• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and optimization of industrial Fischer-Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst☆

    2018-06-29 09:16:08ChufuLi

    Chufu Li

    National Institute of Clean-and-Low-Carbon Energy,Shenhua Group Co.Ltd.,Beijing 102211,China

    1.Introduction

    Fischer-Tropsch(FT)synthetic fuels have very beneficial properties,such as low sulfur content and near-zero aromatics,which make them good candidates as alternative and/or complementary sources of fuel.FT synthetic fuels can be produced from coal or natural gas.Two types of catalysts are commercially used in FT synthesis,namely iron-based(Fe)and cobalt-based(Co)catalysts.Iron catalyst is cheaper and has a higher water gas shift(WGS)activity,and therefore it is best suited for CO rich syngas produced from coal gasification.Three types of FT reactors are in commercial use at present time:they are fixed bed reactor, fluidized bed reactor and slurry phase reactor[1].Slurry bubble column reactor(SBCR)possesses many advantages such as better heat&mass transfer,lower manufacture costand higher yield of single set.Therefore,it is an active research area for a lot of researchers in modeling,scale-up and optimization of the SBCR for FT synthesis.

    Industrial scale SBCR(diameter 5-10 m,height 30-50 m)was simulated and investigated using the SBCR model by the researchers[2-10].Recent work on the intensification of the Sasol SPD(Slurry Phase Distillate)reactor presented by Sasol[9]shows that the scope exists to potentially double the volumetric conversion of Sasol's existing G1 commercial slurry phase reactors through the relative increases in gas velocity and catalyst concentration.Sehabiague[10]used the double bubble SBCR model to assess the performance of an industrial SBCR for FT synthesis,and predicted and optimized the performance of an industrial scale(ID-5.8 m SBCR)operating with iron-based catalyst for FT synthesis,with emphasis on catalyst deactivation.

    In previous works,most researchers investigated and optimized the SBCR performance using their reactor models at a fixed inlet gas composition to the SBCR.However,in the industrial FT synthesis process,due to the single pass conversion not too high,a lot of tail gas will be returned to the SBCR.It will change the inlet gas composition when the reaction performance changes.Therefore,the optimal results obtained at fixed inlet gas composition to the SBCR may not be reasonable.To solve this problem,a process model integrated with a SBCR model for FT synthesis should be used.This work developed a comprehensive process model for FT synthesis that includes a detailed SBCR model,gas liquid separation model,simplified CO2removal model and tail gas cycle model,and used the model to investigate and optimize the performances of an industrial FT synthesis process with the SBCR and iron-based catalyst.

    Fig.1.Schematic graph for the FT synthesis process with the SBCR and iron-based catalyst.

    2.Process Description of FT synthesis

    A typical FT synthesis with the iron-based catalyst includes FT synthesis reaction,gas liquid separation,CO2removal and tail gas cycle,as shown in Fig.1.Syngas(CO+H2)is mixed with the recycled tail gas to feed into the FT reactor(SBCR).Under the reaction conditions(230-280°C,2-4 MPa)and with the presence of the iron-based catalysts,most CO is converted into hydrocarbon,and small amount of CO is converted into CO2.The reaction tail gas is then cooled and fed into the gas liquid separator,and oil and water are separated from the tail gas.Because the single pass conversion in the FT reactor is not too high,a lot of tail gas(about 1-3 times of syngas flowrate)will be recycled into the FT reactor.To control the CO2content of the inlet gas to the reactor,part of the tail gas(about 10%-30%of total tail gas)needs to remove CO2before recycling into the FT reactor,and the rest of the tail gas is directly recycled into the FT reactor.In addition,some tail gas is released to control the reaction pressure.

    3.Mathematical Model for FT Synthesis Process

    The comprehensive mathematical model for FT synthesis process mainly includes:a detailed SBCR model,a gas liquid separation model,a simplified CO2removal model and a tail gas cycle model.

    3.1.SBCR model

    Modeling research work on the SBCR for FT synthesis began from 1950s[11].According to bubble characters,the models were divided into homogeneous state consisting of single bubble and heterogeneous state consisting of two-class or multi-class bubbles[12],and the most models are zero dimension and one dimension.Zero dimension models,which do not consider axial and radial direction,can only predict the varied trend of the parameters[13-16]and the typical physical phenomena such as jump change of gas holdup[17,18].Typical one dimension model includes single bubble model[19-21],double bubble model[2,4,5,22-25]and multi-stage series CSTR model[26,27].Deckweret al.[19],Sternet al.[20],and Saxenaet al.[21]proposed the single bubble model and Van der Laanet al.[2],Marettoet al.[22],De Swartet al.[23],Radoset al.[24],Sehabiagueet al.[4],and Wanget al.[5]proposed and improved the double bubble model.These models above were used for the design of the large scale SBCR.Ghasemi and Sohrabi[25]compared the single bubble model with the double bubble model,and the results show that increasing reactor diameter and decreasing solid concentration both lead to major impact,while bubble breakup and coalescence minimize their difference.

    The objective of this work is to develop a process model for industrial FT synthesis with the SBCR and optimize its performance,and one dimension SBCR model is adopted here,which includes material balance equations,hydrodynamic and mass transfer correlations,FT and WGS reaction kinetic equations and hydrocarbon distribution model.

    3.1.1.Material balance equations

    The SBCR model is essentially based on the axial dispersion model in conjunction with the two-class of gas bubble model[4,10].The catalyst particle suspension was modeled using the Sedimentation-Dispersion model.The following key assumptions were considered:(1)the mass transfer resistances in the gas-film and in the liquid-solid film are negligible and(2)the slurry temperature is constant.According to these assumptions and model features,the mass balances of each component in the different phases over a differential element of the reactor can be derived as shown in Table 1;and the boundary conditions for solving these equations are given in Table 2.

    Table 1 Material balance equations[10]

    3.1.2.Hydrodynamic and mass transfer coefficient correlations

    The hydrodynamic parameters are quite important for scale-up and optimization on the SBCR.Sehabiague and Morsi[10,13,14]have done lots of works on this area at actual FT synthesis conditions.Thehydrodynamic and mass transfer coefficient correlations in the latest literature published by Sehabiague[10]were adopted in this work(Appendix),which have the best prediction accuracy for gas the holdup and mass transfer coefficient.

    Table 2 Boundary conditions[10]

    3.1.3.Reaction kinetic equations

    The reaction kinetic equations were developed specially for the iron-based catalyst used in the industrial demonstration reactor,shown as in Table 3.

    Table 3 FT iron-based catalyst kinetic used in the model

    3.1.4.Hydrocarbon distribution model

    In the FT synthesis,the product yield decreases exponentially with increasing chain length.The so-called Anderson-Schulz-Flory(ASF)distribution describes the entire product range by a single parameter α,the probability of the addition of a carbon intermediate to a chain[28,29].However,significant deviations from the ASF distribution were reported in literature.The usual deviations of the distribution of α-olefins and paraffins are a relatively high yield of methane[30-32]and a relatively low yield of ethene[30,31,33]in comparison to the ASF distribution.Some authors described the total hydrocarbon yield with two different catalytic sites with different chain growth probabilities,since the total hydrocarbon distribution could be fitted by addition of two individual ASF distributions[34,35].However,such doublemodels cannot explain the decrease of the olefin to paraffin ratio.The hydrocarbon product distribution is calculated by the α-olefin readsorption model proposed by Van der Laan[3].Some parameters of the α-olefin re-adsorption product distribution model were revised according to the industrial demonstration run data,shown as in Table 4.

    Table 4 Parameters value for α-olefin re-adsorption product distribution model

    3.1.5.Physical properties andflash calculations

    The physical properties(density,viscosity,surface tension and saturated vapor pressure)of the wax produced from the industrial demonstration reactor were measured with experiments close to the actual reaction temperature[10],and the physical properties of the wax at 528 K are:density 693 kg m-3,viscosity 0.0015 Pa s,surface tension 0.017 N m-1and saturated vapor pressure 5685 Pa.

    Henry constants for CO,CO2,H2,H2O,N2and light hydrocarbons(C1-C3)were obtained from Marano-and Holder[36].The multicomponent VLE model of Marano and Holder[36]was applied.However,ideal gas behavior of the gas phase is assumed because under the reaction conditions applied,the fugacity coefficients(up to C30)as calculated with the Peng-Robinson equation of state are between 0.95 and 1.01[3].The equilibrium constants between vapor and liquid for nonhydrocarbons and C1-3hydrocarbons were calculated from:

    For the other hydrocarbons,theK-value is given by:

    A flash calculation using theseK-values gives the final composition of the liquid and gas phase outlet of the SBCR:

    3.2.Gas-liquid separation model

    In the gas liquid separation unit,the reaction tail gas is cooled to about 35°C,and almost all C5+and water are condensed.Then the gas liquid mixture is fed into a separator to separate oil and water from the tail gas.The equilibrium constants between vapor and liquid oil for non-hydrocarbons and hydrocarbons were calculated from Eqs.(3)and(4),and the equilibrium constants between vapor and liquid water for non-hydrocarbons and light hydrocarbons can be calculated by the Henry coefficients in the water.A flash calculation using theseK-values gives the final composition of the liquid and gas phase outlet of the separator:

    3.3.CO2 removal model

    In the industrial FT synthesis process with the iron-based catalyst,the hot potassium carbonate method is preferred to remove CO2.Hot potassium carbonate solution(about 80°C,20 wt%-35 wt%)is fed into the top of the scrubber,and counters current contact with the tail gas and absorbs CO2.A simplified model was used for CO2removal unit.CO2concentration in the tail gas is controlled to a constant value from the CO2removal unit,and the loss of other components(CO,H2,N2,C1-4)were estimated by the Henry coefficients in water.

    3.4.Tail gas cycle model

    The recycle tail gas is usually given a proportion of the syngas flowrate,shown as follows.

    3.5.Algorithm for the model

    The presented mathematical model is complex due to the tail gas cycle.An effective iteration algorithm was proposed to solve this model,as shown in Fig.2.

    In the iteration process,the initial value and step are shown as Eqs.(19)-(21).

    4.Industrial Demonstration Experiment and Simulation Results

    The model and algorithm were verified by the experiment data from Shenhua FT industrial demonstration unit in Erdos(SBCR with 5.8 m diameter and 30 m height).

    4.1.Process description of the industrial demonstration unit

    The schematic process flow sheet diagraph of the industrial demonstration unit is shown as Fig.3.Syngas(CO+H2)is mixed with the recycled tail gas to feed into the FT reactor(SBCR with 5.8 m diameter and 30 m height),and occurs FT synthesis reaction at 255°C and 2.8 MPa.The reaction tail gas exchanges heat with the recycled tail gas,and then it is cooled to about35°C and fed into gas liquid separator.In the gas liquid separator,the liquid(oil and water)are separated from the tail gas.Some reaction tail gas is directly recycled into the FT reactor,and other tail gas needs to remove CO2before recycling into the reactor to control the CO2content of the cycled tail gas.In the CO2removal unit,hot potassium carbonate solution(about 80°C,30 wt%)is used to absorb CO2from the tail gas,and CO2mole content of the tail gas is controlled to about 2%from this unit.In addition,some tail gas is released to control the reaction pressure.

    Fig.2.Algorithm for the process model for FT synthesis.

    4.2.Experiment and simulation results

    For the industrial demonstration unit,the syngas produced by Shell gasifier is used,and the composition of the syngas is shown as Table 5 and main operation conditions are listed in Table 6.

    Fig.3.Schematic graph for Shenhua FT industrial demonstration unit.

    Table 5 Composition of syngas

    Table 6 Operation conditions for the industrial demonstration unit

    The experiment and simulation results for the performance of the industrial demonstration unit are shown as Table 7 and Table 8.The maximum relative error of predicting CO total conversion,CO single pass conversion,CO2selectivity,CH4selectivity and C5+yield is<10%.The experiment and simulation results for mole fraction of inlet gas to FT reactor are listed in Table 8,with a maximum relative error<10%for main components.In the inlet gas to reactor,the inert gas(N2)content exceeds 20%due to tail gas cycle,which limits the reactor performance.The original parameter values for α-olefin re-adsorption product distribution model were also used to compare the simulation results with the revised parameter values in this work.The simulation results with the original parameter values for α-olefin re-adsorption product distribution model show the larger relative errors for the CH4selectivity(218.8%)and C5+yield(-37.9%)(seeing Table 7).

    4.3.Algorithm investigation

    To investigate the performance of the algorithm to the model,different values of step parameter(a)were selected to solve the model,and the iteration numbers required are presented in Fig.4.The results show that iteration number will decrease as the step parameter increases,especially whena<0.5.However,the larger the step parameter,the lower the stability of the algorithm;a larger step parameter easily makes the algorithm not convergent.Thus,a=0.5 is preferred in the algorithm.

    Table 7 SBCR performances in the industrial demonstration unit

    Table 8 Experiment and simulation results for mole fraction of the inlet gas to the SBCR

    Fig.4.Iteration number changes as the step parameter of iteration algorithm(?=0.001).

    5.Optimization Results on the SBCR Performance

    For the industrial demonstration unit,syngas flowrate(120,000 Nm3·h-1),recycle ratio(1.75),reaction temperature(255°C)and reaction pressure(2.8 MPa)are almost constant due to the designed coal gasifier,cycle gas compressor and SBCR.However,the H2/CO of syngas and catalyst loading could be adjusted and optimized to obtain maximum productivity for the SBCR.

    The effect of catalyst loading on the SBCR performances was investigated at different H2/CO value of syngas.Fig.5 shows that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6.However,it is noted that the C5+yield doesn't increase obviously as catalyst loading increases when the catalyst loading exceeds 45 ton(about15 wt%concentration).Although higher catalyst loading will increase C5+yield,it will result in higher difficulty forwax/catalyst separation and higher catalystcost.Therefore,the catalyst loading(45 ton)is recommended for the industrial demonstration unit operation at syngas H2/CO=1.3,and C5+yield is about 402 t/d for the case,which has an about 16%increase than the industrial demonstration run results.

    6.Conclusions

    This work developed a comprehensive process model for FT synthesis that includes a detailed SBCR model,gas liquid separation model,simplified CO2removal model and tail gas cycle model.The SBCR model is a one dimension double bubble model that consists of mass balance equations of multi-components in the large bubble,small bubble and liquid,FT and WGS kinetic equations,α-olefin re-adsorption product distribution model and hydrodynamic correlations.Subsequently,an effective iteration algorithm was proposed to solve this process model.The model was validated by the industrial demonstration experiments(SBCR with 5.8 m diameter and 30 m height)data,and the maximum relative error of predicting CO total conversion,CO single pass conversion,CH4selectivity,CO2selectivity,space time yield and main component contents is less than 10%.

    Finally,the proposed model was adopted to optimize the performance of the industrial demonstration SBCR simultaneously considering process and reactor parameters variations.The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6,but the C5+yield doesn't increase obviously as catalyst loading increases when the catalyst loading exceeds 45 ton(about 15 wt%concentration).Although higher catalyst loading will increase C5+yield,it will result in higher difficulty for wax/catalyst separation and higher catalyst cost.Therefore,the catalyst loading(45 ton)is recommended for the industrial demonstration unit operation at syngas H2/CO=1.3,and the C5+yield is about 402 t·d-1,which has an about 16%increase than the industrial demonstration run results.

    For a new FT synthesis unit in design,the model developed in this work could be used better for simultaneously optimizing SCBR parameters and process parameters(i.e.reactor diameter and height,syngas flowrate and H2/CO value,recycle ratio,catalyst loading)to obtain maximum productivity.

    Nomenclature

    AReactor area,m2

    CConcentration,mol·m-3

    CPSolid concentration in slurry phase,kg m-3

    CWSolid mass concentration,wt%

    Fig.5.Effect of catalyst loading on the SBCR productivity at different H2/CO value of syngas(Syngas flowrate 120,000 Nm3·h-1,recycle ratio 1.75,reaction temperature 255 °C,reaction pressure 2.8 MPa).

    DDiffusion coefficient,m2·s-1

    DRDiameter of reactor,m

    HReactor height,m

    H∞Henry constant at infinite dilution

    KGas liquid equilibrium constants

    KTPseudo kinetic constant

    KPReaction equilibrium constant

    kLaVolumetric mass transfer coefficient,s-1

    kLLiquid mass transfer coefficient,s-1·m-2

    mMolar selectivity

    MWMolar weight,kg·kmol-1

    NMolar flowrate,mol·s-1

    PPressure,MPa

    PsatSaturated vapor pressure,MPa

    rReaction rate,mol·(kgcat)-1·s-1

    RGas constant,8.31 J·mol-1·K-1

    TTemperature,K

    USuperficial velocity,m·s-1

    VRReactor volume,m3

    WCatalyst weight,kg

    XWweight fraction of the primary liquid in the mixture(0.5≤XW≤1.0)(w/w)

    xMolar fraction in liquid phase

    yMolar fraction in gas phase

    β Proportion of tail gas to CO2removal unit

    δ Loss ratio in the CO2removal unit

    ρ Density,kg·m-3

    μ Viscosity,10-3Pa·s

    σ Surface tension,N·m-1

    ?Tolerance of relative error

    ε Volumetric fraction

    ε Average volumetric fraction

    ν Stoichiometric coefficient

    λ Recycle ratio

    γ∞Activity coefficient at infinite dilution

    ξ Opening ratio of sparger,%

    ?Poynting factor

    ?v,0Flow rate at normal conditions,m3·h-1

    Γ Gas distributor parameter

    Superscripts

    SBSmall bubble

    LBLarge bubble

    oil Liquid oil

    water Liquid water

    IN Inlet gas to reactor

    OUT Outlet gas from reactor

    TGTail gas from gas liquid separator

    RGRecycle tail gas to reactor

    FGFeed syngas

    RTGTail gas after CO2removal

    DTGDirectly recycle tail gas

    PGPurge gas

    Subscripts

    GGas phase

    iSpecies

    jReaction

    LLiquid phase

    pParticle

    SSolid phase

    SLSlurry phase

    Appendix A

    Hydrodynamic and mass transfer coefficient correlations[10]

    [1]A.Steynberg,M.Dry,Fischer-Tropsch technology,Stud.Surf.Sci.Catal.152(2004).

    [2]G.P.Van der Laan,A.A.C.M.Beenackers,R.Krishna,Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors,Chem.Eng.Sci.54(21)(1999)5013-5019.

    [3]G.P.Van der Laan,Kinetics,Selectivity and Scale Up of the Fischer-Tropsch Synthesis,University of Groningen,Netherlands,1999.

    [4]L.Sehabiague,R.Lemoine,A.Behkish,Y.J.Heintz,M.Sanoja,R.Oukaci,B.Morsi,Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons,J.Chin.Inst.Chem.Eng.39(2)(2008)169-179.

    [5]Y.Wang,W.Fan,Y.Liu,Z.Zeng,X.Hao,M.Chang,C.Zhang,Y.Xu,H.Xiang,Y.Li,Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors,Chem.Eng.Process.Process Intensif.47(2)(2008)222-228.

    [6]G.L.Blanco,J.W.Thybaut,K.Surla,et al.,Simulation of a slurry-bubble column reactor for Fischer-Tropsch synthesis using single-event microkinetics,AICHE J.55(8)(2009)2159-2170.

    [7]L.Sehabiague,Modeling,“scale up and optimization of slurry bubble column reactors for Fischer-Tropsch synthesis”,Ph D Thesis,University of Pittsburgh,Pittsburgh,2012.

    [8]L.Sehabiague,B.Morsi,Modeling and simulation of a Fischer-Tropsch slurry bubble column reactor using different kinetic rate expressions for iron and cobalt catalysts,Int.J.Chem.React.Eng.11(2)(2013)2-30.

    [9]A.P.Vogel,H.G.Nel,J.A.Stadler,et al.,Intensifcation of the Sasol SPD reactor-realizing potential,Ind.Eng.Chem.Res.53(2014)1768-1774.

    [10]L.Sehabiague,O.M.Basha,Y.Hong,B.Morsi,et al.,Assessing the performance of an industrial SBCR for Fischer-Tropsch synthesis:experimental and modeling,AICHE J.61(11)(2015)3838-3857.

    [11]Y.Cheng,F.Wei,Y.Jin,Multiphase reactor engineering for clean and low-carbon energy application,John Wiley&Sons,Inc.,2017 219-270.

    [12]S.Hans,Short history and present trends of Fischer-Tropsch synthesis,Appl.Catal.A Gen.186(1-2)(1999)3-12.

    [13]A.Behkish,R.Lemoine,R.Oukaci,B.I.Morsi,Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures,Chem.Eng.J.115(3)(2006)157-171.

    [14]R.Lemoine,A.Behkish,L.Sehabiague,Y.J.Heintz,R.Oukaci,B.I.Morsi,An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors,Fuel Process.Technol.89(4)(2008)322-343.

    [15]M.Liu,J.Li,M.Kwauk,Application of the energy-minimization multi-scale method to gas-liquid-solid fluidized beds,Chem.Eng.Sci.56(24)(2001)6805-6812.

    [16]G.Jin,Multi-scale modeling of gas-liquid-solid three-phase fluidized beds using the EMMS method,Chem.Eng.J.117(1)(2006)1-11.

    [17]N.Yang,J.Chen,H.Zhao,W.Ge,J.Li,Explorations on the multi-scale flow structure and stability condition in bubble columns,Chem.Eng.Sci.62(24)(2007)6978-6991.

    [18]J.Chen,N.Yang,W.Ge,J.Li,Modeling of regime transition in bubble columns with stability condition,Ind.Eng.Chem.Res.48(1)(2008)290-301.

    [19]W.D.Deckwer,Y.Serpemen,M.Ralek,B.Schmidt,Modeling the Fischer-Tropsch synthesis in the slurry phase,nd.Eng.Chem.Process Des.Dev.21(2)(1982)231-241.

    [20]D.Stern,A.T.Bell,H.Heinemann,Effects of mass transfer on the performance of slurry reactors used for Fischer-Tropsch synthesis,Chem.Eng.Sci.38(4)(1983)597-605.

    [21]S.C.Saxena,M.Rosen,D.N.Smith,J.A.Ruether,Mathematical modeling of Fischer-Tropsch slurry bubble column reactors,Chem.Eng.Commun.40(1-6)(1986)97-151.

    [22]C.Maretto,R.Krishna,Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis,Catal.Today52(2-3)(1999)279-289.

    [23]J.W.A.De Swart,R.Krishna,Simulation of the transientand steady state behaviour of a bubble column slurry reactor for Fischer-Tropsch synthesis,Chem.Eng.Process.Process Intensif.41(1)(2002)35-47.

    [24]N.Rados,M.H.Al-Dahhan,M.P.Dudukovic,Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors,Catal.Today79-80(0)(2003)211-218.

    [25]S.Ghasemi,M.Sohrabi,M.Rahmani,A comparison between two kinds of hydrodynamic models in bubble column slurry reactor during Fischer-Tropsch synthesis:single-bubble class and two-bubble class,Chem.Eng.Res.Des.87(12)(2009)1582-1588.

    [26]G.Wang,Y.-N.Wang,J.Yang,Y.-Y.Xu,L.Bai,H.-W.Xiang,Y.-W.Li,Modeling analysis of the Fischer-Tropsch synthesis in a stirred-tank slurry reactor,Ind.Eng.Chem.Res.43(10)(2004)2330-2336.

    [27]C.Maretto,R.Krishna,Design and optimisation of a multi-stage bubble column slurry reactor for Fischer-Tropsch synthesis,Catal.Today66(2-4)(2001)241-248.

    [28]R.B.Anderson,Catalysts for the Fischer-Tropsch Synthesis,vol.4,Van Nostrand Reinhold,New York,1956.

    [29]L.S.Glebov,G.A.Kliger,The molecular weight distribution of the products of the Fischer-Tropsch synthesis,Russ.Chem.Rev.63(1994)185-194.

    [30]B.W.Wojciechowski,The kinetics of the Fischer Tropsch synthesis,Catal.Rev.Sci.Eng.30(1988)629-702.

    [31]T.Komaya,A.T.Bell,Estimates of rate coefficients for elementary processes occurring during Fischer-Tropsch synthesis over Ru/TiO2,J.Catal.146(1994)237-248.

    [32]E.W.Kuipers,C.Scheper,J.H.Wilson,H.Oosterbeek,Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis,J.Catal.158(1996)288-300.

    [33]S.Novak,R.J.Madon,H.Suhl,Models of hydrocarbon product distributions in Fischer-Tropsch synthesis,J.Chem.Phys.74(1981)6083-6091.

    [34]T.J.Donnelly,I.C.Yates,C.N.Satter field,Analysis and prediction of product distributions of the Fischer-Tropsch synthesis,Energy Fuel2(1988)734-739.

    [35]T.J.Donnelly,C.N.Satter field,Product distributions of the Fischer-Tropsch synthesis on precipitated iron catalysts,Appl.Catal.A52(1989)93-114.

    [36]J.J.Marano,G.D.Holder,Characterization of Fischer-Tropsch liquids for vapor-liquid equilibria calculations,Fluid Phase Equilib.138(1997)1-21.

    黄色日韩在线| 亚洲精华国产精华精| 狠狠狠狠99中文字幕| 男女床上黄色一级片免费看| 国产高清激情床上av| 又黄又爽又免费观看的视频| 一个人看视频在线观看www免费 | 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 国产淫片久久久久久久久 | 亚洲人成网站高清观看| 真人做人爱边吃奶动态| 女警被强在线播放| 天天躁日日操中文字幕| 久久久久久国产a免费观看| xxx96com| 国产精品 国内视频| 亚洲中文字幕日韩| 69av精品久久久久久| 国产精品国产高清国产av| 一区二区三区激情视频| 久久久久久人人人人人| 无遮挡黄片免费观看| 他把我摸到了高潮在线观看| 麻豆国产97在线/欧美| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 国产一级毛片七仙女欲春2| 国产综合懂色| 男女床上黄色一级片免费看| av欧美777| avwww免费| 12—13女人毛片做爰片一| 国产真实伦视频高清在线观看 | 桃红色精品国产亚洲av| 一进一出抽搐动态| 亚洲欧美精品综合久久99| 欧美日韩乱码在线| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩卡通动漫| 国产黄色小视频在线观看| 亚洲国产欧美人成| 亚洲精品粉嫩美女一区| 日韩欧美免费精品| 国产av不卡久久| 欧美一区二区亚洲| 成年女人永久免费观看视频| 男女之事视频高清在线观看| 欧美成人a在线观看| 免费在线观看影片大全网站| 精华霜和精华液先用哪个| av欧美777| 精品福利观看| 国产探花极品一区二区| 亚洲精品在线美女| 免费看a级黄色片| www.熟女人妻精品国产| 日日夜夜操网爽| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 欧美日韩福利视频一区二区| 精品欧美国产一区二区三| 毛片女人毛片| 国产亚洲欧美在线一区二区| 亚洲性夜色夜夜综合| 一级a爱片免费观看的视频| 在线视频色国产色| 国产免费男女视频| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 欧美不卡视频在线免费观看| 国内精品一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产高清三级在线| 免费在线观看成人毛片| 国产中年淑女户外野战色| 国产精品嫩草影院av在线观看 | 欧美高清成人免费视频www| 成人国产综合亚洲| 成人18禁在线播放| 国产精品永久免费网站| 午夜精品一区二区三区免费看| 香蕉久久夜色| 一本综合久久免费| 亚洲国产精品久久男人天堂| 亚洲国产日韩欧美精品在线观看 | 村上凉子中文字幕在线| 男女下面进入的视频免费午夜| 国产精品乱码一区二三区的特点| 亚洲最大成人中文| 天堂网av新在线| 欧美不卡视频在线免费观看| 国产成人a区在线观看| 国产欧美日韩精品一区二区| x7x7x7水蜜桃| 日本黄色片子视频| 久久中文看片网| a级毛片a级免费在线| 亚洲av成人av| 听说在线观看完整版免费高清| 国产主播在线观看一区二区| 淫秽高清视频在线观看| 亚洲av第一区精品v没综合| 欧美日韩乱码在线| 在线观看日韩欧美| 俺也久久电影网| 日韩有码中文字幕| 久久久久久久午夜电影| 亚洲精品久久国产高清桃花| 国产精品美女特级片免费视频播放器| 亚洲性夜色夜夜综合| 精品乱码久久久久久99久播| 19禁男女啪啪无遮挡网站| 成人特级av手机在线观看| 欧美成人a在线观看| 欧美黄色淫秽网站| 中文在线观看免费www的网站| 人妻久久中文字幕网| 免费av观看视频| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区| 欧美日韩国产亚洲二区| 日本一二三区视频观看| 欧美色欧美亚洲另类二区| 波多野结衣巨乳人妻| 黄色成人免费大全| www日本黄色视频网| 亚洲无线在线观看| 国产真实乱freesex| 午夜精品一区二区三区免费看| 日本成人三级电影网站| 3wmmmm亚洲av在线观看| 国产一区二区在线观看日韩 | 国内精品美女久久久久久| avwww免费| 国产高清视频在线观看网站| 色精品久久人妻99蜜桃| 国产麻豆成人av免费视频| 亚洲五月婷婷丁香| 尤物成人国产欧美一区二区三区| 亚洲中文日韩欧美视频| 欧洲精品卡2卡3卡4卡5卡区| 小蜜桃在线观看免费完整版高清| 99久久精品一区二区三区| 老司机深夜福利视频在线观看| 在线看三级毛片| 国产探花在线观看一区二区| 激情在线观看视频在线高清| svipshipincom国产片| 免费看光身美女| av福利片在线观看| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看 | 成人永久免费在线观看视频| 国产高清videossex| www.熟女人妻精品国产| 激情在线观看视频在线高清| 欧美一区二区精品小视频在线| 欧美一区二区精品小视频在线| 亚洲18禁久久av| 亚洲av电影在线进入| 欧美日韩中文字幕国产精品一区二区三区| 久久久久九九精品影院| 亚洲最大成人手机在线| 操出白浆在线播放| 天堂影院成人在线观看| 国产成人a区在线观看| 日韩精品中文字幕看吧| 久久欧美精品欧美久久欧美| 久久久成人免费电影| 亚洲专区中文字幕在线| 波多野结衣高清作品| 精品免费久久久久久久清纯| 欧美色视频一区免费| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 色尼玛亚洲综合影院| 国产免费男女视频| 日本黄色视频三级网站网址| 亚洲av美国av| 亚洲av熟女| 变态另类丝袜制服| 久9热在线精品视频| 操出白浆在线播放| 欧美黑人欧美精品刺激| 欧美黑人巨大hd| av在线天堂中文字幕| 午夜福利视频1000在线观看| 最近最新中文字幕大全免费视频| 久久久久性生活片| 国产av麻豆久久久久久久| 又紧又爽又黄一区二区| 免费av不卡在线播放| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 欧美成人性av电影在线观看| 淫秽高清视频在线观看| 老司机午夜十八禁免费视频| 午夜视频国产福利| 一级毛片女人18水好多| 亚洲欧美日韩东京热| 亚洲色图av天堂| 日本 av在线| 国产蜜桃级精品一区二区三区| 波多野结衣高清作品| 国模一区二区三区四区视频| 99国产综合亚洲精品| 亚洲成av人片免费观看| 午夜福利视频1000在线观看| 国产精品一区二区免费欧美| 麻豆成人av在线观看| 国产高清三级在线| 1000部很黄的大片| 国产午夜福利久久久久久| 97碰自拍视频| 国产黄a三级三级三级人| 久久亚洲真实| 欧美成人免费av一区二区三区| 免费看日本二区| 一级毛片高清免费大全| 国产精品久久久久久久电影 | 国产一区二区亚洲精品在线观看| 色在线成人网| 精品一区二区三区人妻视频| 国产一区二区激情短视频| 久久精品影院6| 国产黄色小视频在线观看| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| 级片在线观看| 老熟妇乱子伦视频在线观看| 日本一本二区三区精品| 国产精品一区二区三区四区免费观看 | 丰满人妻一区二区三区视频av | 国产一区二区三区在线臀色熟女| 亚洲国产色片| 中文在线观看免费www的网站| 一级毛片高清免费大全| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 久久久久久久精品吃奶| 成年免费大片在线观看| 欧美丝袜亚洲另类 | 18禁裸乳无遮挡免费网站照片| 久久久久久久精品吃奶| 欧美另类亚洲清纯唯美| 黄色日韩在线| 男人舔奶头视频| 欧美一区二区亚洲| 一进一出抽搐动态| 97超级碰碰碰精品色视频在线观看| 特级一级黄色大片| 精品不卡国产一区二区三区| 中文亚洲av片在线观看爽| 有码 亚洲区| 日本免费a在线| 非洲黑人性xxxx精品又粗又长| 女人被狂操c到高潮| 日韩精品中文字幕看吧| 国产主播在线观看一区二区| 婷婷六月久久综合丁香| 观看美女的网站| 69av精品久久久久久| 国产成人av教育| 色av中文字幕| 亚洲av二区三区四区| 成人av一区二区三区在线看| 在线十欧美十亚洲十日本专区| avwww免费| 十八禁人妻一区二区| 国产精品电影一区二区三区| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 国产精品久久电影中文字幕| 99精品在免费线老司机午夜| 国产午夜福利久久久久久| 五月玫瑰六月丁香| а√天堂www在线а√下载| 观看美女的网站| 亚洲天堂国产精品一区在线| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 日本 欧美在线| 免费观看的影片在线观看| 国产av麻豆久久久久久久| 久久国产乱子伦精品免费另类| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看 | 人人妻人人澡欧美一区二区| 精品免费久久久久久久清纯| aaaaa片日本免费| 无限看片的www在线观看| 欧美在线黄色| 天天添夜夜摸| 欧美一级毛片孕妇| a级一级毛片免费在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 一级黄片播放器| 欧洲精品卡2卡3卡4卡5卡区| av在线蜜桃| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 亚洲成人久久爱视频| 国产色爽女视频免费观看| 精品人妻偷拍中文字幕| 香蕉av资源在线| 久9热在线精品视频| 九色国产91popny在线| 一个人看视频在线观看www免费 | 欧美国产日韩亚洲一区| 脱女人内裤的视频| 亚洲精品日韩av片在线观看 | 免费搜索国产男女视频| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇熟女久久| 黄色片一级片一级黄色片| 国产精品亚洲av一区麻豆| 日本成人三级电影网站| www.色视频.com| 国产麻豆成人av免费视频| 日韩国内少妇激情av| av天堂在线播放| 国产一区二区亚洲精品在线观看| 亚洲欧美精品综合久久99| 日本熟妇午夜| 色吧在线观看| 国产亚洲欧美98| 欧美3d第一页| 白带黄色成豆腐渣| 国产精品,欧美在线| bbb黄色大片| 午夜福利成人在线免费观看| 国产高潮美女av| 国产蜜桃级精品一区二区三区| 操出白浆在线播放| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 欧美xxxx黑人xx丫x性爽| 国产探花极品一区二区| 99热只有精品国产| 国产一区二区亚洲精品在线观看| 狂野欧美激情性xxxx| 色老头精品视频在线观看| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 成年免费大片在线观看| 99久久99久久久精品蜜桃| 美女免费视频网站| 青草久久国产| 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看| 日韩欧美在线二视频| 日韩欧美国产一区二区入口| 一进一出抽搐gif免费好疼| 久久精品国产清高在天天线| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 精品久久久久久久人妻蜜臀av| 男人舔女人下体高潮全视频| 国产淫片久久久久久久久 | 国产激情偷乱视频一区二区| 日本免费一区二区三区高清不卡| 国产一区在线观看成人免费| 成人无遮挡网站| 国产亚洲精品综合一区在线观看| 精华霜和精华液先用哪个| 精品欧美国产一区二区三| 亚洲av五月六月丁香网| 国产一区二区亚洲精品在线观看| 免费观看的影片在线观看| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 一级a爱片免费观看的视频| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式 | 国产精品 国内视频| 日本在线视频免费播放| 此物有八面人人有两片| 久久精品影院6| 国产成人欧美在线观看| 欧美最新免费一区二区三区 | 午夜福利在线观看免费完整高清在 | 嫁个100分男人电影在线观看| 国产探花极品一区二区| 国产成人福利小说| 国产淫片久久久久久久久 | 亚洲国产日韩欧美精品在线观看 | 亚洲人成伊人成综合网2020| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 欧美中文日本在线观看视频| 两个人的视频大全免费| 亚洲av熟女| 免费av观看视频| 亚洲美女视频黄频| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 精品久久久久久久末码| 香蕉久久夜色| 久久香蕉国产精品| 中文字幕人妻熟人妻熟丝袜美 | 日本黄色片子视频| 国产午夜福利久久久久久| 亚洲av一区综合| 欧美一级a爱片免费观看看| 在线观看一区二区三区| 熟女人妻精品中文字幕| 日本成人三级电影网站| 精品免费久久久久久久清纯| 成人欧美大片| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区视频了| 欧美xxxx黑人xx丫x性爽| 天天一区二区日本电影三级| 免费高清视频大片| 色尼玛亚洲综合影院| 97人妻精品一区二区三区麻豆| 熟女人妻精品中文字幕| 不卡一级毛片| 久久久久九九精品影院| 激情在线观看视频在线高清| 欧美日韩乱码在线| 色综合婷婷激情| 国产av不卡久久| 国产精品一区二区免费欧美| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久亚洲av鲁大| 十八禁人妻一区二区| 国产探花极品一区二区| 天天添夜夜摸| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 悠悠久久av| 黄片大片在线免费观看| 少妇高潮的动态图| 欧美日韩乱码在线| 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 日本一本二区三区精品| 香蕉av资源在线| 国产精品 欧美亚洲| 欧美bdsm另类| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 精品无人区乱码1区二区| 伊人久久大香线蕉亚洲五| 一本一本综合久久| 在线观看66精品国产| 岛国在线免费视频观看| 香蕉久久夜色| 成人特级av手机在线观看| 国产成人a区在线观看| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 国产高清激情床上av| 色综合欧美亚洲国产小说| 欧美区成人在线视频| a级毛片a级免费在线| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 国产精品嫩草影院av在线观看 | 村上凉子中文字幕在线| 亚洲人成电影免费在线| 日本黄大片高清| 国模一区二区三区四区视频| 国内精品一区二区在线观看| 岛国在线免费视频观看| 一本综合久久免费| 亚洲性夜色夜夜综合| 欧美日本视频| 乱人视频在线观看| 一区二区三区国产精品乱码| 国产国拍精品亚洲av在线观看 | 国产精品综合久久久久久久免费| 久久久色成人| 悠悠久久av| 国产淫片久久久久久久久 | 亚洲中文日韩欧美视频| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 亚洲国产精品999在线| 又爽又黄无遮挡网站| 最好的美女福利视频网| 99久久精品国产亚洲精品| 97碰自拍视频| 国产视频内射| 精品人妻1区二区| 很黄的视频免费| 2021天堂中文幕一二区在线观| 精品无人区乱码1区二区| 亚洲精品一区av在线观看| 国产97色在线日韩免费| 国产精品影院久久| 性欧美人与动物交配| 一级a爱片免费观看的视频| 99久国产av精品| 在线视频色国产色| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品乱码久久久v下载方式 | 日韩欧美国产在线观看| 黄片小视频在线播放| 国产成人a区在线观看| 国产av不卡久久| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 特级一级黄色大片| 91在线精品国自产拍蜜月 | 18美女黄网站色大片免费观看| 欧美区成人在线视频| 成年人黄色毛片网站| 日本免费一区二区三区高清不卡| 日韩欧美精品免费久久 | 日韩免费av在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 精品久久久久久,| 成人鲁丝片一二三区免费| 国产成人系列免费观看| 老司机福利观看| 丰满的人妻完整版| 欧美一级a爱片免费观看看| 国产三级黄色录像| 韩国av一区二区三区四区| 免费大片18禁| 少妇高潮的动态图| 国产精品 国内视频| 动漫黄色视频在线观看| 可以在线观看的亚洲视频| 91久久精品电影网| 在线观看免费午夜福利视频| 婷婷精品国产亚洲av在线| 国产单亲对白刺激| 日本 av在线| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 少妇的逼水好多| 听说在线观看完整版免费高清| 岛国在线观看网站| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 在线观看日韩欧美| 男女午夜视频在线观看| 国产精品久久久久久久久免 | 精品一区二区三区人妻视频| 麻豆国产av国片精品| 国内少妇人妻偷人精品xxx网站| 老司机午夜十八禁免费视频| 村上凉子中文字幕在线| 亚洲人成网站在线播| 黄片小视频在线播放| 国产av麻豆久久久久久久| 国产精品女同一区二区软件 | 精品午夜福利视频在线观看一区| 日韩欧美一区二区三区在线观看| 怎么达到女性高潮| 欧美性感艳星| 一个人看的www免费观看视频| 真人一进一出gif抽搐免费| 国产精品影院久久| 精品99又大又爽又粗少妇毛片 | 女同久久另类99精品国产91| 国产真实乱freesex| 国产真实伦视频高清在线观看 | 舔av片在线| 国产精品一区二区三区四区免费观看 | 久久天躁狠狠躁夜夜2o2o| 99久久久亚洲精品蜜臀av| 欧美色欧美亚洲另类二区| 18禁黄网站禁片免费观看直播| 欧美大码av| 一个人免费在线观看的高清视频| 国产毛片a区久久久久| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 精品日产1卡2卡| 日本精品一区二区三区蜜桃| 窝窝影院91人妻| 在线观看美女被高潮喷水网站 | 国产伦一二天堂av在线观看| 久久亚洲真实| 成人av一区二区三区在线看| 性欧美人与动物交配| 色吧在线观看| 91在线观看av| 午夜福利在线观看吧| 伊人久久大香线蕉亚洲五| 在线看三级毛片| 国产精品久久久久久精品电影| 啦啦啦韩国在线观看视频| 超碰av人人做人人爽久久 |