells. Mean±SD.n=3.*P<0.05vsMDA-MB-231/NC(+);△P<0.05vsMDA-MB-231/miR-125a-5p+Con(+).
圖5miR-125a-5p抑制乳腺癌細(xì)胞的上皮-間充質(zhì)轉(zhuǎn)化
乳腺癌是由多種復(fù)雜病因引起的異質(zhì)性疾病,涉及到基因和環(huán)境因素,已對(duì)女性的生命和健康構(gòu)成嚴(yán)重威脅[12]。遠(yuǎn)處轉(zhuǎn)移是引起死亡率劇增的主要原因,其分子機(jī)制一直是腫瘤研究領(lǐng)域的熱點(diǎn)。因此,研究乳腺癌細(xì)胞發(fā)生侵襲轉(zhuǎn)移的潛在分子機(jī)制是治療乳腺癌的重點(diǎn)與難點(diǎn)。
miRNA通過(guò)對(duì)下游靶基因進(jìn)行靶向調(diào)控,間接發(fā)揮癌基因或抑癌基因的作用,從而參與腫瘤的發(fā)生、發(fā)展過(guò)程[13]。越來(lái)越多的證據(jù)表明,miRNA的失調(diào)在腫瘤惡性轉(zhuǎn)化和進(jìn)展中起著至關(guān)重要的作用[14]。
Figure 6. The phosphorylation of GSK-3β in MDA-MB-231 cells. Mean±SD.n=3.*P<0.05vsMDA-MB-231/NC(+);△P<0.05vsMDA-MB-231/miR-125a-5p+Con(+).
圖6GSK-3β在MDA-MB-231細(xì)胞中的磷酸化水平
Figure 7. The expression levels of Snail protein in the nucleus of MDA-MB-231 cells. Mean±SD.n=3.*P<0.05vsMDA-MB-231/NC(+);△P<0.05vsMDA-MB-231/miR-125a-5p+Con(+).
圖7Snail蛋白在MDA-MB-231細(xì)胞核中的表達(dá)水平
其中,miR-125是一個(gè)重要的miRNAs家族,其成員已被證實(shí)參與多種腫瘤類型,如肝癌[15]等。先前研究表明,miR-125a-5p可靶向調(diào)控BCL2、BCL2L12和MCL1,抑制結(jié)腸癌細(xì)胞的增殖[16]。同時(shí)miR-125a-5p 可負(fù)性調(diào)節(jié)GAB2的表達(dá),抑制膠質(zhì)瘤細(xì)胞的侵襲轉(zhuǎn)移[9]。本研究中,將 miR-125a-5p質(zhì)粒轉(zhuǎn)染MDA-MB-231細(xì)胞,實(shí)現(xiàn)了miR-125a-5p的過(guò)表達(dá),降低了MDA-MB-231細(xì)胞的體外侵襲能力;而在MDA-MB-231細(xì)胞中,與轉(zhuǎn)染miR-125a-5p+Con質(zhì)粒的細(xì)胞組相比,轉(zhuǎn)染miR-125a-5p+GAB2質(zhì)粒的細(xì)胞組體外侵襲能力明顯增強(qiáng)。
新近研究表明,EMT的發(fā)生在腫瘤發(fā)生、發(fā)展過(guò)程中非常復(fù)雜,多條信號(hào)通路參與調(diào)控EMT過(guò)程,如Notch[17]、NF-κB[18]、ERK[19]和GSK-3β/Snail信號(hào)通路[20]等。其中,GSK-3β/Snail信號(hào)通路在EMT過(guò)程中至關(guān)重要。GSK-3β在許多參與EMT過(guò)程的信號(hào)通路中具有分子開(kāi)關(guān)的功能,并參與調(diào)節(jié)多種生物功能,如細(xì)胞增殖[21]、分化[22]和遷移[23]等。Snail是EMT的一種重要的誘導(dǎo)物,是E-cadherin的關(guān)鍵轉(zhuǎn)錄調(diào)控器[24]。Zhou等[25]發(fā)現(xiàn)CXCR2/CXCL5可通過(guò)激活GSK-3β/Snail信號(hào)通路促進(jìn)肝癌細(xì)胞的EMT發(fā)生。本研究中,與MDA-MB-231/NC細(xì)胞組相比,在MDA-MB-231/miR-125a-5p細(xì)胞組中GSK-3β的磷酸化水平和Snail轉(zhuǎn)核明顯降低,并引起E-cadherin表達(dá)上調(diào),vimentin表達(dá)下調(diào);與MDA-MB-231/miR-125a-5p+Con細(xì)胞組相比,在MDA-MB-231/miR-125a-5p+GAB2細(xì)胞組中GSK-3β的磷酸化水平和Snail轉(zhuǎn)核明顯增加,E-cadherin表達(dá)下調(diào),vimentin表達(dá)上調(diào)。
綜上所述,miR-125a-5p可通過(guò)GSK-3β/Snail信號(hào)通路抑制乳腺癌細(xì)胞EMT的發(fā)生,進(jìn)而抑制乳腺癌的侵襲與轉(zhuǎn)移。因此,miR-125a-5p有望成為乳腺癌的獨(dú)立預(yù)測(cè)因子,在乳腺癌的治療和預(yù)后方面帶來(lái)新的應(yīng)用。
[參 考 文 獻(xiàn)]
[1] Peng F, Xiong L, Tang H, et al. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer [J]. Tumour Biol, 2016, 37(11):14463-14477.
[2] 劉清華, 于國(guó)華, 劉雨清. CCR7和VEGF-C蛋白與乳腺癌預(yù)后之間的關(guān)系[J]. 中國(guó)病理生理雜志, 2016, 32(8):1457-1461.
[3] Zhao M, Ang L, Huang J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis[J]. Tumour Biol, 2017, 39(2):1010428317691682.
[4] Xue Y, Xu W, Zhao W, et al. miR-381 inhibited breast cancer cells proliferation, epithelial-to-mesenchymal transition and metastasis by targeting CXCR4[J]. Biomed Pharmacother, 2017, 86:426-433.
[5] Lv ZD, Kong B, Liu XP, et al. miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer[J]. J Cell Mol Med, 2016, 20(5):864-873.
[6] Liu A, Shao C, Jin G, et al. miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion[J]. Cell Biochem Biophys, 2014, 69(2):341-346.
[7] 徐新偉, 李佩瑞, 張?jiān)錾剑?等. miR-125a-5p通過(guò)靶向調(diào)控GAB2抑制乳腺癌細(xì)胞的遷移能力[J]. 中國(guó)生物化學(xué)與分子生物學(xué)報(bào), 2017, 33(9):925-930.
[8] Li H, Zhang B, Liu Y, et al. EBP50 inhibits the migration and invasion of human breast cancer cells via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signaling pathway[J]. Med Oncol, 2014, 31:162.
[9] Sun L, Zhang B, Liu Y, et al. MiR125a-5p acting as a novel GAB2 suppressor inhibits invasion of glioma [J]. Mol Carcinog, 2016, 55(1):40-51.
[10] Zhang B, Li H, Yin C, et al. Dock1 promotes the mesenchymal transition of glioma and is modulated by miR-31[J]. Neuropathol Appl Neurobiol, 2017, 43(5):419-432.
[11] Zhang B, Yin C, Li H, et al. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3K/Akt/GSK3β/Snail signalling pathway [J]. Eur J Cancer, 2013, 49(18):3900-3913.
[12] He H, Xu F, Huang W, et al. miR-125a-5p expression is associated with the age of breast cancer patients[J]. Ge-net Mol Res, 2015, 14(4):17927-17933.
[13] Madhavan D, Peng C, Wallwiener M, et al. Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis [J]. Carcinogenesis, 2016, 37(5):461-470.
[14] Long J, Ou C, Xia H, et al. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression[J]. Tumour Biol, 2015, 36(11): 8697-8702.
[15] Lu G, Ma Y, Jia C, et al. Reduced miR-125a levels associated with poor survival of patients with hepatocellular cancer[J]. Oncol Lett, 2017, 14(5):5952-5958.
[16] Tong Z, Liu N, Lin L, et al. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1[J]. Biomed Pharmacother, 2015, 75:129-136.
[17] Yang Q, Cao X, Tao G, et al. Effects of FOXJ2 on TGF-β1-induced epithelial-mesenchymal transition through Notch signaling pathway in non-small lung cancer [J]. Cell Biol Int, 2017, 41(1):79-83.
[18] Huang L, Li F, Deng P, et al. MicroRNA-223 promotes tumor progression in lung cancer A549 cells via activation of the NF-κB signaling pathway[J]. Oncol Res, 2016, 24(6):405-413.
[19] Zhai L, Ma C, Li W, et al. miR-143 suppresses epithe-lial-mesenchymal transition and inhibits tumor growth of breast cancer through down-regulation of ERK5[J]. Mol Carcinog, 2016, 55(12):1990-2000.
[20] Liu L, Dai Y, Chen J, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3β/Snail signaling[J]. Hepatology, 2014, 59(2):531-543.
[21] Wei R, Zhang C. MiR-155 affects renal carcinoma cell proliferation, invasion and apoptosis through regulating GSK-3β/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2017, 21(22):5034-5041.
[22] Chen S, Sun Y, Zhang Z, et al. Transcriptional suppression of microRNA-27a contributes to laryngeal cancer differentiation via GSK-3β-involved Wnt/β-catenin pathway[J]. Oncotarget, 2017, 8(9):14708-14718.
[23] Ma J, Guo X, Zhang J, et al.PTENgene induces cell invasion and migration via regulating Akt/GSK-3β/β-catenin signaling pathway in human gastric cancer [J]. Digestive Dis Sci, 2017, 62(12):3415-3425.
[24] Li S, Lu J, Chen Y, et al. MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells[J]. Cell Mol Immunol, 2017, 14(7):621-630.
[25] Zhou S, Zhou Z, Hu Z, et al. CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling[J]. Cancer Lett, 2015, 358(2):124-135.