• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field☆

    2018-06-29 09:16:26HongGuoXinLiZiyiWangBaoanLiJixiaoWangShichangWang

    Hong Guo ,Xin Li,Ziyi Wang ,Bao'an Li,*,Jixiao Wang ,Shichang Wang

    1 Chemical Engineering Research Center,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    2 State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300072,China

    3 Tianjin Key Laboratory of Membrane Science and Desalination Technology,Tianjin University,Tianjin 300072,China

    4 Tianjin Collaborative Innovation Center for Chemistry&Chemical Engineering,Tianjin 300072,China

    1.Introduction

    Poly(vinylidene fluoride)(PVDF)is a semi-crystalline thermoplastic polymer which exhibits excellent thermal stability,electrochemical stability,nontoxicity[1],wide processing temperature and notable solubility in many organic solvents[2].PVDF has been widely used in the chemical industry,electronics,food processing and other fields in recent years[3-5].However,the poor thermal conductivity has limited its more extensive application in heat transfer area.

    In order to improve its thermal conductivity, fillers with high thermal conductivity are blended or doped into PVDF matrix,such as metal,inorganic substance and conductive polymers[6-8].Three types of core-shell-structured aluminum particles were incorporated in PVDF by melt-mixing and hot-pressing processes.The results indicate that the particle size and shape of the filler affect the thermal conductivity of Al/PVDF[9].The addition of 1.0 wt%carbon nanotubes(CNTs)in the hybrid Al/CNTs particles obviously enhanced the thermal conductivity of the composites due to the heat conductive pathways formed in the matrix[10].In another study,SiC nanoparticles were selectively localized in the PVDF phase of the PS/PVDF blend polymer,which produced a slightly higher thermal conductivity than that of p-SiC in the PS phase[11].

    Conductive polymer is a kind of potential material which has been widely involved in both direct application and hybrid modification[12-15].Polyaniline(PANI)is a particular conductive polymer which has attracted much attention for its particular electrical and optical properties,as well as thermal properties.The properties of PANI would be influenced by its preparation approaches,such as interfacial polymerization[13],soft template[14],and emulsion polymerization method[15].The PANI prepared by emulsion polymerization method has the same or even better conductivity,thermal stability,crystallizability and higher molecular weight than those prepared by the other methods[16].Various morphologies of PANI including spherical,hollow microspheres,nanotubes and nanofibers have been obtained[16,17].Among these nanostructures,the nanofibers of PANI are considered to be the most potential morphology which enjoy more superior heat conductive capacity.

    A few studies have reported on the composite of PVDF and PANI[18-23].The advantages of PVDF/PANI composite material are listed as: firstly,its electrochemical performance of the hybrid material was improved;secondly,different morphologies of PANI could be blended with PVDF for exact control;thirdly,the mechanical properties of the polymer composites can be adjusted by aligning the fillers in the matrix with mechanical stretching[24],electric field[25,26],magnetic field[27,28]and so on.However,most studies focus on the first two advantages of PVDF/PANI composite material,especially on the electrical conductivity of PVDF/PANI composite material.For examples,Saidi[19]studied the effect of drying temperature on the structure,morphology and electrical conductivity of PANI:PVDF films;Martins[21]investigated the morphology,rheological behavior and electrical conductivity of poly(vinylidene fluoride)/polyaniline blends through TEM and combined electro-rheological measurements.So far,very few studies have been carried out on the thermal conductivity of PVDF/PANI composite material which is also an important parameter[29,30].In addition,we gave the third advantage to practice on the experimental method.The PVDF/PANI composite material was aligned by electric field in the course of the experiment which is also distinctive.The effect of electric field on the tensile strength and thermal conductivity of PVDF/PANI composite material was deeply investigated in our study.

    In this paper,PANI nanofibers were synthesized by emulsion polymerization and blended with PVDF to form homogenous casting solution.The PVDF/PANI-nanofiber composite membranes were fabricated by the evaporation ofN-methyl-2-pyrrolidone(NMP)from the casting solution.On this basis,composite membranes were further aligned by the application of electric field.The thermal conductivity and mechanical properties of composite membranes with different ratios of PANI nanofibers(1 wt%,3 wt%,5 wt%,7 wt%,10 wt%,20 wt%,30 wt%,50 wt%and 60 wt%)were investigated.

    2.Experiments

    2.1.PANI nanofiber synthesis

    PANI nanofibers were synthesized by emulsion polymerization method with surfactant of dodecylbenzene sulfonic acid(DBSA)[31].The aniline monomer was purified with vacuum distillation before application.0.08 mol of aniline monomer and 0.04 mol of DBSA were mixed in HCl solution(1 mol·L-1).The solution was ultra-sonicated for 20 min and put into ice bath subsequently.Then ammonium persulfate(APS)(aniline,DBSA and APS were purchased from Tianjin Jiangtian Chemical Technology Co.Ltd.,China)solution(0.27 mol·L-1,in deionized water)was gently added into the above mixture with vigorous stirring.After addition of APS,the mixture was allowed to react for 12 h.The precipitate was filtered and washed with acetone,ethanol and deionized water,respectively.The product was dried in a vacuum at 60°C for 24 h.

    2.2.Preparation of PVDF/PANI-nanofiber composite membranes

    The obtained PANI nanofibers were dispersed in NMP by bath sonication.PVDF was subsequently added to the above solution to prepare casting solutions.In a typical experiment,0.065 g of the above-synthesized PANI nanofibers was added into 43.5 g of NMP.The mixed solution was ultra-sonicated for 2 h.Then,6.5 g of PVDF was added to the above solution and mechanically stirred overnight to form a homogeneous casting solution.The prepared solution was casted on a smooth glass substrate and dried in an oven horizontally at 80°C for 6 h,making the solvent evaporated completely.PVDF/PANI composite membranes were finally obtained and peeled off from the substrate for subsequent characterization.The pure PVDF membrane was prepared with a similar method without the addition of PANI.

    2.3.Alignment of PVDF/PANI-nanofiber composite membranes

    Electric field was added to the composite membranes for the alignment.After the casting solution was added on the glass substrate and placed in an oven,an electric field of 220 V was applied with a DC power supply(HVA-502NP5,Tianjing Shenghuo tech.Co.,Ltd.)perpendicular to the glass surface.It was worth noting that both the casting substrate and electrode plate of the electric field device were setup in the oven(Scheme 1).Then the glass substrate with casting solution was dried in the oven horizontally at 80°C for 6 h,making the solvent evaporated completely.During the evaporating process,the electric field was always present.Aligned PVDF/PANI composite membranes were obtained and then peeled off from the substrate for subsequent characterization.

    2.4.Characterization of composite membranes

    The morphologies of PANI nanofibers,PVDF membrane and PVDF/PANI-nanofiber composite membranes were characterized with scanning electron microscopy(SEM)(S-4800,Hitachi,Japan).The membranes were fixed on the conductive adhesive(NEM,Japan)and sputtered with a thin layer of gold before observing.The degree of crystallinity was determined with X-ray diffraction(XRD)with an X-ray diffractometer(D8-Focus,AXS Ltd.,Germany).

    The thermal behaviors of the samples were recorded with a differential scanning calorimeter(DSC)(DSC1/500,Mettler-Toledo,Switzerland),with the heating rate of 10 °C·min-1and the scanning temperature range between 0 and 200°C.Tensile tests were performed in a small universal testing machine.The membrane samples were cut into strips with a width of 10 mm and the initial length between the two loading ends was 100 mm.The thickness variation of the membrane sample was less than 10%.The samples were slowly stretched with a constant speed of 10 mm·min-1until failure.Thermal conductivities of membranes were recorded with a thermal conductivity meter(TC 3000L,XIATECH,China).

    3.Results and Discussion

    3.1.Morphologies of PVDF/PANI-nanofiber membranes

    Fig.1(a)and(b)indicates that the synthesized PANI nanofibers have the diameter of 150 nm and the length of 1 μm.The nanofibers are characterized with fibrous structure,coarse surface and disordered distribution.

    The cross-section morphologies of pure PVDF and composite membranes before alignment are shown[Fig.1(c)-(g)].Compared to the pure PVDF membrane in Fig.1(c),the cross-section morphologies of composite membranes before alignment are coarser with disordered nanofiber distribution.It is also observed that PANI nanofibers are well dispersed in the PVDF matrix when the PANI content is below 50 wt%,which reveals a preferable compatibility between PVDF and PANI nanofibers[Fig.1(d)-(f)].When the concentration of PANI nanofibers is increased to 60 wt%[Fig.1(g)],a large amount of PANI nanofibers can be observed in the cross-section.The agglomeration phenomenon is aggravated and the uniformity and compatibility between PVDF and PANI nanofibers become poor.It makes adverse effects on the performance improvement of composites.

    After alignment with electrical field,it can be seen from the crosssections that the arrangement of PANI nanofibers in the matrix is more orderly[Fig.1(h)and(i)].This phenomenon indicates that the structure of composite membranes can be significantly adjusted with the application of electric field.The obtained structure is more orderly with conductive PANI network,which is able to greatly increase the thermal conductivity of composite membranes.

    Scheme 1.Experimental setup of electric field device and schematic of the application of electric field on PVDF/PANI-nanofiber membranes.The orientation of electric field was perpendicular to the surface of composite membranes.The aligned PANI nanofibers were embedded in the composite membranes.

    3.2.Crystallization and thermal property of PVDF/PANI-nanofiber membranes

    Pure PVDF crystallizes predominately in the α-phase with characteristic peaks at 18.5°and 20.1°as shown in Fig.2(A).The composite membrane with 5 wt%PANI nanofibers is determined here as a representative.In Fig.2(A),after the addition of PANI,the peak intensity of composite membrane is significantly higher than that of pure PVDF membrane.After alignment,the peak intensity of composite membrane is also significantly higher than that of the composite membrane before alignment.In addition,the shape of characteristic peak is sharp,which corresponds to the crystallization of PVDF in composite membrane[32,33].It shows that the crystallinity degree of PVDF in composite membrane can be increased by electric field orientation.

    The XRD patterns of pure PVDF membrane and PVDF/PANI-nanofiber composite membranes with different PANI contents are provided.In Fig.2(B),a new reflection is observed at 2θ=20.7°with PANI contents of 50 wt%and 60 wt%.It is a characteristic β-phase.PVDF is mainly presented with α-phase when the content of PANI nanofibers is low.However,PVDF transforms from α-phase to β-phase when the content of PANI nanofibers is increased to 50 wt%.The reason may be that the increase of PANI nanofiber content results in the destruction of the structure of the metastable form(α-phase)and formation of the stable form(β-phase)through the rearrangement of PVDF molecule.The presence of the β-phase was further con firmed by DSC results(Fig.3).Moreover,the solid peak at 2θ=14.0°and the weak peak at 2θ=27.8°are representative of HCl-doped PANI nanofibers in composite membranes.The strong peak at 2θ=14.0°indicates high[Cl]/[N]ratio,which proves that the PANI nanofibers are highly doped with HCl in the composite membranes[34].

    Fig.1.SEM images of PANI nanofibers,PVDF membrane and PVDF/PANI-nanofiber composite membranes before and after alignment:(a,b)PANI nanofibers;(c)the cross-section of pure PVDF membrane;(d-g)the cross-sections of composite membranes before alignment,corresponding to PANI contents of 1 wt%(d),10 wt%(e),50 wt%(f)and 60 wt%(g),respectively;(h,i)cross-sections of composite membranes after alignment,corresponding to PANI contents of 1 wt%(h)and 10 wt%(i).

    Fig.2.XRD patterns of pure PVDF and PVDF/PANI-nanofiber composite membranes:(A)XRD patterns of pure PVDF membrane,composite membranes with 5 wt%PANI nanofibers before and after alignment.(B)XRD patterns of pure PVDF membrane,composite membranes with different PANI contents of 10 wt%,20 wt%,30 wt%,50 wt%and 60 wt%.

    The endothermic peaks observed around 167°C correspond to the melting peak of PVDF[Fig.3(A)].The corresponding melting peaks for the composite membranes before alignment are also observed around 167°C in Fig.3(A).However,after alignment,the characteristic peaks of the composite membranes significantly move to a high temperature region.This result suggests that the thermal stability of polymeric composites can be improved by electric field orientation in the composite membranes.

    Fig.3.DSC thermograms of pure PVDF and PVDF/PANI-nanofiber composite membranes:(A)DSC thermograms of pure PVDF membrane,composite membranes with 5 wt%and 10 wt%PANI nanofibers before and after alignment.(B)DSC thermograms of pure PVDF membrane,composite membranes with different PANI contents of 1 wt%,10 wt%,30 wt%,50 wt%and 60 wt%.

    DSC curves are determined with pure PVDF and composite membranes having different PANI contents[Fig.3(B)].When the content of PANI nanofibers is lower than 50 wt%,the melting peaks for the composite membranes occur around 167 °C corresponding to the α-phase of PVDF in Fig.3(B).However,when the content of PANI nanofibers reaches 50 wt%in the composite membranes,the curves are transferred to two melting peaks,corresponding to both the α-phase and β-phase of PVDF.The result of DSC is consistent with the above results of XRD,PVDF also transforms from α-phase to β-phase when the content of PANI nanofibers is increased to 50 wt%.The second peak is at higher temperature(172°C).The intensity of the two peaks formed with 50 wt%PANI nanofiber content is almost similar,suggesting that PANI nanofibers facilitate the formation of the β-phase of PVDF.Comparing to the two peaks with 60 wt%PANI nanofibers,the intensity of characteristic peak for β-phase is further enhanced.

    3.3.Tensile strength of PVDF/PANI-nanofiber membranes before and after alignment

    The tensile strength of the pure PVDF and composite membranes before and after alignment is provided in Fig.4.With the content of PANI nanofibers increasing to 3 wt%,the tensile strength is exponentially increased.This result can be attributed to the enhanced mechanical strength from well-dispersed PANI nanofibers in the PVDF matrix.The tensile strength is improved by connection and interaction between PANI nanofibers and PVDF matrix.However,when the concentration of PANI nanofibers is higher than 3 wt%,the tensile strength of composite membranes is dramatically decreased.When the content of PANI nanofibers is more than 10 wt%,the tensile strength of membrane is decreased to the level even weaker than that of pure PVDF membrane.

    Fig.4.Tensile strength of pure PVDF and PVDF/PANI-nanofiber composite membranes with different PANI contents before and after alignment.

    The potential reason is that intermolecular force between PVDF chains is weakened by too many PANI nanofibers added.Another reason is the aggregation and inhomogeneous distribution of the PANI nanofibers in the PVDF.The PANI nanofiber agglomerates would form steric hindrance,preventing polymer from immersing into the agglomerates.The gaps may be formed between PANI nanofibers and matrix,resulting in weak points.The low tensile strength of composite membranes with high nanofiber content may be caused by these reasons.

    The tensile strength of composite membranes before and after alignment was explored.By comparing the two curves in Fig.4,it is found that the tensile strength of composite membranes is obviously enhanced after the alignment with electrical field.The maximum tensile strength of 112.814 MPa can be obtained when the content of PANI nanofibers is 3 wt%which is 46.44%higher than that of pure PVDF membrane.Meanwhile,before alignment,the tensile strength of composite membrane is increased by 38.03%.As previously discussed with XRD,the crystallinity of the composite membranes is improved by the application ofelectric field.Consequently,the tensile strength is enhanced by the increased crystallinity.However,when the content of PANI nanofibers is higher than 10 wt%,a lower improvement of tensile strength is observed in composite membranes after alignment.It may be attributed to the reduced effects of electric field orientation on composite membranes by PANI nanofiber agglomerates.

    3.4.Thermal conductivity of PVDF/PANI-nanofiber membranes before and after alignment

    As shown in Fig.5,the concentration of PANI nanofibers plays a crucial role in the thermal conductivity of composite membranes.The thermal conductivity of composite membranes before and after alignment is continuously improved with increasing PANI nanofiber content before 50 wt%of the content.When the content of PANI nanofibers exceeds 50 wt%,the thermal conductivity of composite membrane starts to decrease.

    As we know,PANI nanofibers have excellent thermal conductivity.The thermal conductivity of the composite membranes may increase with the increase of PANI nanofiber content.With the addition of PANI nanofibers,sufficient connections and interactions are formed between PVDF matrix and PANI nanofibers.Thus,the thermal conductivity of the composite membranes is enhanced.But when the content of PANI nanofibers is above 50 wt%,its thermal conductivity becomes decreased.The phenomenon may be induced by two factors.On the one hand,the agglomeration is aggravated in high content of PANI nanofibers,leading to severe scattering for phonon transport.On the other hand,the thermal conductivity may be even decreased by the interface thermal resistance between PVDF and aggregated PANI nanofibers.

    Fig.5.Thermal conductivity of pure PVDF and PVDF/PANI-nanofiber composite membranes with different PANI contents before and after alignment.

    Comparing the thermal conductivity of the composite membranes before and after alignment(Fig.5),the conclusion can be obtained that the thermal conductivity of composite membranes is significantly enhanced with the alignment.When the content of PANI nanofibers is lower than 10 wt%,the thermal conductivity of composite membranes is significantly increased after alignment with electric field.From the SEM images(Fig.1),it shows that the PANI nanofibers are arranged more orderly and the netlike morphology of PANI nanofibers is obviously formed in the composite membranes after alignment.Therefore,the thermal conductivity of composite membranes is increased significantly.When the PANI content is 3 wt%,the thermal conductivity is increased by 15.5%than that of before alignment,which is the most significant.Butthe increased trend of thermal conductivity after alignment is not kept when the content of PANI nanofibers is above 10 wt%,due to the PANI nanofiber agglomeration and the increased viscosity of the system that bring about the enhanced resistance for orientation.The maximum thermal conductivity after alignment is 84.5%greater than that of pure PVDF membrane when the content of PANI nanofibers is 50 wt%.However,before alignment,it is increased by 78.5%.

    4.Conclusions

    In this paper,PVDF/PANI-nanofiber composite membranes with various contents of PANI nanofibers were prepared and the electric field was further applied for the alignment of PANI-nanofiber in PVDF/PANI-nanofiber composite membranes.The results showed that:(1)The increased content of PANI nanofibers contributed to the transformation of PVDF from α-phase to β-phase.(2)Both the tensile strength and thermal conductivity of composite membranes were significant improved.This tendency was further enhanced by the application of electric field.The contents of PANI nanofibers were optimized for obtaining the maximum tensile strength and thermal conductivity.The blend and alignment of nanofillers in composite membrane would be promising approaches for improving material properties in heat transfer field and the mechanism explored in this study would be informative for further similar development of thermal conductive polymeric materials.

    [1]J.H.Yu,P.K.Jiang,C.Wu,L.C.Wang,X.F.Wu,Graphene nanocomposites based on poly(vinylidene fluoride):Structure and properties,Polym.Compos.32(2011)1483-1491.

    [2]Z.S.Wang,Z.L.Gu,S.Y.Feng,Y.Li,Application of vacuum membrane distillation to lithium bromide absorption refrigeration system,Int.J.Refrig.32(2009)1587-1596.

    [3]G.Zeng,Z.Ye,Y.He,X.Yang,J.Ma,Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater,Chem.Eng.J.323(2017)572-583.

    [4]M.Choi,G.Murillo,S.Hwang,J.W.Kim,J.H.Jung,Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator,Nano Energy33(2017)462-468.

    [5]S.Ayyaru,Y.H.Ahn,Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity,permeability,and antifouling of PVDF nanocomposite ultra filtration membranes,J.Membr.Sci.525(2017)210-219.

    [6]J.Yuan,S.Yao,W.Li,A.Sylvestre,J.Bai,Anisotropic percolation of SiC-carbon nanotube hybrids:A new route towards thermally conductive high-k polymer composites,J.Phys.Chem.C121(2017)12063-12070.

    [7]J.Che,K.Wu,Y.Lin,K.Wang,Q.Fu,Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy,Compos.A:Appl.Sci.99(2017)32-40.

    [8]D.Yang,H.Xu,W.Yu,J.Wang,X.Gong,Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride)(PVDF)/poly(methyl methacrylate)(PMMA)blend,J.Mater.Sci.Mater.Electron.28(2017)13006-13012.

    [9]W.Zhou,J.Zuo,W.Ren,Thermal conductivity and dielectric properties of Al/PVDF composites,Compos.A43(2012)658-664.

    [10]Z.Wang,W.Zhou,X.Sui,L.Dong,Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites,J.Reinf.Plast.Compos.34(2015)184-191.

    [11]J.P.Cao,X.Zhao,J.Zhao,J.W.Zha,G.H.Hu,Z.M.Dang,Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride)blends by controlling selective localization and surface modification of SiC nanoparticles,ACS Appl.Mater.Interfaces5(2013)6915-6924.

    [12]Z.T.Li,L.Ma,W.L.Li,M.Y.Gan,W.Qiu,J.Yan,Characterization and anticorrosive properties of poly(2,3-dimethylaniline)/nano-Al2O3composite synthesized by emulsion polymerization,Polym.Adv.Technol.24(2013)847-852.

    [13]E.Detsri,S.T.Dubas,Interfacial polymerization of polyaniline and its layer-by-layer assembly into polyelectrolytes multilayer thin- films,J.Appl.Polym.Sci.128(2012)558-565.

    [14]S.Komathi,A.I.Gopalan,N.Muthuchamy,K.P.Lee,Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing,RSC Adv.7(25)(2017)15342-15351.

    [15]W.J.Han,S.H.Piao,H.J.Choi,Synthesis and electrorheological characteristics of polyaniline@attapulgite nanoparticles via Pickering emulsion polymerization,Mater.Lett.204(2017)42-44.

    [16]J.Stejskal,I.Sapurina,M.Trchová,Polyaniline nanostructures and the role of aniline oligomers in their formation,Prog.Polym.Sci.35(2010)1420-1481.

    [17]J.W.Wang,C.Y.Chen,Y.M.Kuo,Chitosan-poly(acrylic acid)nanofiber networks prepared by the doping induction of succinic acid and its ammonia-response studies,Polym.Adv.Technol.19(2008)1343-1352.

    [18]C.Merlini,A.Pegoretti,T.M.Araujo,S.D.A.S.Ramoa,W.H.Schreiner,G.M.D.Barra,Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride)blends,Synth.Met.213(2016)34-41.

    [19]S.Saidi,A.Mannai,H.Derouiche,A.B.Mohamed,Effect of drying temperature on structural and electrical properties of PANI:PVDF composite thin films and their application as buffer layer for organic solar cells,Mater.Sci.Semicond.Process.19(2014)130-135.

    [20]B.Hudaib,V.Gomes,J.Shi,C.Zhou,Z.Liu,Poly(vinylidene fluoride)/polyaniline/MWCNT nanocomposite ultra filtration membrane for natural organic matter removal,Sep.Sci.Technol.190(2018)143-155.

    [21]J.N.Martins,M.Kersch,V.Altstadt,R.V.B.Oliveira,Electrical conductivity of poly(vinylidene fluoride)/polyaniline blends under oscillatory and steady shear conditions,Polym.Test.32(2013)862-869.

    [22]G.Liu,T.Yan,Y.Wu,X.Yi,B.Chen,R.W.Li,Polyaniline-poly(vinylidene fluoride)blend micro filtration membrane and its spontaneous gold recovery application,Sci.China Chem.(2017)1-9.

    [23]F.Xie,C.Kou,Y.Yuan,W.Zhu,J.Zhu,High-performance supercapacitor based on polyaniline/poly(vinylidene fluoride)composite with KOH,Energy Technol.5(4)(2017)588-598.

    [24]G.F.Yu,J.T.Li,W.Pan,X.X.He,Y.J.Zhang,Electromagnetic functionalized ultra fine polymer/γ-Fe2O3fibers prepared by magnetic-mechanical spinning and their application as strain sensors with ultrahigh stretchability,Compos.Sci.Technol.139(2017)1-7.

    [25]P.C.Ma,W.Zhang,Y.Zhu,L.Ji,R.Zhang,N.Koratkar,Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field,Carbon46(2008)706-710.

    [26]M.Abbasipour,R.Khajavi,A.A.Yousefi,M.E.Yazdanshenas,F.Razaghian,The piezoelectric response of electrospun PVDF nanofibers with graphene oxide,graphene,and halloysite nanofillers:A comparative study,J.Mater.Sci.Mater.Electron.28(21)(2017)15942-15952.

    [27]E.Camponeschi,R.Vance,M.Al-Haik,H.Garmestani,R.Tannenbaum,Properties of carbon nanotube-polymer composites aligned in a magnetic field,Carbon45(2007)2037-2046.

    [28]T.Kimura,H.Ago,M.Tobita,S.Ohshima,M.Kyotani,M.Yumura,Polymer composites of carbon nanotubes aligned by a magnetic field,Adv.Mater.14(2002)1380-1383.

    [29]J.Zhao,Z.Wang,J.X.Wang,S.C.Wang,High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2separation,J.Membr.Sci.403(2012)203-215.

    [30]H.Derouiche,A.B.Mohamed,Structural and microwave dielectric properties of ferroelectric poly(vinylidene di fluoride)-polyaniline composite thin films,Thin Solid Films526(2012)274-277.

    [31]Y.Chen,J.Xiong,H.Chang,Effect of adding PANI-DBSA in dope on diameter of electrospun PAN nanofibers,J.Textile Res.31(2010)16-20.

    [32]H.Guo,X.Li,B.A.Li,J.X.Wang,S.C.Wang,Thermal conductivity of graphene/poly(vinylidene fluoride)nanocomposite membrane,Mater.Design114(2017)355-363.

    [33]M.P.Silva,V.Sencadas,G.Botelho,A.V.Machado,A.R.Rolo,α-and γ-PVDF:Crystallization kinetics,microstructural variations and thermal behaviour,Mater.Chem.Phys.122(1)(2010)87-92.

    [34]A.Subramania,S.L.Devi,Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications,Polym.Adv.Technol.19(2008)725-727.

    亚洲国产欧美网| 美女午夜性视频免费| 激情在线观看视频在线高清 | 国产欧美日韩一区二区三区在线| 国产成人av激情在线播放| 成年女人毛片免费观看观看9 | 999久久久国产精品视频| 国产精品电影一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲成国产人片在线观看| 欧美日韩福利视频一区二区| 一边摸一边抽搐一进一小说 | 亚洲精华国产精华精| 中文字幕人妻丝袜制服| 男女之事视频高清在线观看| 国产一区二区三区在线臀色熟女 | 精品欧美一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区精品91| 精品视频人人做人人爽| 日本精品一区二区三区蜜桃| 色综合婷婷激情| 国产成人免费无遮挡视频| 黑人欧美特级aaaaaa片| 久久青草综合色| 91精品国产国语对白视频| 黑人欧美特级aaaaaa片| 国产在线精品亚洲第一网站| 亚洲精品久久午夜乱码| 久久人妻av系列| 成人18禁高潮啪啪吃奶动态图| 美女扒开内裤让男人捅视频| 成人影院久久| 夫妻午夜视频| 黄色怎么调成土黄色| 精品卡一卡二卡四卡免费| 9热在线视频观看99| 婷婷成人精品国产| 亚洲 国产 在线| 午夜福利欧美成人| 欧美精品高潮呻吟av久久| 国产成人系列免费观看| 丁香欧美五月| 久久亚洲精品不卡| 精品一区二区三卡| 久久精品熟女亚洲av麻豆精品| 国产野战对白在线观看| 丁香六月欧美| 亚洲欧美一区二区三区久久| 中文字幕精品免费在线观看视频| 五月天丁香电影| 国产亚洲av高清不卡| 天天躁夜夜躁狠狠躁躁| 日本欧美视频一区| av欧美777| av天堂在线播放| 日韩免费av在线播放| 午夜视频精品福利| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 在线观看人妻少妇| 高清欧美精品videossex| 欧美 亚洲 国产 日韩一| 国产aⅴ精品一区二区三区波| 国产高清国产精品国产三级| 久久热在线av| 精品少妇久久久久久888优播| 亚洲欧美日韩高清在线视频 | 老熟女久久久| 伊人久久大香线蕉亚洲五| 91成人精品电影| 国产在线观看jvid| 91麻豆精品激情在线观看国产 | 亚洲精品国产色婷婷电影| 黑人欧美特级aaaaaa片| 欧美精品av麻豆av| 成人影院久久| xxxhd国产人妻xxx| 日日摸夜夜添夜夜添小说| 欧美乱码精品一区二区三区| 欧美性长视频在线观看| 成年版毛片免费区| 国产一区二区三区视频了| 麻豆乱淫一区二区| 下体分泌物呈黄色| 精品国产超薄肉色丝袜足j| 久久久久久久大尺度免费视频| 纯流量卡能插随身wifi吗| av线在线观看网站| 精品亚洲成国产av| 免费黄频网站在线观看国产| 午夜福利欧美成人| 国产精品久久久人人做人人爽| 亚洲av美国av| 亚洲中文av在线| 岛国毛片在线播放| 极品教师在线免费播放| 免费观看人在逋| 久久久久久久精品吃奶| 国产精品成人在线| 在线观看免费午夜福利视频| 亚洲人成电影免费在线| 精品国产一区二区久久| 国产国语露脸激情在线看| 性少妇av在线| 色综合欧美亚洲国产小说| 高清在线国产一区| 91老司机精品| 国产成+人综合+亚洲专区| 天天添夜夜摸| 国产在线视频一区二区| 亚洲性夜色夜夜综合| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美在线一区| 国产一区二区 视频在线| 亚洲中文日韩欧美视频| 亚洲欧美日韩另类电影网站| 日韩免费av在线播放| 国产xxxxx性猛交| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲国产欧美一区二区综合| 99热国产这里只有精品6| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 亚洲成人免费电影在线观看| 亚洲欧美激情在线| 国产成人欧美| 国产成人系列免费观看| 久久久水蜜桃国产精品网| 一级片免费观看大全| 亚洲一卡2卡3卡4卡5卡精品中文| 桃花免费在线播放| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 国产老妇伦熟女老妇高清| 少妇粗大呻吟视频| 一本久久精品| 老司机在亚洲福利影院| 一级黄色大片毛片| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 18禁美女被吸乳视频| 夜夜爽天天搞| 两性夫妻黄色片| 99riav亚洲国产免费| 日本一区二区免费在线视频| 首页视频小说图片口味搜索| 久久午夜综合久久蜜桃| 久久久久免费精品人妻一区二区| 在线观看免费视频日本深夜| 嫩草影视91久久| 99久久精品热视频| 色综合站精品国产| 91久久精品国产一区二区成人 | 岛国视频午夜一区免费看| 欧美性猛交黑人性爽| 啦啦啦免费观看视频1| 黄色成人免费大全| avwww免费| 亚洲av第一区精品v没综合| 国产成人一区二区三区免费视频网站| 久久午夜综合久久蜜桃| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 少妇丰满av| 天堂√8在线中文| 日本 欧美在线| xxxwww97欧美| 亚洲在线自拍视频| 亚洲午夜精品一区,二区,三区| 又粗又爽又猛毛片免费看| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影| 久99久视频精品免费| 中文字幕最新亚洲高清| 99国产精品一区二区三区| 999久久久精品免费观看国产| 色噜噜av男人的天堂激情| 成人特级av手机在线观看| 嫁个100分男人电影在线观看| 免费在线观看亚洲国产| svipshipincom国产片| 欧美乱码精品一区二区三区| 国产99白浆流出| 婷婷六月久久综合丁香| av在线天堂中文字幕| 99久久无色码亚洲精品果冻| a级毛片在线看网站| 中国美女看黄片| a在线观看视频网站| 99久国产av精品| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女| 久久人人精品亚洲av| 琪琪午夜伦伦电影理论片6080| 午夜精品在线福利| 国产人伦9x9x在线观看| 一个人看视频在线观看www免费 | 日韩中文字幕欧美一区二区| 国产成人系列免费观看| 午夜福利免费观看在线| tocl精华| www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄大片高清| 国产精品久久久人人做人人爽| 叶爱在线成人免费视频播放| 好男人在线观看高清免费视频| 亚洲第一电影网av| 99国产精品一区二区三区| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 国产精品久久久久久人妻精品电影| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| 成在线人永久免费视频| 亚洲国产色片| 欧美大码av| 一二三四在线观看免费中文在| 美女大奶头视频| a级毛片a级免费在线| 午夜精品在线福利| 国产av一区在线观看免费| 免费看光身美女| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 最近在线观看免费完整版| 亚洲av成人精品一区久久| 又紧又爽又黄一区二区| 日韩欧美一区二区三区在线观看| 日本 欧美在线| 欧美极品一区二区三区四区| 成人永久免费在线观看视频| 伊人久久大香线蕉亚洲五| 岛国视频午夜一区免费看| 欧美黑人巨大hd| 色尼玛亚洲综合影院| 亚洲午夜精品一区,二区,三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲黑人精品在线| 精品久久蜜臀av无| 一本综合久久免费| 最好的美女福利视频网| 久久精品综合一区二区三区| 午夜精品在线福利| 国产精品 欧美亚洲| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 制服丝袜大香蕉在线| 美女cb高潮喷水在线观看 | 免费看a级黄色片| 国产精品日韩av在线免费观看| 给我免费播放毛片高清在线观看| 一本精品99久久精品77| 曰老女人黄片| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| 欧美日韩亚洲国产一区二区在线观看| 超碰成人久久| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 青草久久国产| 欧美中文综合在线视频| 亚洲最大成人中文| 国产不卡一卡二| 免费人成视频x8x8入口观看| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 热99在线观看视频| 男女视频在线观看网站免费| 特大巨黑吊av在线直播| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 最近视频中文字幕2019在线8| 很黄的视频免费| 国产亚洲精品一区二区www| 国产免费av片在线观看野外av| 在线免费观看的www视频| 久久性视频一级片| 最新美女视频免费是黄的| 亚洲 欧美 日韩 在线 免费| 天堂√8在线中文| 精品一区二区三区视频在线 | 久久久久精品国产欧美久久久| 小说图片视频综合网站| 九九久久精品国产亚洲av麻豆 | 欧美中文日本在线观看视频| 日本熟妇午夜| 99re在线观看精品视频| 日韩av在线大香蕉| 首页视频小说图片口味搜索| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 老司机午夜福利在线观看视频| 国产伦精品一区二区三区四那| 亚洲成人免费电影在线观看| 97超视频在线观看视频| 一本久久中文字幕| 久久热在线av| 网址你懂的国产日韩在线| 热99在线观看视频| a级毛片在线看网站| 伦理电影免费视频| 三级国产精品欧美在线观看 | 久久久久久久久免费视频了| 午夜福利在线观看免费完整高清在 | 欧美日韩精品网址| 久久99热这里只有精品18| 久久亚洲真实| 中文字幕最新亚洲高清| 欧美日韩黄片免| 亚洲中文av在线| aaaaa片日本免费| 久久久久国产精品人妻aⅴ院| 在线永久观看黄色视频| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 一进一出抽搐gif免费好疼| 国产一区二区在线av高清观看| 午夜激情福利司机影院| 欧美乱码精品一区二区三区| 精品久久久久久,| 亚洲黑人精品在线| 九色国产91popny在线| 国产99白浆流出| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 琪琪午夜伦伦电影理论片6080| xxxwww97欧美| 亚洲av五月六月丁香网| 在线免费观看的www视频| 国产淫片久久久久久久久 | 日本五十路高清| 日日干狠狠操夜夜爽| 91麻豆av在线| 99视频精品全部免费 在线 | 国产高清三级在线| 麻豆久久精品国产亚洲av| 变态另类丝袜制服| 国产成人av教育| 国内精品一区二区在线观看| 香蕉av资源在线| 午夜精品久久久久久毛片777| 看片在线看免费视频| 日韩欧美精品v在线| 午夜福利在线观看吧| 国产伦精品一区二区三区视频9 | 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 中文字幕人成人乱码亚洲影| 性色avwww在线观看| 日韩大尺度精品在线看网址| 又粗又爽又猛毛片免费看| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| 成人国产综合亚洲| 深夜精品福利| 国产视频内射| 成年版毛片免费区| 国产91精品成人一区二区三区| 久99久视频精品免费| 国产免费男女视频| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 一级毛片女人18水好多| 国产野战对白在线观看| 最近最新免费中文字幕在线| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 午夜福利在线在线| a级毛片在线看网站| 国产探花在线观看一区二区| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| netflix在线观看网站| 国产伦精品一区二区三区视频9 | 岛国视频午夜一区免费看| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 美女免费视频网站| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| 在线国产一区二区在线| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 日韩国内少妇激情av| 99热只有精品国产| 老司机午夜十八禁免费视频| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 激情在线观看视频在线高清| 热99在线观看视频| 一进一出抽搐动态| 白带黄色成豆腐渣| 久久精品影院6| 欧美另类亚洲清纯唯美| 两个人的视频大全免费| 一个人免费在线观看电影 | 色噜噜av男人的天堂激情| 久久九九热精品免费| 特级一级黄色大片| 午夜免费观看网址| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| or卡值多少钱| 国产v大片淫在线免费观看| 国产精品久久久久久久电影 | 国产精品av久久久久免费| 国产成人啪精品午夜网站| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件 | 蜜桃久久精品国产亚洲av| 999久久久国产精品视频| 夜夜爽天天搞| 9191精品国产免费久久| 热99在线观看视频| 久久久久性生活片| 国产免费男女视频| 日本与韩国留学比较| 露出奶头的视频| 成年女人永久免费观看视频| 色综合欧美亚洲国产小说| 两个人的视频大全免费| 久久久久久久精品吃奶| 99国产精品99久久久久| 国产伦精品一区二区三区视频9 | 国产精品自产拍在线观看55亚洲| 亚洲人成网站高清观看| 91av网一区二区| 亚洲成人久久爱视频| 在线a可以看的网站| 日韩欧美免费精品| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 亚洲国产色片| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 久久久久久久久免费视频了| 男人舔女人下体高潮全视频| 女警被强在线播放| 麻豆成人av在线观看| 极品教师在线免费播放| 久久久精品大字幕| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 亚洲一区二区三区色噜噜| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 亚洲精品国产精品久久久不卡| 日韩欧美国产在线观看| 巨乳人妻的诱惑在线观看| 国产视频内射| 我的老师免费观看完整版| 天天躁日日操中文字幕| 9191精品国产免费久久| 亚洲av成人av| 制服人妻中文乱码| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 国内少妇人妻偷人精品xxx网站 | 国产精品98久久久久久宅男小说| 久久中文字幕一级| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲成a人片在线一区二区| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 日韩三级视频一区二区三区| 欧美一级毛片孕妇| 男女午夜视频在线观看| 欧美日韩一级在线毛片| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 国产成人aa在线观看| 国产极品精品免费视频能看的| 91在线精品国自产拍蜜月 | 香蕉久久夜色| 国产精品九九99| 亚洲av成人精品一区久久| 精品国产美女av久久久久小说| 人妻久久中文字幕网| 亚洲乱码一区二区免费版| 99热6这里只有精品| 老熟妇仑乱视频hdxx| 免费观看的影片在线观看| 国产亚洲精品久久久久久毛片| 亚洲无线在线观看| 国产探花在线观看一区二区| 亚洲激情在线av| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 日本 欧美在线| 色老头精品视频在线观看| 久久中文字幕人妻熟女| 精品久久久久久久人妻蜜臀av| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 91av网一区二区| 最新在线观看一区二区三区| 国产精品影院久久| 99在线视频只有这里精品首页| 国产99白浆流出| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 免费搜索国产男女视频| 无人区码免费观看不卡| 麻豆一二三区av精品| 十八禁网站免费在线| 日本一本二区三区精品| 一进一出好大好爽视频| 日韩欧美在线二视频| 日本 av在线| 精品久久久久久久久久久久久| 色在线成人网| e午夜精品久久久久久久| 日本与韩国留学比较| 成人av在线播放网站| 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 免费看十八禁软件| 国产精品99久久99久久久不卡| 欧美zozozo另类| 无限看片的www在线观看| 舔av片在线| 国产亚洲精品一区二区www| 露出奶头的视频| 亚洲国产日韩欧美精品在线观看 | 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 哪里可以看免费的av片| 制服人妻中文乱码| 国产主播在线观看一区二区| www.精华液| 国产伦精品一区二区三区视频9 | 亚洲黑人精品在线| 一个人看的www免费观看视频| cao死你这个sao货| 国产精品1区2区在线观看.| 夜夜爽天天搞| 曰老女人黄片| 最近最新免费中文字幕在线| 黄色成人免费大全| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 18美女黄网站色大片免费观看| 小说图片视频综合网站| 嫩草影院入口| 日韩中文字幕欧美一区二区| 99riav亚洲国产免费| 精品国产亚洲在线| av女优亚洲男人天堂 | 成人性生交大片免费视频hd| 嫩草影视91久久| 日本黄色片子视频| 巨乳人妻的诱惑在线观看| 亚洲精品乱码久久久v下载方式 | 他把我摸到了高潮在线观看| 久久人妻av系列| 十八禁网站免费在线| 一级毛片精品| 舔av片在线| 又黄又粗又硬又大视频| 性色av乱码一区二区三区2| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 欧美+亚洲+日韩+国产| 欧美色欧美亚洲另类二区| 亚洲美女黄片视频| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| 五月玫瑰六月丁香| 国产探花在线观看一区二区| 国产亚洲欧美在线一区二区| 天堂av国产一区二区熟女人妻| 九九热线精品视视频播放| 中文资源天堂在线| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 久久久久九九精品影院| 我的老师免费观看完整版| 久久这里只有精品19| 久久国产乱子伦精品免费另类| 欧美中文综合在线视频| 他把我摸到了高潮在线观看|