• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-dependent aggregation of bio-surfactants in aqueous solutions of galactose and lactose:Volumetric and viscometric approach

    2018-06-29 09:16:12ChauhanVivekSharmaManinderKaurPoonamChaudhary

    S.Chauhan*,Vivek Sharma,Maninder Kaur,Poonam Chaudhary

    Department of chemistry,Himachal Pradesh University,Shimla 5,India

    1.Introduction

    Bile salts(BS)are vitalcomponents in human digestion,primarily for the digestion of amphipathic bio-molecules such as glycerides,fatty acids,cholesterol,lipids and aid in absorbing fat soluble vitamins such as vitamins A,D,E,Ketc.[1-4].These are commonly engaged as permeability enhancers owing to their ability to increase drug penetration through various biological membranes by interacting with phospholipids in cell membranes and in certain cases they have been employed as therapeutic agents for treatment of liver and metabolic disorders[5,6].Chemically,BS has a rigid and slightly curved hydrophobic tetracyclic steroid ring system with a few hydrophilic groupsi.e.--OH/--COOH[7].Their remarkable physiological and physicochemical properties result in their applications as natural detergents,emulsifiers,wetting agents and solubilizers in the fields of drug delivery,pharmaceutics and food industries[8-10].The functions of BS have been related to their ability to self-aggregate and solubilize in aqueous medium.

    On the other hand,saccharides are the mostabundantbio-molecules found in nature,which are water soluble and easily digestible.These are polyhydroxy aldehydes/ketones with well-defined orientations and show peculiar hydration in aqueous solution.Their derivatives are widely distributed in various forms of life as essential moieties such as glycoproteins,glycolipids,nucleic acidsetc.and play key role in the immune system,blood clotting,fertilization[11]etc.These are major source of energy required for metabolic processes of living organisms;the energy is being released as a product of their oxidation.They also act as co-solutes for solubilizing biological macromolecules in food industries[12,13].Several carbohydrates have been used for preparation of antibiotic and anticancer drugs due to their biological importance related to protein-glycoconjugate interactions and intercellular recognition events[14].

    The micellar properties of BS have been extensively studied by various conventional as well as spectroscopic techniques including surface tension,electrical conductivity,dynamic light scattering,small angle neutron scattering(SANS),viscosity,density,speed of sound, fluorescence,UV-Visible,NMR,FTIR measurementsetc.[15-22].These experimental methods are useful in providing sensitive information about ion-solvent interaction,ion-ion association and solvent structure.By virtue of presence of various groups,carbohydrates can interact well with bile salts and may affect their aggregation process.This fact,together with the hydrophobic interactions between bio-surfactants and long hydrocarbon chains of saccharides lead to spontaneous association in water to form self-organized assemblies(micelles)of BS.However,further aggregation and stabilization of these micelles in aqueous solution occurs through attractive forces such as hydrogen bonding between hydrophilic groups[23,24].Thus,it would be interesting to study the effect of carbohydrates on micellization behavior and their interactions with these bio-active molecules.

    So the main aim of present work is to clarify the aggregation and interactions of sodium cholate and sodium deoxycholate in aqueous solutions of saccharides,galactose and lactose along with the effect of temperature using density,speed of sound and viscosity measurements in the temperature range(293.15-313.15)K at an interval of 5 K.The data have been used to evaluate volumetric,compressibility,viscometric and acoustical parameters to get an idea about the interplay of various interactions prevailing in the studied ternary(bio-surfactant+saccharide+water)system.

    2.Experimental

    2.1.Materials

    The bio-surfactants,sodium cholate and sodium deoxycholate,both of purity<98%,obtained from SD fine Chem Ltd.were used after recrystallization by following the procedure mentioned in literature[25].Lactose and galactose,both of A.R.grade and purity<99%were purchased from SD fine Chem Ltd.and used as received.Doubly distilled water having conductivity(κ)in the range(2-3)× 10-6S·cm-1and pH 7.0 at 25°C was collected from Millipore-Elix system and used for all the experiments.The chemical representation of various samples used has been given in Fig.1.

    2.2.Equipment and experimental procedure

    2.2.1.Density and speed of sound measurements

    Density and speed of sound measurements were performed with a high precision digital Density and Sound Velocity Analyzer-5000(DSA-5000)supplied by Anton Paar Gmbh,Austria.The instrument has been calibrated periodically with two fluidsi.e.dry air and distilled water over a temperature range(293.15-313.15)K.This two-in-one instrument has been equipped with a density cell and a speed of sound cell;both the cells are thermally controlled by intrinsic Peltier thermostat.The sample is injected into a U-shaped glass tube that is electronically excited to vibrate atits characteristic frequency.This characteristic frequency depends upon the density of the sample.The working frequency for the measurement of speed of sound is~3 MHz[26].The uncertainties in the density measurements were found to lie well within 0.297 kg·m-3while those in speed of sound data were found to be better than 0.249 m·s-1.The precision in temperature of the DSA-5000 was±0.001 K.The density(ρ)and speed of sound(u)of NaC and NaDC in the concentration range(4.0 to 22.0)and(1.0-10.0)mmol?kg-1respectively in the presence of 0.5%,1.0%and 1.5%(w/v)aqueous solutions of galactose and lactose have been measured in the temperature range(293.15-313.15)K at an interval of 5 K.

    2.2.2.Viscometric measurements

    Viscosity studies have been carried out by using jacketed Ostwald viscometer having flow time 348 s for distilled water at 25°C.The viscometer was subjected to calibration before use at 25°C using solvents,water(η =0.891 mPa?s),dioxane(η =1.19 mPa?s)and DMSO(η =2.01 mPa?s).The reproducibility of the measurements of viscosity was within ±0.02 mPa?s.A high precision water bath fitted with a digital temperature controlled device with an uncertainty of 0.01 K supplied by Narang Scientific Works(NSW)Pvt.Ltd.New Delhi was used for temperature control.

    3.Results and Discussion

    3.1.Density and speed of sound measurements

    The density and speed of sound data for bio-surfactants,NaC and NaDC in aqueous solutions of galactose and lactose have been documented in Tables 1 and 2.The results from Table 1 show that ρ values rise with increase in concentration of both bile salts and saccharides.Addition of solute results in ionic hydration,solute-solute and solutesolvent interactions present in solution leading to the shrinkage in volume.Comparatively,the values are greater for lactose than galactose which is in accordance with the molecular mass of the saccharides.Further,density of aqueous solutions of NaC is more than that of NaDC.The presence of more number of hydroxyl groups in NaC results in higher magnitude of hydrogen bonding as well as hydrophilic interactions thereby decreasing the volume of the system and hence density increases[27].However,the lowering of density values with rise in temperature may be attributed to greater thermal energy acquired by the molecules than the interaction energy due to the destruction of water structure.Also,temperature increment favors the increase of kinetic energy and volume expansion and therefore,leads to decrease in density[28].

    On the other hand,speed of sound(u)of aqueous solutions of bile salts increases with increase in concentration of bile salts as well with temperature(Table 2).The association between components of the ternary system may be responsible for the increase in speed of sound[29].The values have been found to be more for NaC as compared to NaDC.

    Fig.1.Chemical formulae and structures of samples used.

    Table 1 Density,ρ (kg·m-3)of NaC and NaDC in aqueous solutions of galactose and lactose 0.5%,1.0%,1.5%(w/v) at different temperatures(T/K)

    Table 2 Speed of sound,u(m·s-1)of NaC and NaDC in aqueous solutions of galactose and lactose 0.5%,1.0%,1.5%(w/v)at different temperatures(T/K)

    Table 3 Isentropic compressibility,κs(TPa-1)of NaC and NaDC in aqueous solutions of galactose and lactose 0.5%,1.0%,1.5%(w/v)at different temperatures(T/K)

    Density(ρ)and speed of sound(u)data have been used to derive various volumetric and compressibility parameters such as apparent molar volume(Vφ),isentropic compressibility(κs),apparent molar adiabatic compression(κs,φ)etc.All these parameters absolutely depend on the solvent environment around the solute species and are known to contain information pertaining to the structural consequences of solute-solvent interactions[26-28].The isentropic compressibility(κs)has been calculated using the relation[30]:

    The compressibility of micellar solutions is a measure of internal pressure due to compactness arising from solute-solvent interactions in the system and has been proposed to depend on the compressibility of hydrocarbon core and the interactions between the head groups.However,κsis likely to be dependent on the variation of the counter ion binding and the hydrophilicity of the head group.The compressibility data for bile salts in aqueous solutions of galactose and lactose has been summarized in Table 3.From the data,it has been found that κsvalues decrease with increase in temperature and concentration of BS.This lowering in the compressibility of system implies enhanced molecular association and hydrogen bonding between solute and solvent molecules.Such a sharp decrease may also provide an insight for aggregation within the surfactant molecules signifying more compactness of the solution which makes it incompressible to greater extent[30,31].On the other hand,κsdecreases with increase in the percentage of saccharides and follows the order:0.5>1.0>1.5 whereas among different saccharides,the following order has been observed:galactose>lactose.This order may arise due to the structural differences in two saccharides.However,for NaC,compressibility is lower than NaDC,which may be attributed to the presence of extra hydroxyl group in NaC.These types of observations are characteristic of electrolytic behavior of surfactants[32,33].

    The apparent molar volume(Vφ)has been calculated using the relation[30]:

    Fig.2.Representative plots of apparent molar volume,Vφ as a function of[NaC](a)and[NaDC](b)in aqueous solution containing 0.5%(w/v)galactose at 293.15 K(■),298.15 K(),303.15 K(),308.15 K()and 313.15 K().

    wheremis the molality of the solution;Mis the molecular weight of bio-surfactant;ρ and ρ0are the density of the solution and solventi.e.aqueous solutions of saccharides,respectively.In present ternary(water-saccharide-BS)system,the following different types of interactions may take place which are expected to affect hydration of BS and hence the values ofVφ:

    i.Ionic-hydrophilic interactions between the ions(COO-,Na+)of solute and hydrophilic sites(--OH,--C=O and--O--)of saccharides.

    ii.Hydrophobic interactions between the alkyl chains of the saccharides and hydrophobic part of the solute(NaC and NaDC).

    iii.Hydrophobic-ionic interactions between the hydrophobic groups of saccharides and the ionic part of NaC/NaDC.

    iv.Hydrogen bonding between saccharide and water molecules.

    According to co-sphere overlap model[34],hydrophobic interactions are supposed to increase the electrostriction in the surfactant system resulting in the destruction of structured water and hence decrease inVφvalues.On the other hand,interactions of types(i,iii and iv)weaken the electrostatic interactions and hence enhance the water structure by promoting hydrogen bonding leading to increased values ofVφ.In the present case,Vφvalues of bile salts in aqueous solutions of saccharides at different temperatures are positive and show dependence on solute concentration(NaC/NaDC)as can be seen from Fig.2.The curvi-linear nature of these graphs at low concentrations become linear as surfactant concentration is increased.The contributing factors responsible for the present trend inVφvalues may be due to the release of structured water around the hydrophobic tails,electrostatic repulsions between head groups of the surfactant and the release of water molecules from the counter ion as a result of binding to the micelle[35,36].

    Apparent molar volume,(Vφ)decreases with increase in percentage of saccharides whereas,on comparing among saccharides the following order has been observedi.e.galactose>lactose(Table S1 of supplementary material).This is due to deeper penetration of lactose into micellar interior due to hydrophobic interactions(increase in hydrophobic carbon chain)with the micelle.AlsoVφis lower for NaDC than NaC due to greater hydrophobic character.

    The value of apparent molar is entropic compression(κs,φ)has been calculated using the relation[30]:

    Fig.3.Representative plot of apparent molar isentropic compression(κs,φ)as a function of[NaC](a)and[NaDC](b)in aqueous solution containing 0.5%(w/v)galactose at 293.15 K(■),298.15 K(),303.15 K(),308.15 K()and 313.15 K().

    where κ0the isentropic compressibility for the solvent;κsis the isentropic compressibility for the solution;Vφis the apparent molar volume,and ρ0is the density of solvent.The κs,φvalues,thus obtained have been reported in Table S2 of supplementary material and Fig.3 represents the behavior ofκs,φas a function of concentration of BS in aqueous solutions containing 0.5%(w/v)galactose at different temperatures.The apparent molar isentropic compression values of NaC and NaDC in aqueous solutions of saccharides are negative which imply that the water molecules around BS are less compressible than in the bulk solution.However,with rise in concentration of bile salts as well as temperature,the κs,φvalues increase probably due to the self-association of surfactant which results in the release of some water molecules from the counterion upon the binding to the micelles making the system more compressible[30].The non-linear behavior in κs,φvalues at higher saccharide concentration(Table S2)gives an idea for strong solute-solvent interactions[37-39].

    3.2.Viscometric studies

    Viscosity(η)of bio-surfactants,NaC and NaDC in different percentages of aqueous solution of galactose and lactose(0.5,1.0 and 1.5)%w/vhas been calculated by using the relation:

    where ηois viscosity of solvent,toandtis time of flow of solvent and solution,respectively,and ρoand ρ is density of solvent and solution,respectively.The values of viscosity have been documented in Table 4.The increment in temperature may result into inflation in kinetic energy of the molecules and ions present in the solution,which in turn reduces intermolecular interactions leading to a decrease in η values[45,46].

    Further viscosity data have been studied in the form of relative viscosity(ηr)[45]using relation:

    where ηoand η are the viscosity of the pure solvent and solution respectively.The relative viscosity of both NaC and NaDC initially rise with small increments up toCMC.However,a relatively larger increase in ηrvalues is noticed in post-micellar region as shown in Fig.4.This observation,therefore,leads to the conclusion that there exist significant interactions between bile salts and saccharides leading to promoted micellization of BS in aqueous solutions of saccharides[40,41].

    Interestingly,similar results have been obtained from viscous relaxation time(τ)values(Table S4 of supplementary material).Relaxation time is the time taken for the excitation energy to appear as translational energy and it depends on temperature and impurities.Viscous relaxation time,τ has been calculated using relation[42]:

    Viscous relaxation time when plotted against concentration of these bio-surfactants shows almost linear behavior in small increments,however,decreases with rise in temperature(Fig.5).This is mainly due to the structural relaxation processes occurring in the system due to the re-arrangement of the molecules[43].The observation also con firms the existence of intermolecular interactions in presentternary BS+saccharide+water(B/S/W)system.

    3.3.Derived parameters

    The values of density,speed of sound and viscosity have been further used to calculate various derived parametersviz.free volume(Vf),internal pressure(πi)and molar cohesive energy(MCE)of NaC and NaDC in aqueous solution of saccharides which provide another evidence of interactions between bile salts and aqueous saccharides.The molar volume(Vm)is defined as the volume occupied by 1 mol of a substance at a given temperature and pressure and is calculated from the relation[44]:

    where ρ is the density of the solution;Mis the average molecular weight of the solution which is defined as:=+mass of solute whereM12=x1M1+x2M2is average molecular weight of solvent;hereM1andM2are the molecular weights,andx1andx2are mole fractions of the solvent components(saccharides+water).TheVmvalues for NaC and NaDC in saccharides(Table S5 of supplementary material)are positive,which rise with increase in concentration of both the surfactants and percentage of saccharides and among various saccharides follows the order:lactose>galactose.This happens because of the fact that molecular weight is directly proportional to the molar volume and at higher temperatures;there is loosening of packing in NaC and NaDC molecules eventually leading to more intermolecular spacing[44].Another contributing factor could be thermal energy which facilitates the molecular separation in the liquid mixtures leading to an increase in molar volume[45].

    Free volume,(Vf)is the effective volume referred as the void space between the moleculesi.e.volume present as holes of monomeric size,due to irregular packing of molecules.TheVfhas been calculated by using following equation[46]:

    where η anduare viscosity and speed of sound,respectively,K′=4.28×109is constant and is independent of nature of liquid.The observed increase inVfvalues(Table 5)with concentration and temperature may be attributed to the dispersion forces,steric hindrance of component molecules,unfavorable geometric fitting and electrostatic repulsions.

    Another parameter calculated is internal pressure(πi)whose variation gives some reliable information regarding the nature,molecular arrangement and describes strength of forces existing between molecules of solute in the solution.It is measure of forces that contribute to cohesion of the liquid systemi.e.dispersion,ionic and dipolar force and defined as the resultant of forces of attraction and repulsion between solute and solvent molecules of the solution.The value of πihas been calculated by relation[47]:

    where packing factor(b)is assumed to be 2 in liquid systems;RandTare the gas constant and temperature(K)respectively.From Table 6,it can be inferred that πivalues are positive and decrease with rise in concentration of bile salts as well as the percentage of saccharides.The reduction in internal pressure may be due to the loosening of cohesive forces leading to breaking up the structure of the solvent or increase in intermolecular interactions among bile salt molecules leading to micellization process,which ultimately disturbs the structural arrangement of the solvent system.

    The molar cohesive energy is a measure of attraction between various components of solution and has been computed by the relation[43]:

    Increase inMCEwith bile salt concentration particularly aboveCMCaccounts for the enhancement of the structure forming tendency of the solvent molecules.Also the values are higher for NaDC than NaC and between two saccharides;it follows the order:lactose>galactose(Table S6 of supplementary material).

    4.Conclusions

    Fig.5.Representative plots of relaxation time(τ)as a function of[NaC](a)and[NaDC](b)in aqueous solution containing 0.5%(w/v)galactose at293.15 K(■),298.15 K(),303.15 K(),308.15 K()and 313.15 K().

    Table 5 Free volume,V f(m3·mol-1)of NaC and NaDC in aqueous solutions of different percentages of galactose and lactose 0.5%,1.0%,1.5%(w/v)at different temperatures(T/K)

    Table 6 Internal pressure,πi(Pa)of NaC and NaDC in aqueous solutions of different percentages of galactose and lactose 0.5%,1.0%,1.5%(w/v)at different temperatures(T/K)

    Volumetric and viscometric analyses of(bio-surfactant+water+saccharide)systems have substantiated the fact that in the presence of saccharides micellization of bio-surfactants has been enhanced.The disaccharide(lactose)has shown more impact on micellar properties of bile salts as compared to monosaccharide(galactose),owing to the presence of more hydrophobic region in the former which results better into diffusion of the molecule into micellar core.The trends of volumetric and compressibility parameters may arise from i)dehydration of structured water around the hydrophobic tails,ii)electrostatic repulsions between head groups of the surfactant and iii)dehydration of counterion as a result of binding to the micelle.Further,lowering in viscosity values with temperature may be attributed to the increase in speed of molecules/ionspresentin the system thereby reducing interactions between them.The study of such(BS+aqueous saccharide)systems may be helpful in estimating their applications in the areas of biological and industrial interest.

    Acknowledgement

    S.Chauhan and Maninder Kaur thank UGC,New Delhi for financial assistance under the project(F.No.42-249/2013/SR)and award of Senior Research Fellowship(No.F.17-40/2008(SA-1)dated 31.07.2014),respectively.Vivek Sharma thanks Himachal Pradesh University for Senior Research Fellowship(F.No.1-3/2013-HPU(DS)5111).Financial support from UGC-SAP(DRS-I)(No.F.540/3/DRS/2010(SAP-1))to Department of Chemistry,HPU is also acknowledged.

    Supplementary Material

    Apparent molar volume(Vφ)(m3?mol-1),apparent molar adiabatic compression κS,φ(m3·mol-1·TPa-1)relative viscosity(ηr),viscous relaxation time(τ),molarvolume(Vm)and molar cohesive energy(MCE)of NaC and NaDC in aqueous solutions of galactose and lactose(0.5,1.0,1.5)%w/vat different temperatures(T/K).Supplementary data associated with this article can be found in the online version,at doi:https://doi.org/10.1016/j.cjche.2017.10.025.

    [1]J.M.Valderrama,P.Wilde,A.Macierzanka,A.Mackie,The role of bile salts in digestion,Adv.Colloid Interf.Sci.165(2011)36-46.

    [2]B.De Castro,P.G.Ameiro,C.Guimaraes,J.Lima,S.Reis,Study of partition of nitrazepam in bile salt micelles and the role of lecithin,J.Pharm.Biomed.Anal.24(2001)595-602.

    [3]T.S.Wiedmann,L.Kamel,Examination of the solubilization of drugs by bile salt micelles,J.Pharm.Sci.9(2002)1743-1764.

    [4]R.Ninomiya,K.Matsuoka,Y.Moroi,Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts,Biochem.Biophys.Acta1634(2003)116-125.

    [5]C.L.Bowe,L.Mokhtarzadeh,P.N.Venkatesen,S.Babu,H.Axelrod,M.J.Sofia,R.Kakarla,T.Y.Chan,J.S.Kim,H.J.Lee,G.L.Amidon,S.Y.Choe,S.Walker,D.Kahne,Design of compounds that increase the absorption of polar molecules,Proc.Natl.Acad.Sci.U.S.A.94(1997)12218-12223.

    [6]G.S.Gordon,A.C.Moses,R.D.Silver,J.R.Flier,M.C.Carey,Nasal absorption of insulin:enhancement by hydrophobic bile salts,Proc.Natl.Acad.Sci.U.S.A.82(1985)7419-7423.

    [7]D.Madenci,S.U.Egelhaaf,Self-assembly in aqueous bile salt solutions,Curr.Opin.Colloid Interface Sci.15(2010)109-115.

    [8]Y.S.Elnaggar,Multifaceted applications of bile salts in pharmacy:an emphasis on nanomedicine,Int.J.Nanomedicine10(2015)3955-3971.

    [9]J.Li,X.Wang,T.Zhang,C.Wang,Z.Huang,X.Luo,Y.Deng,A review on phospholipids and their main applications in drug delivery systems,Asian J.Pharm.Sci.10(2015)81-98.

    [10]B.C.Herold,R.Kirkpatrick,D.Marcellino,A.Travelstead,V.Pilipenko,H.Krasa,J.Bremer,L.J.Dong,M.D.Cooper,Bile salts:natural detergents for the prevon of sexually transmitted diseases,Antimicrob.Agents Chemother.43(1999)745-751.

    [11]P.K.Banipal,N.Aggarwal,T.S.Banipal,Study on interactions of saccharides and their derivatives with potassium phosphate monobasic(1:1 electrolyte)in aqueous solutions at different temperatures,J.Mol.Liq.196(2014)291-299.

    [12]S.Nithiyanantham,L.Palaniappan,Ultrasonic study on some monosaccharides in aqueous media at 298.15 K,Arab.J.Chem.5(2012)25-30.

    [13]T.C.Bai,G.B.Yan,Viscosity B-coefficients and activation parameters for viscous flow of a solution of heptanedioic acid in aqueous sucrose solution,Carbohydr.Res.338(2003)2921-2927.

    [14]A.Ali,P.Bidhuri,N.A.Malik,S.Uzair,Density,viscosity,and refractive index of mono-,di-,and tri-saccharides in aqueous glycine solutions at different temperatures,Arab.J.Chem.(2014),https://doi.org/10.1016/j.arabjc.2014.08.027.

    [15]D.M.Cirin,M.M.Posa,V.S.Krstonosic,Interactions between sodium cholate or sodium Deoxycholate and nonionic surfactant(tween 20 or tween 60)in aqueous solution,Ind.Eng.Chem.Res.51(2012)3670-3676.

    [16]C.W.Njauw,C.Y.Cheng,V.A.Ivanov,A.R.Khokhlov,S.H.Tung,Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization,Langmuir29(2013)3879-3888.

    [17]D.Madenci,A.Salonen,P.Schurtenberger,J.S.Pedersen,S.U.Egelhaaf,Simple model for the growth behaviour of mixed lecithin-bile salt micelles,Phys.Chem.Chem.Phys.13(2011)3171-3178.

    [18]N.Funasaki,M.Fukuba,T.Hattori,S.Ishikawa,T.Okunoa,S.Hirota,Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy,Chem.Phys.Lipids142(2006)43-57.

    [19]K.Kumar,S.Chauhan,Surface tension and UV-visible investigations of aggregation and adsorption behavior of NaC and NaDC in water-amino acid mixtures,Fluid Phase Equilib.394(2015)165-174.

    [20]K.Manna,C.H.Chang,A.K.Panda,Physicochemical studies on the catanionics of alkyltrimethylammonium bromides and bile salts in aqueous media,Colloids Surf.A Physicochem.Eng.Asp.415(2012)10-21.

    [21]G.G.Gaitano,A.Compostizo,L.S.Martin,G.Tardojas,Speed of sound,density,and molecular modeling studies on the inclusion complex between sodium cholate and β-cyclodextrin,Langmuir13(1997)2235-2241.

    [22]K.Kumar,B.S.Patial,S.Chauhan,Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures:effect of selected amino acids,J.Chem.Thermodyn.82(2016)25-33.

    [23]A.P.Davis,R.S.Wareham,Carbohydrate recognition through noncovalent interactions:a challenge for biomimetic and supramolecular chemistry,Angew.Chem.Int.Ed.38(1999)2978-2996.

    [24]P.Venkatesan,Y.Cheng,D.Kahne,Hydrogen bonding in micelle formation,J.Am.Chem.Soc.116(1994)6955-6956.

    [25]S.Chauhan,V.Sharma,K.Singh,M.S.Chauhan,K.Singh,Influence of lactose on the micellar behaviour and surface activity of bile salts as revealed through fluorescence and surface tension studies at varying temperatures,J.Mol.Liq.222(2016)67-76.

    [26]S.Chauhan,K.Singh,K.Kumar,S.C.Neelakantan,G.Kumar,Drug-amino acid interactions in aqueous medium:volumetric,compressibility,and viscometric studies,J.Chem.Eng.Data61(2016)788-796.

    [27]S.Chauhan,K.Sharma,D.S.Rana,G.Kumar,A.Umar,Volumetric and conductance studies of cetyltrimethyl ammonium bromide in aqueous glycine,J.Solut.Chem.42(2013)634-656.

    [28]V.Bhardwaj,P.Sharma,M.N.Noolvib,H.M.Patel,S.Chauhan,M.S.Chauhan,K.Sharma,Thermo-physical examination:synthesized2-furano-4(3H)-quinazolinone and open quinazolinone(diamide)anticancer analogs with sodium dodecyl sulphate,Thermochim.Acta573(2013)65-72.

    [29]M.Das,S.Das,A.K.Pattanaik,Acoustical behaviour of sodium nitroprusside in aquoorganic solvent media at 308.15 K,J.Chem.(2013),https://doi.org/10.1155/2013/942430.

    [30]S.Chauhan,M.Kaur,D.S.Rana,M.S.Chauhan,Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts,J.Chem.Eng.Data61(2016)3770-3778.

    [31]I.Bahadur,N.Deenadayalu,Apparent molar volume and apparent molar isentropic compressibility for the binary systems{methyltrioctyl ammonium bis(trifluoromethylsulfonyl)imide+ethyl acetate or ethanol}at different temperatures under atmospheric pressure,Thermochim.Acta566(2013)77-83.

    [32]T.S.Banipal,D.Kaur,P.K.Banipal,G.Singh,Thermodynamic and transportproperties of L-serine and L-threonine in aqueous sodium acetate and magnesium acetate solutions atT=298.15 K,J.Chem.Thermodyn.39(2007)371-384.

    [33]J.Singh,T.Kaur,V.Ali,D.S.Gill,Ultrasonic velocities and isentropic compressibilities of some tetraalkylammonium and copper(I)salts in acetonitrile and benzonitrile,J.Chem.Soc.Faraday Trans.90(1994)579-582.

    [34]T.Banerjee,N.Kishore,Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15 K:a volumetric approach,J.Solut.Chem.34(2005)137-153.

    [35]R.Sadeghi,S.Shahabi,A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties,micellization,and interaction with poly(ethylene glycol)in aqueous solutions,J.Chem.Thermodyn.43(2011)1361-1370.

    [36]T.Mehrian,A.De Keizer,A.Korteweg,J.Lyklema,Thermodynamics of micellization ofn-alkylpyridiniumchlorides,Colloids Surf.A Physicochem.Eng.Asp.71(1993)255-267.

    [37]S.Chauhan,L.Pathania,K.Sharma,G.Kumar,Volumetric,acoustical and viscometric behavior of glycine and DL-alanine in aqueous furosemide solutions at different temperatures,J.Mol.Liq.212(2015)656-664.

    [38]H.Kumar,K.Kaur,Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements,J.Mol.Liq.173(2012)130-136.

    [39]D.D.Miller,W.Lenhart,B.J.Williams,J.H.Hewitt,The use of NMR to study sodium dodecyl sulfate-gelatin interactions,Langmuir10(1994)68-71.

    [40]K.Sharma,S.Chauhan,Apparentmolar volume,compressibility and viscometric studies of sodium dodecyl benzene sulfonate(SDBS)and dodecyltrimethylammonium bromide(DTAB)in aqueous amino acid solutions:a thermo-acoustic approach,Thermochim.Acta578(2014)15-27.

    [41]D.Kaushal,D.S.Rana,S.Chauhan,Effect of furosemide on denaturation of lysozyme in the presence of ionic surfactant at different temperatures,Fluid Phase Equilib.360(2013)239-247.

    [42]V.K.Syal,A.Chauhan,S.Chauhan,Ultrasonic velocity,viscosity and density studies of poly(ethylene glycols)(PEG-8,000,PEG-20,000)in acetonitrile(AN)and water(H2O)mixtures at 250C,J.Pure Appl.Ultrason.27(2005)61-69.

    [43]S.Chauhan,P.Chaudhary,K.Sharma,K.Kumar Kiran,Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug,Chem.Pap.67(2013)1442-1452.

    [44]R.Kameswari,G.Giridhar,M.Rangacharyulu,Density and ultrasonic studies on sunflower oil,IJESAT5(2015)465-473.

    [45]S.Thirumaran,Deepesh George,Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures,ARPN J.Eng.Appl.Sci.4(2009)1-11.

    [46]A.B.Naik,Densities,viscosities,speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures,Indian J.Pure Appl.Phys.53(2015)27-34.

    [47]R.Kumar,R.Mahesh,B.Shanmugapriyan,V.Kannappan,Volumetric,viscometric,acoustic and refractometric studies of molecular interactions in certain binary systems ofo-chlorophenol at 303.15 K,Indian J.Pure Appl.Phys.50(2012)633-640.

    国产成人a区在线观看| 久久精品人妻少妇| 天堂俺去俺来也www色官网 | .国产精品久久| 非洲黑人性xxxx精品又粗又长| 亚洲伊人久久精品综合| 网址你懂的国产日韩在线| 欧美丝袜亚洲另类| www.色视频.com| 国产精品久久久久久久电影| 国产淫语在线视频| videossex国产| 狂野欧美激情性xxxx在线观看| 一本一本综合久久| 日日啪夜夜撸| 久久久精品欧美日韩精品| 国模一区二区三区四区视频| 夫妻性生交免费视频一级片| 高清在线视频一区二区三区| 国产高潮美女av| 日韩成人伦理影院| 亚洲国产精品国产精品| 97精品久久久久久久久久精品| av又黄又爽大尺度在线免费看| 亚洲精品久久久久久婷婷小说| 欧美+日韩+精品| 国产亚洲av片在线观看秒播厂 | 黑人高潮一二区| 国产精品99久久久久久久久| 欧美成人午夜免费资源| 婷婷色综合www| 国产成人福利小说| 久久99精品国语久久久| 亚洲成人av在线免费| 亚洲丝袜综合中文字幕| 欧美xxxx性猛交bbbb| 卡戴珊不雅视频在线播放| 美女黄网站色视频| 日产精品乱码卡一卡2卡三| 国产成人freesex在线| 色视频www国产| av卡一久久| 天堂√8在线中文| 只有这里有精品99| 午夜免费男女啪啪视频观看| 日韩 亚洲 欧美在线| 成人国产麻豆网| 国产有黄有色有爽视频| 青春草视频在线免费观看| 又爽又黄无遮挡网站| 亚洲精品影视一区二区三区av| 久久99热这里只有精品18| 欧美不卡视频在线免费观看| 真实男女啪啪啪动态图| a级毛色黄片| 午夜福利视频精品| 亚洲18禁久久av| 男人舔女人下体高潮全视频| 国产一级毛片七仙女欲春2| 成年版毛片免费区| 99re6热这里在线精品视频| 嘟嘟电影网在线观看| 超碰97精品在线观看| 最后的刺客免费高清国语| 成人漫画全彩无遮挡| 亚洲国产精品专区欧美| 欧美日韩综合久久久久久| 免费黄频网站在线观看国产| 亚洲久久久久久中文字幕| 91精品国产九色| 亚洲成人一二三区av| 人妻少妇偷人精品九色| 欧美激情在线99| 日韩欧美精品免费久久| 久99久视频精品免费| 国产精品伦人一区二区| 亚洲精品第二区| 91久久精品国产一区二区成人| 床上黄色一级片| 少妇被粗大猛烈的视频| 男的添女的下面高潮视频| 人人妻人人澡人人爽人人夜夜 | 久久精品国产亚洲网站| 最近手机中文字幕大全| 一区二区三区四区激情视频| 国产精品日韩av在线免费观看| 中文欧美无线码| 不卡视频在线观看欧美| 真实男女啪啪啪动态图| 老师上课跳d突然被开到最大视频| 禁无遮挡网站| 国产av国产精品国产| 97人妻精品一区二区三区麻豆| 伦精品一区二区三区| 国产又色又爽无遮挡免| 中文在线观看免费www的网站| 亚洲一区高清亚洲精品| 国产黄色视频一区二区在线观看| 18禁在线无遮挡免费观看视频| 成人特级av手机在线观看| 亚洲综合色惰| 国产精品无大码| 人妻制服诱惑在线中文字幕| 尾随美女入室| 极品少妇高潮喷水抽搐| 国产69精品久久久久777片| 成人无遮挡网站| 乱人视频在线观看| 97在线视频观看| 色吧在线观看| 在线观看一区二区三区| 日韩欧美精品v在线| 少妇丰满av| 3wmmmm亚洲av在线观看| 人人妻人人澡欧美一区二区| 我的老师免费观看完整版| 精品少妇黑人巨大在线播放| 午夜视频国产福利| 乱码一卡2卡4卡精品| 蜜桃亚洲精品一区二区三区| 三级国产精品片| 国产亚洲av嫩草精品影院| 久久97久久精品| 久久久久久伊人网av| 日本午夜av视频| 欧美精品一区二区大全| 国产一级毛片七仙女欲春2| 亚洲成人av在线免费| 国产毛片a区久久久久| 国产午夜精品论理片| 国产日韩欧美在线精品| 亚洲精品国产av蜜桃| 日日啪夜夜爽| 九九爱精品视频在线观看| 亚洲av不卡在线观看| 国产视频内射| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 免费观看的影片在线观看| 亚洲va在线va天堂va国产| 春色校园在线视频观看| 久久人人爽人人片av| 丝瓜视频免费看黄片| 亚洲三级黄色毛片| 亚洲精品一二三| 少妇熟女aⅴ在线视频| 国产精品1区2区在线观看.| 亚洲电影在线观看av| 一级毛片aaaaaa免费看小| 在线观看人妻少妇| 观看免费一级毛片| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合| 国产在视频线在精品| 丝袜喷水一区| 秋霞伦理黄片| 天天一区二区日本电影三级| 亚洲欧美一区二区三区黑人 | 18禁在线无遮挡免费观看视频| 乱人视频在线观看| 国产国拍精品亚洲av在线观看| 国产精品综合久久久久久久免费| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩东京热| 免费av不卡在线播放| 国产探花极品一区二区| 午夜精品一区二区三区免费看| 简卡轻食公司| 国产成人a∨麻豆精品| 日日干狠狠操夜夜爽| 啦啦啦中文免费视频观看日本| 六月丁香七月| 在线 av 中文字幕| 亚洲欧美中文字幕日韩二区| 日本黄色片子视频| 成年人午夜在线观看视频 | 青青草视频在线视频观看| 久久久久久久午夜电影| 亚洲最大成人av| 日韩精品有码人妻一区| 欧美bdsm另类| 菩萨蛮人人尽说江南好唐韦庄| 男人舔女人下体高潮全视频| 人人妻人人澡欧美一区二区| 中国国产av一级| 国产亚洲午夜精品一区二区久久 | 特级一级黄色大片| 午夜免费观看性视频| 精品久久久噜噜| 欧美97在线视频| 又黄又爽又刺激的免费视频.| 一级爰片在线观看| 亚洲av成人精品一区久久| 国产激情偷乱视频一区二区| 日韩视频在线欧美| 欧美成人午夜免费资源| 99久国产av精品| 如何舔出高潮| 最近最新中文字幕大全电影3| 久久久a久久爽久久v久久| 欧美97在线视频| 少妇的逼水好多| 午夜视频国产福利| 国产精品蜜桃在线观看| 午夜精品国产一区二区电影 | 中文字幕av在线有码专区| 国产探花在线观看一区二区| 久久久久久久亚洲中文字幕| 国产免费又黄又爽又色| 欧美潮喷喷水| 91狼人影院| 高清午夜精品一区二区三区| 亚洲av中文av极速乱| 国产午夜精品久久久久久一区二区三区| 只有这里有精品99| 热99在线观看视频| 国产一区二区在线观看日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品国内亚洲2022精品成人| 免费人成在线观看视频色| 成人欧美大片| 色5月婷婷丁香| 黄色配什么色好看| 国产成人精品久久久久久| ponron亚洲| 亚洲自拍偷在线| 91aial.com中文字幕在线观看| 黄片wwwwww| 久久久久久久久大av| 国产精品三级大全| 男女国产视频网站| 丝袜美腿在线中文| 婷婷色综合www| 国产黄色视频一区二区在线观看| 久久99热6这里只有精品| 内地一区二区视频在线| 亚洲人成网站高清观看| 人人妻人人看人人澡| 人体艺术视频欧美日本| 2022亚洲国产成人精品| 日韩欧美 国产精品| 亚洲精品日韩av片在线观看| 亚洲最大成人手机在线| 一级毛片久久久久久久久女| 国产成人a∨麻豆精品| 在现免费观看毛片| 少妇熟女欧美另类| 99热6这里只有精品| 久久精品久久久久久久性| 久久久久久久大尺度免费视频| 国产 一区 欧美 日韩| 精品久久久久久久人妻蜜臀av| 色网站视频免费| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图| 午夜精品在线福利| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看 | 日产精品乱码卡一卡2卡三| 国产伦精品一区二区三区视频9| 狂野欧美激情性xxxx在线观看| 国产片特级美女逼逼视频| 国产免费又黄又爽又色| 国产白丝娇喘喷水9色精品| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久| 国产成人aa在线观看| 日韩电影二区| 免费观看在线日韩| 美女黄网站色视频| 亚洲国产最新在线播放| 免费黄网站久久成人精品| 午夜激情久久久久久久| 日本爱情动作片www.在线观看| 欧美3d第一页| 熟妇人妻久久中文字幕3abv| 哪个播放器可以免费观看大片| 偷拍熟女少妇极品色| 天堂俺去俺来也www色官网 | 三级男女做爰猛烈吃奶摸视频| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 欧美 日韩 精品 国产| 久久久久久久久久成人| 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 极品教师在线视频| 欧美激情国产日韩精品一区| 日本色播在线视频| 午夜福利视频精品| 国产在视频线在精品| 成人亚洲欧美一区二区av| 黑人高潮一二区| 老司机影院成人| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | 国产黄a三级三级三级人| 最近2019中文字幕mv第一页| 赤兔流量卡办理| 2022亚洲国产成人精品| av在线天堂中文字幕| 日本黄色片子视频| 黄色配什么色好看| 七月丁香在线播放| 一本一本综合久久| av专区在线播放| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| 91精品国产九色| 国产伦一二天堂av在线观看| 国产 一区精品| 亚洲欧美日韩卡通动漫| 在线观看人妻少妇| 成年女人看的毛片在线观看| 777米奇影视久久| 国产黄色视频一区二区在线观看| 欧美激情国产日韩精品一区| 99久久精品热视频| 免费观看的影片在线观看| 一级毛片aaaaaa免费看小| 亚洲激情五月婷婷啪啪| 国产精品女同一区二区软件| 99热这里只有精品一区| 大话2 男鬼变身卡| 国产精品精品国产色婷婷| 啦啦啦啦在线视频资源| 国产成人freesex在线| 国产一区二区在线观看日韩| 午夜亚洲福利在线播放| 男人狂女人下面高潮的视频| 搞女人的毛片| 日本wwww免费看| 六月丁香七月| 精品久久久噜噜| 国产黄色免费在线视频| 观看美女的网站| 久久精品久久久久久久性| 成年版毛片免费区| 26uuu在线亚洲综合色| 国模一区二区三区四区视频| 国产一区有黄有色的免费视频 | 亚洲av.av天堂| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂 | 国产成人免费观看mmmm| 国产片特级美女逼逼视频| 日韩成人伦理影院| 少妇丰满av| 免费观看的影片在线观看| 久久久精品免费免费高清| 国产av在哪里看| 成人午夜高清在线视频| 中文字幕免费在线视频6| 亚洲欧美一区二区三区黑人 | 国产一级毛片七仙女欲春2| 国产精品三级大全| 亚洲精品456在线播放app| 岛国毛片在线播放| 国产精品人妻久久久影院| 少妇熟女欧美另类| 三级经典国产精品| 又粗又硬又长又爽又黄的视频| 色视频www国产| 老司机影院毛片| 自拍偷自拍亚洲精品老妇| 亚洲精品国产av蜜桃| 国产精品无大码| 麻豆久久精品国产亚洲av| 国产黄片美女视频| 精品国内亚洲2022精品成人| 日韩成人伦理影院| 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 三级国产精品欧美在线观看| 免费看a级黄色片| 久久久久久久久大av| 中文精品一卡2卡3卡4更新| 国产一区二区亚洲精品在线观看| 一级毛片久久久久久久久女| 亚洲四区av| 18禁动态无遮挡网站| 午夜视频国产福利| 身体一侧抽搐| 美女国产视频在线观看| 国产精品日韩av在线免费观看| 性插视频无遮挡在线免费观看| 熟女人妻精品中文字幕| 丝袜喷水一区| 日本熟妇午夜| 人人妻人人澡欧美一区二区| 一边亲一边摸免费视频| 午夜老司机福利剧场| 久久精品久久久久久久性| 中文在线观看免费www的网站| 少妇熟女aⅴ在线视频| 国产亚洲5aaaaa淫片| 精品久久国产蜜桃| 国产在视频线精品| 中文字幕免费在线视频6| 亚洲性久久影院| 国产精品综合久久久久久久免费| 亚洲18禁久久av| 婷婷色综合www| 高清毛片免费看| 秋霞伦理黄片| 免费观看av网站的网址| 亚洲伊人久久精品综合| 午夜激情久久久久久久| 老司机影院成人| 国产精品麻豆人妻色哟哟久久 | 国内揄拍国产精品人妻在线| 高清av免费在线| 18禁在线无遮挡免费观看视频| 免费看日本二区| a级一级毛片免费在线观看| 亚洲色图av天堂| 亚洲欧美精品专区久久| 国产精品女同一区二区软件| 国模一区二区三区四区视频| 成年免费大片在线观看| 尾随美女入室| 只有这里有精品99| 国产精品日韩av在线免费观看| 精品一区二区三区视频在线| 中文字幕久久专区| 久久久久久久久久人人人人人人| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 九草在线视频观看| 26uuu在线亚洲综合色| 麻豆av噜噜一区二区三区| 联通29元200g的流量卡| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 禁无遮挡网站| 又爽又黄a免费视频| 亚洲成色77777| www.色视频.com| 能在线免费看毛片的网站| 久久久a久久爽久久v久久| 插逼视频在线观看| 国产 亚洲一区二区三区 | 午夜亚洲福利在线播放| 亚洲精品第二区| 午夜免费男女啪啪视频观看| 一区二区三区高清视频在线| 777米奇影视久久| 国产亚洲精品久久久com| 亚洲在线观看片| 日本-黄色视频高清免费观看| 99久久精品热视频| 国模一区二区三区四区视频| 极品教师在线视频| 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 少妇裸体淫交视频免费看高清| 亚洲精品成人av观看孕妇| 午夜视频国产福利| 男人舔奶头视频| 成人漫画全彩无遮挡| 超碰97精品在线观看| 看免费成人av毛片| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 色尼玛亚洲综合影院| 伦理电影大哥的女人| 男人舔女人下体高潮全视频| 卡戴珊不雅视频在线播放| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 99久久精品热视频| 美女cb高潮喷水在线观看| www.色视频.com| 日本av手机在线免费观看| 极品教师在线视频| 国产老妇女一区| av又黄又爽大尺度在线免费看| 国产亚洲av嫩草精品影院| 国产免费又黄又爽又色| 男女啪啪激烈高潮av片| 欧美性感艳星| 国产91av在线免费观看| 女人久久www免费人成看片| 久久久成人免费电影| 性色avwww在线观看| 夜夜爽夜夜爽视频| 91久久精品电影网| 一个人免费在线观看电影| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久久久| 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 欧美激情久久久久久爽电影| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 久久这里有精品视频免费| 只有这里有精品99| 亚洲精品久久午夜乱码| 欧美成人午夜免费资源| 亚洲第一区二区三区不卡| 97在线视频观看| 女人被狂操c到高潮| 国产男女超爽视频在线观看| 久久99热这里只有精品18| 亚洲精品久久午夜乱码| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 高清av免费在线| 51国产日韩欧美| 欧美变态另类bdsm刘玥| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 国国产精品蜜臀av免费| 狠狠精品人妻久久久久久综合| 最近中文字幕2019免费版| 精品久久国产蜜桃| 国产精品蜜桃在线观看| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 国产91av在线免费观看| 久久久久久九九精品二区国产| 国产伦精品一区二区三区视频9| 一夜夜www| 一级av片app| 日本一本二区三区精品| 人妻夜夜爽99麻豆av| 99九九线精品视频在线观看视频| 别揉我奶头 嗯啊视频| 一区二区三区高清视频在线| 搡老乐熟女国产| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 搡老乐熟女国产| 久久久久久久久久久丰满| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 又爽又黄无遮挡网站| h日本视频在线播放| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 激情 狠狠 欧美| 国产精品麻豆人妻色哟哟久久 | 最近视频中文字幕2019在线8| 久久久久久久久久久丰满| 亚洲精品日韩在线中文字幕| 亚洲av一区综合| 97超碰精品成人国产| 狂野欧美激情性xxxx在线观看| 精品一区二区三卡| 日韩av免费高清视频| 一级毛片aaaaaa免费看小| 国产欧美另类精品又又久久亚洲欧美| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 99久久人妻综合| 亚洲伊人久久精品综合| 国产高清三级在线| 亚洲av成人av| 精品久久久久久久久久久久久| 黑人高潮一二区| 国产激情偷乱视频一区二区| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品 | 成年人午夜在线观看视频 | 国产一区二区亚洲精品在线观看| 看黄色毛片网站| 国产精品女同一区二区软件| 欧美人与善性xxx| 亚洲aⅴ乱码一区二区在线播放| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 午夜福利在线在线| 青春草国产在线视频| 看非洲黑人一级黄片| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 亚洲在线自拍视频| 九色成人免费人妻av| 免费av观看视频| 两个人视频免费观看高清| 精品酒店卫生间| 18禁裸乳无遮挡免费网站照片| 国产女主播在线喷水免费视频网站 | 成年人午夜在线观看视频 | 一级二级三级毛片免费看| 久久久久久久久久成人| 激情 狠狠 欧美| 国产毛片a区久久久久| 午夜福利在线观看吧| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 色吧在线观看| 久久精品熟女亚洲av麻豆精品 | 三级毛片av免费| 欧美日韩在线观看h| 免费黄网站久久成人精品| 国产男人的电影天堂91| 国产亚洲精品av在线| 日韩av在线大香蕉| 国产一级毛片七仙女欲春2| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 午夜福利成人在线免费观看| 日韩三级伦理在线观看| 国产欧美日韩精品一区二区| 搡老乐熟女国产|