• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cr(III)removal from simulated solution using hydrous magnesium oxide coated fly ash:Optimization by response surface methodology(RSM)☆

    2018-06-29 09:16:24MinXiaChunsongYeKewuPiDefuLiuAndreaGerson

    Min Xia *,Chunsong Ye Kewu Pi,Defu Liu ,Andrea R.Gerson

    1 School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,Hubei,China

    2 School of Resource and Environmental Engineering,Hubei University of Technology,Wuhan 430068,Hubei,China

    3 Blue Minerals Consultancy,Wattle Grove,Tasmania 7109,Australia

    1.Introduction

    As a result of industrialization,significant discharge of heavy metals into the environment has taken place[1]often resulting in accumulation in water and soil,followed by causing serious pollution and deleterious effects on human health[2].

    Chromium,one of the most toxic heavy metals,can exist in trivalent(Cr(III))and hexavalent(Cr(VI))oxidation states.Its pollution in waterways is mainly derived from electroplating,tanning,mining and fertilizer manufacture[3].Chromium toxicity and behavior in aqueous systems are oxidation state dependent.The toxicity of Cr(VI)has been claimed to be up to 300 times that of Cr(III)[4].However,it has also been reported that excessive intake of Cr(III)depresses the immune system and may lead to necrosisviainteraction with micro filaments,mitochondria,lysosome and nucleolus[5].Contact with chromium Cr(III)for a long time would incur skin allergy even worse cancer.Therefore,minimization of Cr(III)levels in aqueous from the source discharge is essential for elimination of Cr(III)pollution.The maximum allowable concentration of chromium in drinking water that is regarded as harmless by the US Environmental Protection Agency is 0.1 mg·L-1,although the World Health Organization defines the critical concentration threshold as 0.01 mg·L-1[2].

    From environmental protection point of view,an effective strategy for heavy metals removal should be imminently implemented.To date,various physico-chemical methods have been developed to remove aqueous heavy metals including precipitation,membrane,ion exchange,electrolysis and oxidation-reduction approaches[6].However,all these methods either involve high operating costs or may produce large volumes of solid wastes[7].For these reasons,adsorption approach using waste materials would be a promising technology in heavy metals removal in terms of the potential of an effective,simple and cheap alternative.Pérez Marínet al.[2]investigated the orange waste to adsorb Cr(III)from aqueous solution.The result showed the maximun Cr(III)adsorption derived from Langmuir isothermal model could reach 1.44 mmol·g-1.Meanwhile,a study on heavy metal(Cu(II))removal using rice husk was reported by Elhafezet al.[8]with the attainment efficiency for 25.6 mg·g-1,a considerably higher than that of 11 mg·g-1for commercial activated carbon cloth[9].In addition,other industrial wastes including zeolite[10],eggshell[11],bentonite[12],olive stone[13]and coir pitch[14]have already been demonstrated to have the capacity to retain heavy metals.

    Fly ash(FA)is the major industrial waste from coal combustion.Due to the increasing demand for energy its annual output is increasing rapidly.A growing number of utilizations for this waste have been found such as in cement manufacture or as a soil amendment.Additionally,the high aluminum content of fly ash can be an important resource[15].However,the utilization rate of fly ash is far less than the output rate[16].Reportedly,in China the utilization rate of fly ash is approximately 70%with the output approximately 580 million tons by 2015[17].To the extent that most of the unutilized fly ash(approximately 174 million tons)is inevitably dumped into the environment,leading to secondary environment pollution.Consequently,the development of additional approaches for the disposal of fly ash has attracted interest[18].Previous studies showed fly ash could be used as high-efficiency adsorbent for pollutants removal in both gaseous and aqueous applications[17].Due to high specific surface area and porosity[19,20],FA therefore means potentially as a material for heavy metal uptake and in practice has already been successfully applied in Cr(VI),Pb(II),Cu(II),Ni(II)and Cd(II)[21-23]removal.Beyond that,to the author's knowledge,there has been little study of the application of fly ash for removal of aqueous Cr(III),especially modified fly ash for Cr(III)removal enhancement is still missing.

    Previously,Magnesium was introduced onto the granular activated carbon surface with the form of MgO and was used to remove Zn(II)and Cd(II).The results revealed the high removal efficiency for these metal ions[24].However,the preparation process needed to calcine at high temperature from hydrous magnesium oxide,resulting in lots of energy loss and making it environmental unfriendly.Therefore,it is necessary to find a feasible strategy[25].Hydrous magnesium oxide has also been reported to adsorb heavy metals from wastewater[26].Therefore, fly ash can be modified by hydrous magnesium oxide to adsorb Cr(III),which can use the advantages of both fly ash and magnesium hydroxide fully.In view of this,a new material,hydrous magnesium oxide coated fly ash(MFA)was synthesized and potentially used for the study of the uptake of aqueous Cr(III).This composite was characterized using Fourier-transform infrared(FTIR)spectroscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).A response surface methodology(RSM)was carried out to reveal and comprehend the effect of pH,MFA dosage and initial Cr(III)concentration on the removal process as well as to assess the feasibility of this new adsorbent for Cr(III)removal from effluent.Specially,the possible mechanism for Cr(III)adsorption onto MFA was discussed.

    2.Experimental

    2.1.Materials and chemicals

    The fly ash used in this study was obtained from a power plant located in Hubei,China,its chemical compositions are presented in Table 1.A simulated solution containing 1.0 g·L-1of Cr(III)was prepared by dissolving 5.124 g of CrCl3·6H2O in 1 L of distilled water.Distilled water was used throughout all experiments.Working solutions of different initial Cr(III)concentrations were obtained by serial dilution of the simulated solution.All commercial reagents,purchased from Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China,were of analytical grade with the purity between 96%and 99%.

    2.2.Synthesis of hydrous magnesium oxide-coated fly ash composite

    Twenty grams of 96-μm fly ash was first activated using 200 ml of 2 mol·L-1HCl solution at 30 °C for 24 h.Previous studies indicated acid etching(HCl,H2SO4or the mixture)for fly ash or similar material(kaolinite)had been positive effect on fractionation of amorphous materials and dredge channels to increase specific surface area along with the amount of active sites,therefore,giving rise to higher adsorption capability[27-30].Then,the suspension was vacuum filtered through a 0.45-μm membrane,washed with distilled water and dried in an oven at80°C.Hydrous magnesium oxide coated fly ash composite was made by the addition of20 g of the HCl activated fly ash into 200 ml of 0.49 mol·L-1magnesium chloride solution at 30 °C.After vigorous stirring for 24 h,250-ml ammonia solution(25 wt%)was added dropwise.With continuous reaction for 24 h at ambient temperature,the hydrous magnesium oxide coated fly ash(MFA)was centrifuged,washed with distilled water several times and then dried at 80°C for later use.

    2.3.Characterization and analysis technique

    Surface morphology was imaged using scanning electron microscopy(SEM)(FEI,Quanta 200)with energy dispersive X-ray spectroscopy(EDS)for elemental quantification.X-ray diffraction(XRD)(PANalytical,X'Pert Pro)was carried out to identify the crystalline phases present.Functional groups were identified using Fourier-transform infrared(FTIR)(Nicolet,5700)spectroscopy using the compressed KBr pellet method.The pH of the point of zero charge(pHpzc)of the MFA was determined according to the pH drift method[31](Thermo Orion,230A+),and is defined as the point where the curve pHfinalversuspHinitialcrosses the line pHfinal=pHinitial.Cr(III)concentration was measured using an atomic absorption spectroscope(PinAAcle,900F)equipped with Cr hollow-cathode lamps.The specific surface area of fly ash was determined using methylene blue adsorption test method previously described[32].

    2.4.Response surface methodology(RSM)

    Response surface methodology(RSM)is generally carried out to investigate the effect of several independent variables.It is often used in process design,improvement and optimization.This approach is practical as it employs experimental data and thus contains the interactive effects of variables on overall process performance[33]and systematically appraise corresponding significance levels.As a result of these advantages,RSM has been recently and consistently applied to optimize process parameters in many water treatment fields,such as electro coagulation[34],traditional coagulation- flocculation[35],membrane[36],advanced oxidation[37],also including adsorption process[38].In previous studies,Iqbalet al.[38]investigated the shoes waste as adsorbents to treat cadmium Cd(II)from simulated aqueous solution using RSM for optimization of operating variables,the results indicated it could predict the response with good accuracy and reliability.Similarly,Srivastavaet al.[39]research on Co(II)adsorption by means of NiO nanoparticles also suggested the methodological feasibility of RSM for statistical model construction in adsorption process.With a comprehensive consideration of Cr(III)removal process,the Box-Behnken design(BBD)was employed for RSM modeling using three crucial variables,namely MFA dosage,initial pH and initial Cr(III)concentration.The detailed descriptions on variable factors with the coded and actual values are presented in Table 2.For this design,a total of seventeen experiments consisting of thirteen different combined coded levels and four repeated central coded levels were needed with a randomized experimental rank in order to minimize the influence of uncontrolled factors.Specially,the Design Expert8.0.6 software was performed for either BBD matrix/experimental data analysis or mathematics modeling.Additionally,blank tests using the same Cr(III)containing solution without any addition of adsorbent were conducted to evaluate any adsorption of Cr(III)on the glass surface during incubation.Eachexperiment was repeated in at least triplicate at 25°C to ensure reproducibility and reliability.

    Table 1 Elemental compositions(wt%)of FA and MFA

    To predict the optimum condition for Cr(III)removal and to express the interaction between dependent and independent variables,the mathematical quadratic model shown in Eq.(1)is obtained using the Design Expert software:

    Yis the estimated response;β0represents the constant;βi,βjjand β0refer to the coefficients of linear,quadratic and interactive items,respectively,andXis the dimensionless coded value of the independent variable.Analysis of variance(ANOVA)is applied to evaluate the applicability of this response surface quadratic model and the significance of each item in the equation.

    Metal removal efficiency,R(%)for different conditions is calculated using the general definition:

    C0andCeare the initial and equilibrium concentrations of Cr(III)(mg·L-1),respectively.

    3.Results and Discussion

    3.1.Characterization

    Table 1 summarizes the evolution of semiquantitative elemental compositions on FA and MFA as determined by energy dispersive X-ray spectroscopy(EDS).As suggested by these data,the FA is mainly composed of silica,aluminum,iron oxide and is classified as class F according to standard specifications of ASTM C618.Compared to FA,MFA shows more content of surface metal oxide,which is attributed to the successful introduction of hydrous magnesium oxide,where percentage composition of element magnesium increases from its initial value 0.5%up to 6.1%.Higher metal oxide would prefer to improve the adsorption capacity due to have a responsibility to the generation of variable charges[40,41].It was reported by Linet al.[40]the maximum amount of methylene blue(MB)uptake could be efficiently enhanced(two times higher)using the FA coated with hydrous metal oxides(hydrous zirconia and hydrous iron oxide).Nevertheless,other research suggests silicon oxide could also be involvement in the metal ions(Cd(II),Pb(II),Zn(II))adsorption process[42].On the other hand,1.2%of residual carbon content is found in FA through the measure of loss on ignition(LOI),which is indicative of the impact of residual carbon for Cr(III)retention should be very tiny and consequently excluded[43,44].Besides,it is worth noting LOI of MFA(4.0%)is abnormally increased.With respect to the variation of which in comparison to FA,it can be reasonably explained by the decomposition of hydrous magnesium oxide into magnesium oxide at strong heat(1000°C in this study),which the start of mass loss commences at 270°C[45].

    Table 2 The levels and ranges of independent variables for RSM experiments

    The XRD patterns of MFA and FA are shown in Fig.1(a).The major diffraction peaks for FA result from mullite(Al6O13Si2,JCPDS Card No.02-0431),quartz(SiO2,JCPDS Card No.02-0471)and amorphous phase[40](diffuse scattering halo 2θ between 20°-30°,not shown in Fig.1(a)due to deduct the background using Jade 5.0 software).After activation by acid and modification by magnesium hydrate,further diffraction peaks for brucite(Mg(OH)2,JPCDS Card No.44-1482[46]at 2θ of 18.17°(001),36.64°(101),48.90°(102),56.32°(110),59.80°(111)and 65.41°(103)are observed in the diffraction pattern from MFA,while matters of the bulge peak for amorphous phase in FA is mostly dissolved accordingly(the weakened of diffuse scattering halo)due to acid etching.This result is consistent with the previous studies reported by Liet al.[28]and Zhanget al.[30],for using FA as adsorbent and Alextraction materials,respectively.

    Fig.1.(a)XRD patterns of FA and MFA and(b)FTIR spectra of FA,MFA and MFA after treatment of Cr(III)-containing solution.

    To determine which functional groups are responsible for metal uptake FTIR was carried out.Fig.1(b)depicts the FTIR spectra,in the range of 400-4000 cm-1,for FA and MFA prior to and after Cr(III)uptake.The FTIR spectra of FA exhibits adsorption peaks at 3420 cm-1and 1630 cm-1corresponding to the stretching and bending vibrations of--OH from adsorbed water molecular.The strong absorption peak at 1093 cm-1can be assignable to the antisymmetric stretching variation of Si--O--Al network with the band at 463 cm-1arose from the bending vibration of O--Si--O in SiO4tetrahedron.Similar results have been narrated in the published literatures[28,47].The peaks centered at 558 cm-1and 830 cm-1are assigned to the stretching vibration of Al--O in[AlO6]and[AlO4],respectively.The weak absorption peak at 916 cm-1is indicative of the Al--OH bending vibration in[AlO6][23].

    In the FTIR spectrum of MFA further absorption peaks are observed.The sharp strong peak at3693 cm-1is due to the Mg--OH stretching vibration with the bending vibrations at 1440 cm-1from Mg--O and 1550 cm-1from--OH,both in Mg(OH)2.Upon uptake of Cr(III)some changes are observed.The absorption peaks of 1440 cm-1and 1550 cm-1shift to 1384 cm-1and 1478 cm-1,respectively,this is mainly resulted from the energy bond in the functional groups(i.e.,--OH)presenting on the surface of MFA[48].In addition,the peak intensity at 3693 cm-1drastically decreases.It appears that the--OH group of Mg(OH)2is the major functional group involved in Cr(III)adsorption onto MFA.

    The morphology differences between FA to MFA are illustrated in Fig.2.It is clearly observed FA is spheroidal with a relatively smooth surface[Fig.2(a)].In contrast,MFA[Fig.2(b)]has a rough and uneven surface composing of small exfoliated flakes,suggesting the successful loading of hydrous magnesium oxide onto the surface of FA.In addition,a few filiform-like structures are quite apparent.Similar structures have been observed by[49]on adsorption of fluorinion onto FA modified by magnesium chloride,which is defined as the fusion of magnesium and FA(magnesium-aluminum-silicate(MgAl2Si4O12)and pyrope(Mg3Al2(SiO4)3)).

    3.2.RSM analysis

    3.2.1.Analysis of variance(ANOVA)

    The final experimental design matrix and response results for Cr(III)removal efficiency under different experimental conditions are listed in Table 3.

    Table 3 BBD design matrix for three variables with response values of Cr(III)removal efficiency

    Fig.2.SEM images of(a)FA and(b)MFA.

    The mathematical quadratic model in terms of coded factors obtained from RSM modeling is:

    whereAis the MFA dosage(g·L-1);Bis the concentration of Cr(III)(mg·L-1)andCis the pH.ANOVA of the regression parameters derived to model Cr(III)adsorption is shown in Table 4.A highF-value of 38 together with a low probability value(Prob>F<0.001)demonstrate that the response surface quadratic model is highly significant.The significant model terms are those with the value(Prob>F)less than 0.05[50].As seen from Table 4,A,B,C,AB,AC,A2andC2are the significant terms that affect Cr(III)adsorption.Since insignificant model terms(i.e.,BC,B2)have little influence on the contribution to Cr(III)removal,these are not important to the response surface model construction.

    Table 4 Analysis of variance(ANOVA)of quadratic model for the significant terms and relevant summary statistics,A-MFA dosage(g·L-1);B-initial Cr(III)concentration(mg·L-1);C-pH

    In order to completely verify the models' reliability and accuracy,summary statistics of adequate precision,determinationR2and adjustedR2have been evaluated.Adequate precision measures the range of the predicted response relative to its associated error,i.e.a signal to noise ratio,for which a value of greater than 4 is desirable and con firms the applicability of the model for navigation of the design space[51].The adequate precision of 16 obtained indicates an adequate signal to noise ratio.TheR2value of 0.97 obtained implies that 97%of the variability in the response could be explained using this empirical model.However,only taking an individual value ofR2(even though theR2value close to 1)into account would not intuitively evaluate whether the model is a good regression or not,since more amounts of variables are included in model building,higherR2value can be obtained consequentially.In this case,adjustedR2should be synchronously considered.It is shown from Table 4,both high and close values betweenR2and adjustedR2are obviously observed,in turn supporting the good fit of the model to the experimental data[52].Summarily,all these summary statistics indicate the statistical model is validated from the statistical point of view and can perfectly simulate the Cr(III)adsorption performance on MFA.

    3.2.2.Effect of variables on Cr(III)adsorption

    The three dimensional(3D)response surface plots with their corresponding contour plots for Cr(III)uptake using the quadratic model generated are shown in Fig.3.Fig.3(a)shows the effect of initial pH and MFA dosage on Cr(III)removal efficiency for the initial Cr(III)concentration of 200 mg·L-1.The surfaces of this plot are steep implying the interactive effect is significant,in agreement with ANOVA analysis(Table 4).According to the corresponding contour plot Cr(III)removal increases with pH increase up until pH 3.20 at the MFA dosage of 3.0 g·L-1,above which it almost plateaus.

    Fig.3(b)shows the effect of MFA dosage on Cr(III)removal efficiency as a function of initial Cr(III)concentration at pH 3.5.As for Fig.3(a)the 3D plot surface is steep.Above the MFA dosage of 2 g·L-1for the initial Cr(III)concentration of200 mg·L-1,the Cr(III)removal efficiency levels off.The effect of initial concentration of Cr(III)is also reflected in Fig.3(b).The Cr(III)removal efficiency decreases with increase of initial Cr(III)concentration,especially at small MFA amount.The range of Cr(III)removal efficiencies is greater at high dosage of MFA than at low dosage across the range of initial Cr(III)concentrations examined,with values between 0 and 95%at 1.0 g·L-1MFA compared to 95%-100%at 2.5 g·L-1MFA[contour plot Fig.3(b)].

    3.3.Optimization

    Optimized conditions for Cr(III)removal efficiency were predicted using the Design Expert software within the range of conditions studied.The model predicted Cr(III)removal efficiency of 100%for pH,initial Cr(III)concentration and MFA dosage of 4.11,126 mg·L-1and 1.57 g·L-1,respectively.The value of 98%derived experimentally matches the predicted value well.This value compares Cr(III)removal efficiency of 20%when using FA under the same conditions.However,this does suggest some interaction between the aqueous chromium species and the FA surface.The finding of present study is compared with those of published work by using various waste materials for Cr(III)removal,the overview related to the maximum Cr(III)adsorption capacitiesQmis summarized in Table 5.As it can be seen in Table 5,the adsorption capacity of MFA under the optimum parameters is fairly high(78.6 mg·g-1,value would be more higher if inferred from Langmuir isothermal model),significantly superior or comparative to other waste adsorbents except for eggshell,indicating it can used as a cost-effective adsorbent for the treatment of effluent containing Cr(III).

    3.4.Cr(III)removal mechanism

    On the basis of the results described,a mechanism for Cr(III)removal is proposed.It is known that changes in pH affect not only the characteristics and availability of metal ions in solution but also the functional groups responsible for adsorption[57].The presence of aqueous Cr(III)-hydroxide is a function of pH[43,58]as is the degree of ionization of the surface active MFA groups.Fig.4 presents the evolution of Cr(III)speciesversuspH calculated by Visual MINTEQ 3.0 software.Visual inspection from Fig.4,seven types of Cr(III)species are in existence across the pH 2.0-13.0.When pH is below 4.0,Cr3+is the dominant solution chromium specie,whereas when pH is greater than 4.0(to approximately 6.5),Cr(OH)2+dominates.As pH value surpasses 5.0,Cr(OH)3(aq)first occurs and the fraction increases gradually with the decrease of acidity until reaching to the maximum at pH 9.0.Cr(III)removal would be predominant by metal hydroxide precipitation with the substitution of adsorption behavior at the pH 6.5-11.5.As a result,pH 2-5 are undertaken in the batch experiments,so that for eliminating the impact of chemistry disposition.In this pH range,a series of other species such as Cr3(OH)45+,Cr2(OH)24+,Cr(OH)2+are also found but in a small fraction.

    At low pH where Cr(III)is present in solution as Cr3+,the low percentage of Cr(III)adsorption onto MFA may be explained by strong competition of protons with Cr3+for active surface binding sites because of higher ionic mobility of H3O+[56]and the strong electrostatic repulsion between Cr3+and the protonated MFA[11].On increasing pH,the Cr(III)removal efficiency increases significantly due to weakened surface adsorption of protons resulting in increased Cr(III)adsorption either as Cr3+or Cr(OH)2+.However,the pHpzcvalue of 10.3 indicates the surface MFA will be positively charged across all the pH conditions studied,which implies the electrostatic contribution from electrostatic adsorption for Cr(III)removal would be unconsidered and chemisorptions might dominate instead.According to the results of FTIR analysis,the--OH groups of Mg(OH)2from fly ash are the major functional group involved in Cr(III)adsorption.The adsorption may be achieved through the ligand exchange of--OH groups from MFA and the--H of--OH from Cr(III)hydrate,orvice versa.Besides,the huge specific surface area(27.2 m2·g-1)from substrate fly ash also has the responsibility to increase the adsorption capacity.

    Fig.3.3D graphs and contour plots illustrating(a)effect of pH and MFA dosage,(b)effect of initial Cr(III)concentration and MFA dosage on Cr(III)removal efficiency.

    At low MFA dosage the available active sites will be fewer and the removal efficiency is determined by the dosage for a given pH and initial Cr(III)concentration.As continuously increasing MFA dosage further sites become available due to the improvement of MFA surface area,resulting in increased Cr(III)adsorption.However,perpetuallyincreasing the dosage of MFA does not lead to greater Cr(III)uptake for a given Cr(III)concentration when excess active sites are available.This trend is in accordance with that in some previous studies using FA as adsorbent for either organics or inorganics adsorption.Anet al.[59]reported the removal efficiency of sulfonated humic acid increased with the increasing dosage of two kinds of FA(Shand and BD)until the dosage was higher than 0.75 g·L-1for Sand and 4 g·L-1for BD,the removal percentage almost remained unchangeable thereafter.Likewise,Mohan and Gandhimathi[60]reported the critical dosage for heavy metals elimination was 2 g·L-1,the excess dosage of FA would have little effect on removal efficiency.

    Table 5 Comparative overview of the Cr(III)adsorption capacities from different waste materials

    Fig.4.Calculated distribution of Cr(III)species as a function of pH with the constant concentration in aqueous solution.

    4.Conclusions

    Cr(III)is a toxic pollutant and its removal from aqueous environmental systems has become a priority.A new material,hydrous magnesium oxide coated fly ash(MFA)has been synthesized to evaluate its effectiveness as a substrate for aqueous Cr(III)adsorption.pH,MFA dosage and initial Cr(III)concentration were varied according to Box-Behnken design to obtain optimal adsorption using the response surface methodology.All these variables were found to have significant effect on Cr(III)removal efficiency with the interaction between pH-MFA dosage,and MFA dosage-Cr(III)initial concentration being strong.The analysis of variance shows the mathematical quadratic model derived from the Cr(III)adsorption measurements was reliable.This model was applied to predict optimal conditions of pH(4.11),MFA dosage(1.57 g·L-1)and initial concentration(126 mg·L-1)for Cr(III)removal from aqueous solution to give 98%efficiency.The mechanism for Cr(III)adsorption appears to be predominately associated with surface binding to the functional group--OH from hydrous magnesium oxide with the possibility of a significantly smaller contribution of Cr(III)bound directly to the FA components of the MFA.The results of this study have crucial implications in the case of pollution control in related Cr(III)discharge industries.Further studies regarding thermodynamics,kinetics and real Cr(III)wastewater are desired to prove and obtain a more theoretical foundation for better recognizing the interaction nature between Cr(III)and MFA.

    Acknowledgements

    The authors are thankful for the support of Wuhan University,China for supply of equipment and chemicals needed to complete this work.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cjche.2017.11.008.

    [1]O.S.Amuda,A.A.Giwa,I.A.Bello,Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon,Biochem.Eng.J.36(2007)174-181.

    [2]A.B.Pérez Marín,M.I.Aguilar,V.F.Meseguer,J.F.Ortu?o,J.Sáez,M.Lloréns,Biosorption of chromium(III)by orange(Citrus cinensis)waste:batch and continuous studies,Chem.Eng.J.155(2009)199-206.

    [3]I.Y.El-Sherif,S.Tolani,K.Ofosu,O.A.Mohamed,A.K.Wanekaya,Polymeric nanofibers for the removal of Cr(III)from tannery waste water,J.Environ.Manag.129(2013)410-413.

    [4]S.Elabbas,L.Mandi,F.Berrekhis,M.N.Pons,J.P.Leclerc,N.Ouazzani,Removal of Cr(III)from chrome tanning wastewater by adsorption using two natural carbonaceous materials:eggshell and powdered marble,J.Environ.Manag.166(2016)589-595.

    [5]M.Suwalsky,R.Castro,F.Villena,C.P.Sotomayor,Cr(III)exerts stronger structural effects than Cr(VI)on the human erythrocyte membrane and molecular models,J.Inorg.Biochem.102(2008)842-849.

    [6]Y.Wen,Z.Tang,Y.Chen,Y.Gu,Adsorption of Cr(VI)from aqueous solutions using chitosan-coated fly ash composite as biosorbent,Chem.Eng.J.175(2011)110-116.

    [7]M.C.Basso,E.G.Cerrella,A.L.Cukierman,Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater,Ind.Eng.Chem.Res.41(2002)3580-3585.

    [8]S.E.A.Elhafez,H.A.Hamad,A.A.Zaatout,G.F.Malash,Management of agricultural waste for removal of heavy metals from aqueous solution:adsorption behaviors,adsorption mechanisms,environmental protection,and techno-economic analysis,Environ.Sci.Pollut.Res.24(2016)1397-1415.

    [9]K.Kadirvelu,C.Faur-Brasque,P.L.Cloirec,Removal of Cu(II),Pb(II),and Ni(II)by adsorption onto activated carbon cloths,Langmuir16(2000)8404-8409.

    [10]E.Erdem,N.Karapinar,R.Donat,The removal of heavy metal cations by natural zeolites,J.Colloid Interface Sci.280(2004)309-314.

    [11]K.Chojnacka,Biosorption of Cr(III)ions by eggshells,J.Hazard.Mater.121(2005)167-173.

    [12]L.Yuan,Y.Liu,Removal of Pb(II)and Zn(II)from aqueous solution by ceramisite prepared by sintering bentonite,iron powder and activated carbon,Chem.Eng.J.(2013)432-439.

    [13]G.Blázquez,F.Hernáinz,M.Calero,M.A.Martín-Lara,G.Tenorio,The effect of pH on the biosorption of Cr(III)and Cr(VI)with olive stone,Chem.Eng.J.148(2009)473-479.

    [14]H.Parab,S.Joshi,N.Shenoy,A.Lali,U.S.Sarma,M.Sudersanan,Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II),Cr(III)and Ni(II)onto coir pith,Process Biochem.41(2006)609-615.

    [15]N.Nayak,C.R.Panda,Aluminium extraction and leaching characteristics of Talcher thermal power station fly ash with sulphuric acid,Fuel89(2010)53-58.

    [16]T.K.Naiya,S.K.Das,Removal of Cr(VI)from aqueous solution using fly ash of different sources,Desalin.Water Treat.57(2016)5800-5809.

    [17]Z.T.Yao,X.S.Ji,P.K.Sarker,J.H.Tang,L.Q.Ge,M.S.Xia,Y.Q.Xi,A comprehensive review on the applications of coal fly ash,Earth-Sci.Rev.141(2015)105-121.

    [18]D.G.Grubb,M.S.Guimaraes,R.Valencia,Phosphate immobilization using an acidic type F fly ash,J.Hazard.Mater.76(2000)217-236.

    [19]M.Ahmaruzzaman,A review on the utilization of fly ash,Prog.Energy Combust.36(2010)327-363.

    [20]M.S.Oh,D.D.Brooker,E.F.De Paz,J.J.Brady,T.R.Decker,Effect of crystalline phase formation on coal slag viscosity,Fuel Process.Technol.44(1995)191-199.

    [21]G.Gupta,N.Torres,Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent,J.Hazard.Mater.57(1998)243-248.

    [22]K.He,Y.Chen,Z.Tang,Y.Hu,Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash,Environ.Sci.Pollut.Res.23(2016)2778-2788.

    [23]Q.Zhou,C.Yan,W.Luo,Polypyrrole coated secondary fly ash-iron composites:novel float able magnetic adsorbents for the removal of chromium(VI)from wastewater,Mater.Des.92(2016)701-709.

    [24]H.Yanagisawa,Y.Matsumoto,M.Machida,Adsorption of Zn(II)and cd(II)ions onto magnesium and activated carbon composite in aqueous solution,Appl.Surf.Sci.256(2010)1619-1623.

    [25]B.Lei,H.D.Eman,P.S.Shahid,Proton-conducting solid oxide fuel cell(SOFC)with Y-doped BaZrO3electrolyte,Electrochem.Commun.80(2017)20-23.

    [26]K.Wang,J.Zhao,H.Li,X.Zhang,H.Shi,Removal of cadmium(II)from aqueous solution by granular activated carbon supported magnesium hydroxide,J.Taiwan Inst.Chem.Eng.61(2016)287-291.

    [27]W.Gao,S.Zhao,H.Wu,W.Deligeer,S.Asuha,Direct acid activation of kaolinite and its effects on the adsorption of methylene blue,Appl.Clay Sci.126(2016)98-106.

    [28]F.Li,W.Wu,R.Li,X.Fu,Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution:experimental and modeling,Appl.Clay Sci.132-133(2016)343-352.

    [29]S.Wang,Y.Boyjoo,A.Choueib,A comparative study of dye removal using fly ash treated by different methods,Chemosphere60(2005)1401-1407.

    [30]J.B.Zhang,S.P.Li,H.Q.Li,M.M.He,Acid activation for pre-desilicated high-alumina fly ash,Fuel Process.Technol.151(2016)64-71.

    [31]K.Pi,M.Xia,P.Wu,M.Yang,S.Chen,D.Liu,A.R.Gerson,Effect of oxidative modification of activated carbon for the adsorption behavior of nicotine,J.Ind.Eng.Chem.31(2015)112-117.

    [32]K.Saakshy,A.B.Singh,A.K.Gupta,Sharma, fly ash as low cost adsorbent for treatment of effluent of handmade paper industry-kinetic and modelling studies for direct black dye,J.Clean.Prod.112(2016)1227-1240.

    [33]M.H.Isa,E.H.Ezechi,Z.Ahmed,S.F.Magram,S.R.M.Kutty,Boron removal by electrocoagulation and recovery,Water Res.51(2014)113-123.

    [34]K.Pi,Q.Xiao,H.Zhang,M.Xia,A.R.Gerson,Decolorization of synthetic methyl orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM,Process.Saf.Environ.92(2014)796-806.

    [35]A.Y.Zahrim,A.Nasimah,N.Hilal,Coagulation/ flocculation of lignin aqueous solution in single stage mixing tank system:modeling and optimization by response surface methodology,J.Environ.Chem.Eng.3(2015)2145-2154.

    [36]Z.?ere?,N.Maravi?,A.Taka?i,I.Nikoli?,D.?oronja-Simovi?,A.Joki?,C.Hodur,Treatment of vegetable oil refinery wastewater using alumina ceramic membrane:optimization using response surface methodology,J.Clean.Prod.112(Part 4)(2016)3132-3137.

    [37]A.V.Schenone,L.O.Conte,M.A.Botta,O.M.Alfano,Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology(RSM),J.Environ.Manag.155(2015)177-183.

    [38]M.Iqbal,N.Iqbal,I.A.Bhatti,N.Ahmad,M.Zahid,Response surface methodology application in optimization of cadmium adsorption by shoe waste:a good option of waste mitigation by waste,Ecol.Eng.88(2016)265-275.

    [39]V.Srivastava,Y.C.Sharma,M.Sillanp??,Application of response surface methodology for optimization of Co(II)removal from synthetic wastewater by adsorption on NiO nanoparticles,J.Mol.Liq.211(2015)613-620.

    [40]L.Lin,Y.Lin,C.Li,D.Wu,H.Kong,Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water,Int.J.Miner.Process.148(2016)32-40.

    [41]J.Zhang,Y.Zhou,M.Jiang,J.Li,J.Sheng,Removal of methylene blue from aqueous solution by adsorption on pyrophyllite,J.Mol.Liq.209(2015)267-271.

    [42]M.Visa,L.Isac,A.Duta,Fly ash adsorbents for multi-cation wastewater treatment,Appl.Surf.Sci.258(2012)6345-6352.

    [43]R.Leyva-Ramos,L.Fuentes-Rubio,R.M.Guerrero-Coronado,J.Mendoza-Barron,Adsorption of trivalent chromium from aqueous solutions onto activated carbon,J.Chem.Technol.Biotechnol.62(1995)64-67.

    [44]S.I.Lyubchik,A.I.Lyubchik,O.L.Galushko,L.P.Tikhonova,J.Vital,I.M.Fonseca,S.B.Lyubchik,Kinetics and thermodynamics of the Cr(III)adsorption on the activated carbon from co-mingled wastes,Colloids Surf.A Physicochem.Eng.Asp.242(2004)151-158.

    [45]A.Genovese,R.A.Shanks,Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate,Polym.Degrad.Stab.92(2007)2-13.

    [46]Z.Luo,J.Yang,H.Ma,M.Liu,X.Ma,Recovery of magnesium and potassium from biotite by sulfuric acid leaching and alkali precipitation with ammonia,Hydrometallurgy157(2015)188-193.

    [47]E.Eren,Removal of copper ions by modified Unye clay,Turkey,J.Hazard.Mater.159(2008)235-244.

    [48]M.F.M.Din,M.Ponraj,W.P.Low,M.A.Fulazzaky,K.Iwao,A.R.Songip,Removal rate of organic matter using natural cellulose via adsorption isotherm and kinetic studies,Water Environ.Res.88(2016)118-130.

    [49]X.Xu,Q.Li,H.Cui,J.Pang,L.Sun,H.An,J.Zhai,Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres,Desalination272(2011)233-239.

    [50]S.Yahyapour,A.Golshan,A.H.Ghazali,Removal of total suspended solids and turbidity within experimental vegetated channel:optimization through response surface methodology,J.Hydro Environ.Res.8(2014)260-269.

    [51]A.A.L.Zinatizadeh,A.R.Mohamed,M.D.Mashitah,A.Z.Abdullah,M.H.Isa,Optimization of pre-treated palm oil mill effluent digestion in an up- flow anaerobic sludge fixed film bioreactor:a comparative study,Biochem.Eng.J.35(2007)226-237.

    [52]L.Mohajeri,H.A.Aziz,M.H.Isa,M.A.Zahed,A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments,Bioresour.Technol.101(2010)893-900.

    [53]A.Witek-Krowiak,D.H.Reddy,Removal of microelemental Cr(III)and cu(II)by using soybean meal waste-unusual isotherms and insights of binding mechanism,Bioresour.Technol.127(2013)350-357.

    [54]G.F.Coelho,C.R.T.Tarley,J.Casarin,H.Nacke,M.A.Francziskowski,Removal of metal ions cd(II),Pb(II),and Cr(III)from water by the cashew nut shell Anacardium Occidentale L,Ecol.Eng.73(2014)514-525.

    [55]N.F.Fahim,B.N.Barsoum,A.E.Eid,M.S.Khalil,Removal of chromium(III)from tannery wastewater using activated carbon from sugar industrial waste,J.Hazard.Mater.136(2006)303-309.

    [56]V.K.Gupta,I.Ali,T.A.Saleh,M.N.Siddiqui,S.Agarwal,Chromium removal from water by activated carbon developed from waste rubber tires,Environ.Sci.Pollut.Res.20(2013)1261-1268.

    [57]S.Al-Asheh,F.Banat,R.Al-Omari,Z.Duvnjak,Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data,Chemosphere41(2000)659-665.

    [58]J.Rivera-Utrilla,M.Sánchez-Polo,F.Carrasco-Marín,Adsorption of 1,3,6-Naphthalenetrisulfonic acid on activated carbon in the presence of Cd(II),Cr(III),and Hg(II)importance of electrostatic interactions,Langmuir19(2003)10857-10861.

    [59]C.J.An,S.Q.Yang,G.H.Huang,S.Zhao,P.Zhang,Y.Yao,Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste:equilibrium and kinetic adsorption studies,Fuel165(2016)264-271.

    [60]S.Mohan,R.Gandhimathi,Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent,J.Hazard.Mater.169(2009)351-359.

    久久久精品免费免费高清| 精品午夜福利在线看| 色婷婷av一区二区三区视频| 中文字幕最新亚洲高清| av电影中文网址| 热99国产精品久久久久久7| a级毛片黄视频| 97精品久久久久久久久久精品| 成人二区视频| 十八禁高潮呻吟视频| 午夜福利乱码中文字幕| 捣出白浆h1v1| 人成视频在线观看免费观看| 国产欧美亚洲国产| 午夜激情av网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品久久久久久婷婷小说| 大陆偷拍与自拍| 黄色一级大片看看| 亚洲成人一二三区av| 日韩免费高清中文字幕av| 日韩成人av中文字幕在线观看| 久久ye,这里只有精品| 亚洲久久久国产精品| 久久久久久人人人人人| 一边摸一边做爽爽视频免费| 王馨瑶露胸无遮挡在线观看| av卡一久久| 两个人看的免费小视频| 国产老妇伦熟女老妇高清| 精品一区二区三卡| 一区二区三区四区激情视频| 99久久国产精品久久久| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 天堂中文最新版在线下载| 国产精品爽爽va在线观看网站 | av天堂久久9| 国产亚洲欧美98| 丝袜人妻中文字幕| 丝袜人妻中文字幕| 一边摸一边抽搐一进一小说| 亚洲一区二区三区欧美精品| 免费人成视频x8x8入口观看| 久久天躁狠狠躁夜夜2o2o| 狠狠狠狠99中文字幕| 久久精品国产亚洲av高清一级| 51午夜福利影视在线观看| 国产三级黄色录像| 国产黄a三级三级三级人| av有码第一页| 午夜福利免费观看在线| 国产亚洲欧美在线一区二区| 免费高清在线观看日韩| 香蕉丝袜av| 一夜夜www| 国产真人三级小视频在线观看| 少妇粗大呻吟视频| 欧美精品亚洲一区二区| 精品久久久精品久久久| 高潮久久久久久久久久久不卡| 久久久久久久久免费视频了| 久久久久国产一级毛片高清牌| 亚洲人成伊人成综合网2020| 亚洲人成电影免费在线| 亚洲色图 男人天堂 中文字幕| 国产精品久久视频播放| 18美女黄网站色大片免费观看| 五月开心婷婷网| 日韩欧美一区二区三区在线观看| 乱人伦中国视频| 一边摸一边做爽爽视频免费| 一本综合久久免费| 久久久久精品国产欧美久久久| 久久久国产成人精品二区 | www.精华液| 一区二区日韩欧美中文字幕| 欧美老熟妇乱子伦牲交| 亚洲国产欧美一区二区综合| 一级片'在线观看视频| 黑人操中国人逼视频| 日韩精品中文字幕看吧| 亚洲美女黄片视频| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区精品91| 精品欧美一区二区三区在线| 欧美日韩国产mv在线观看视频| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 女生性感内裤真人,穿戴方法视频| 黄色视频,在线免费观看| 亚洲成av片中文字幕在线观看| 十八禁网站免费在线| 美女午夜性视频免费| 久久伊人香网站| 色播在线永久视频| 亚洲中文字幕日韩| 亚洲片人在线观看| 69av精品久久久久久| 午夜福利在线免费观看网站| 国产av精品麻豆| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 黄色a级毛片大全视频| 操美女的视频在线观看| 一级,二级,三级黄色视频| 午夜亚洲福利在线播放| 狠狠狠狠99中文字幕| 午夜免费激情av| 一级作爱视频免费观看| 1024视频免费在线观看| 国产成人影院久久av| 国产精品久久视频播放| 又大又爽又粗| 久久精品亚洲av国产电影网| 久久午夜亚洲精品久久| 国产精品偷伦视频观看了| 在线观看免费日韩欧美大片| 在线观看午夜福利视频| 又大又爽又粗| 久久午夜亚洲精品久久| 欧美色视频一区免费| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美精品济南到| 99精品久久久久人妻精品| 国产av又大| 久久香蕉激情| 精品无人区乱码1区二区| 久久久精品国产亚洲av高清涩受| 欧美色视频一区免费| 男人的好看免费观看在线视频 | 久久精品aⅴ一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 韩国精品一区二区三区| 丁香欧美五月| 欧美黑人精品巨大| 亚洲国产欧美日韩在线播放| 不卡av一区二区三区| 国产成+人综合+亚洲专区| 又黄又粗又硬又大视频| 在线十欧美十亚洲十日本专区| 亚洲五月色婷婷综合| 天堂俺去俺来也www色官网| 久久精品91蜜桃| 日韩免费av在线播放| 99久久人妻综合| 国产精品成人在线| 久久精品影院6| www.999成人在线观看| 天堂√8在线中文| 国产一区二区在线av高清观看| 亚洲av日韩精品久久久久久密| 亚洲精品粉嫩美女一区| www.999成人在线观看| 一进一出好大好爽视频| 91麻豆精品激情在线观看国产 | 最新在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 精品福利永久在线观看| 性色av乱码一区二区三区2| 亚洲成人国产一区在线观看| 国产亚洲精品第一综合不卡| 激情在线观看视频在线高清| 亚洲精品av麻豆狂野| av天堂久久9| 国产成人啪精品午夜网站| 三级毛片av免费| 最近最新中文字幕大全免费视频| 久久人人97超碰香蕉20202| av天堂久久9| 国产亚洲欧美98| 亚洲人成电影观看| 亚洲一区二区三区欧美精品| 大香蕉久久成人网| 99riav亚洲国产免费| 桃红色精品国产亚洲av| 99riav亚洲国产免费| 男男h啪啪无遮挡| 欧美人与性动交α欧美软件| 国产精品98久久久久久宅男小说| 999久久久精品免费观看国产| www.自偷自拍.com| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲精品一区av在线观看| 一区福利在线观看| 免费高清视频大片| 亚洲av电影在线进入| 久久精品国产亚洲av高清一级| 黄片大片在线免费观看| 国产精品美女特级片免费视频播放器 | 男男h啪啪无遮挡| 水蜜桃什么品种好| 精品电影一区二区在线| 天天影视国产精品| 国产成年人精品一区二区 | 黑人欧美特级aaaaaa片| 欧美不卡视频在线免费观看 | 99国产精品一区二区蜜桃av| 99久久国产精品久久久| 一本大道久久a久久精品| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 韩国精品一区二区三区| 国产伦人伦偷精品视频| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 久久久久亚洲av毛片大全| 成人亚洲精品一区在线观看| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 午夜免费成人在线视频| 久久人妻福利社区极品人妻图片| 国产97色在线日韩免费| 一本综合久久免费| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 精品欧美一区二区三区在线| 国产精品国产高清国产av| 亚洲少妇的诱惑av| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美98| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 精品国产国语对白av| 欧美日本亚洲视频在线播放| 免费女性裸体啪啪无遮挡网站| 中出人妻视频一区二区| 国产精品久久久久成人av| 男女做爰动态图高潮gif福利片 | 深夜精品福利| 国产黄色免费在线视频| 精品国产一区二区久久| 动漫黄色视频在线观看| 亚洲av成人不卡在线观看播放网| 一区二区日韩欧美中文字幕| 久久久精品欧美日韩精品| 人成视频在线观看免费观看| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 人妻丰满熟妇av一区二区三区| 咕卡用的链子| 一二三四在线观看免费中文在| 日本 av在线| 久久久久久久午夜电影 | 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 18禁观看日本| 深夜精品福利| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 色综合婷婷激情| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 精品久久久久久久毛片微露脸| 欧美精品一区二区免费开放| 99久久综合精品五月天人人| 亚洲国产欧美网| 每晚都被弄得嗷嗷叫到高潮| 国产91精品成人一区二区三区| 久久99一区二区三区| 久久久国产成人精品二区 | 国产一卡二卡三卡精品| 高清黄色对白视频在线免费看| 久久这里只有精品19| 中文字幕精品免费在线观看视频| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 超色免费av| 高清在线国产一区| 欧美日韩瑟瑟在线播放| 免费看a级黄色片| 国产精品日韩av在线免费观看 | 啪啪无遮挡十八禁网站| 女人被狂操c到高潮| 可以在线观看毛片的网站| 丰满饥渴人妻一区二区三| 免费少妇av软件| 国产有黄有色有爽视频| 操出白浆在线播放| 人人妻人人添人人爽欧美一区卜| 黄色 视频免费看| 91麻豆精品激情在线观看国产 | 看免费av毛片| 激情视频va一区二区三区| 精品一区二区三卡| 日日干狠狠操夜夜爽| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 中文亚洲av片在线观看爽| av在线播放免费不卡| 精品国产乱码久久久久久男人| 中文字幕人妻熟女乱码| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 神马国产精品三级电影在线观看 | 女生性感内裤真人,穿戴方法视频| 免费看十八禁软件| 黄色丝袜av网址大全| 老熟妇乱子伦视频在线观看| 啦啦啦免费观看视频1| 免费观看人在逋| 久久久久久亚洲精品国产蜜桃av| 日日爽夜夜爽网站| 亚洲精品中文字幕在线视频| 宅男免费午夜| 日韩大码丰满熟妇| 日韩欧美在线二视频| 欧美国产精品va在线观看不卡| 国产男靠女视频免费网站| 亚洲九九香蕉| 桃色一区二区三区在线观看| 老司机深夜福利视频在线观看| 男女高潮啪啪啪动态图| 亚洲一区二区三区不卡视频| 国产精品影院久久| 女性生殖器流出的白浆| 午夜精品在线福利| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 男女做爰动态图高潮gif福利片 | 久久香蕉精品热| 婷婷六月久久综合丁香| av在线天堂中文字幕 | 午夜免费鲁丝| 亚洲中文字幕日韩| 精品国产一区二区三区四区第35| 欧美日韩亚洲综合一区二区三区_| 亚洲全国av大片| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 好男人电影高清在线观看| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 久久青草综合色| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 麻豆av在线久日| √禁漫天堂资源中文www| 亚洲色图av天堂| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 久久精品国产99精品国产亚洲性色 | a级片在线免费高清观看视频| 狠狠狠狠99中文字幕| 成人国语在线视频| av电影中文网址| 国产又爽黄色视频| 日本a在线网址| 亚洲免费av在线视频| 国产成+人综合+亚洲专区| 国产三级在线视频| 国产一区二区三区综合在线观看| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 麻豆久久精品国产亚洲av | 大码成人一级视频| 精品久久久精品久久久| 村上凉子中文字幕在线| 日韩欧美免费精品| 久久草成人影院| a级毛片黄视频| 亚洲精品久久成人aⅴ小说| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 亚洲成人免费电影在线观看| 亚洲国产欧美日韩在线播放| 91精品三级在线观看| 99在线视频只有这里精品首页| 丁香六月欧美| 日本免费一区二区三区高清不卡 | 午夜福利,免费看| 黄片大片在线免费观看| 久久久久久久久免费视频了| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 国产无遮挡羞羞视频在线观看| 亚洲成av片中文字幕在线观看| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 国产主播在线观看一区二区| 香蕉国产在线看| 超碰成人久久| 午夜a级毛片| 亚洲一区二区三区欧美精品| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 看片在线看免费视频| 最好的美女福利视频网| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 国产成人系列免费观看| 亚洲av熟女| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 日韩欧美三级三区| 女警被强在线播放| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 久久亚洲真实| 亚洲在线自拍视频| 午夜视频精品福利| 亚洲性夜色夜夜综合| 人妻久久中文字幕网| 亚洲av五月六月丁香网| 91麻豆精品激情在线观看国产 | 9热在线视频观看99| 美女高潮喷水抽搐中文字幕| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 这个男人来自地球电影免费观看| 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| 精品第一国产精品| 91字幕亚洲| 天堂中文最新版在线下载| 成人影院久久| 欧美+亚洲+日韩+国产| 天天添夜夜摸| 99久久综合精品五月天人人| 麻豆成人av在线观看| 日本精品一区二区三区蜜桃| 精品国产一区二区久久| 国产精品久久久久成人av| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 在线观看舔阴道视频| 在线观看一区二区三区| 成年人黄色毛片网站| 精品高清国产在线一区| 久久国产精品男人的天堂亚洲| 最近最新免费中文字幕在线| xxx96com| 精品久久久久久,| 黄片大片在线免费观看| 久久久久久久久中文| 男人舔女人下体高潮全视频| 国产精品成人在线| 国产亚洲欧美98| 91在线观看av| 婷婷六月久久综合丁香| 国产熟女午夜一区二区三区| 日韩免费高清中文字幕av| 午夜免费观看网址| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 性欧美人与动物交配| 亚洲欧美精品综合一区二区三区| 久久精品影院6| 99久久综合精品五月天人人| 不卡一级毛片| 国产有黄有色有爽视频| 最近最新中文字幕大全电影3 | 午夜免费观看网址| 极品人妻少妇av视频| 侵犯人妻中文字幕一二三四区| 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽| 99精国产麻豆久久婷婷| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大码丰满熟妇| 欧美乱码精品一区二区三区| 男女下面进入的视频免费午夜 | 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| av电影中文网址| 天堂动漫精品| 色综合欧美亚洲国产小说| 午夜视频精品福利| 人成视频在线观看免费观看| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 欧美精品一区二区免费开放| 欧美性长视频在线观看| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国产成人精品久久二区二区免费| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 亚洲欧美激情在线| 亚洲欧美一区二区三区黑人| 一级毛片精品| 免费av毛片视频| 国产成人欧美在线观看| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o| 人妻丰满熟妇av一区二区三区| 亚洲成人国产一区在线观看| 多毛熟女@视频| 色在线成人网| 一区在线观看完整版| 欧美日韩瑟瑟在线播放| videosex国产| 91老司机精品| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| 欧美日韩黄片免| 日本免费a在线| 搡老乐熟女国产| 一级a爱片免费观看的视频| 欧美日韩一级在线毛片| 丰满饥渴人妻一区二区三| а√天堂www在线а√下载| 美女福利国产在线| 在线免费观看的www视频| 一级片'在线观看视频| 精品人妻1区二区| 操出白浆在线播放| 夜夜看夜夜爽夜夜摸 | 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 亚洲中文av在线| 精品久久久久久成人av| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 999久久久精品免费观看国产| 日本a在线网址| 亚洲av成人一区二区三| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 亚洲第一av免费看| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 久久香蕉激情| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 午夜激情av网站| 高清黄色对白视频在线免费看| 女人爽到高潮嗷嗷叫在线视频| 国产精品九九99| av天堂久久9| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 精品电影一区二区在线| 欧美乱妇无乱码| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频| 一个人免费在线观看的高清视频| 看免费av毛片| www.999成人在线观看| 久久国产精品人妻蜜桃| 一进一出好大好爽视频| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 精品久久蜜臀av无| 精品久久久久久,| 国产单亲对白刺激| 在线观看一区二区三区激情| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 国产97色在线日韩免费| 男女午夜视频在线观看| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区蜜桃| 日韩有码中文字幕| ponron亚洲| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 激情视频va一区二区三区| 国产精品成人在线| 热re99久久精品国产66热6| 高清毛片免费观看视频网站 | 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 久久人人精品亚洲av| 成人国语在线视频| 成人三级黄色视频| 成熟少妇高潮喷水视频| 精品一品国产午夜福利视频| 国产精品永久免费网站| 亚洲视频免费观看视频| 国产日韩一区二区三区精品不卡| 美女高潮喷水抽搐中文字幕| 黄色怎么调成土黄色| 亚洲第一青青草原| 最近最新中文字幕大全电影3 | 麻豆国产av国片精品| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 99久久人妻综合| 亚洲一区高清亚洲精品| 国产不卡一卡二| 在线播放国产精品三级| 在线免费观看的www视频| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产 | avwww免费| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 窝窝影院91人妻|