• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A sludge volume index(SVI)model based on the multivariate local quadratic polynomial regression method

    2018-06-29 09:16:02HongguiHanXiaolongWuLumingGeJunfeiQiao

    Honggui Han *,Xiaolong Wu Luming Ge Junfei Qiao

    1 College of Automation,Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China

    2 Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China

    1.Introduction

    Activated sludge process(ASP)is the most commonly used technology in the wastewater treatment process(WWTP)[1-3].In ASP,the activated sludge unitconsists of the bioreactors and the secondary settling tanks[4].Sludge bulking,a term used to describe the excessive growth of filamentous bacteria,is a common operational problem in ASP[5].Sludge bulking will affect the sludge settle ability in the secondary clarifiers as well as effluent quality in WWTP[6].The operational and seasonal variations in ASP(such as dissolved oxygen concentration(DO),pH,substrate limiting conditions)will influence the structure of the flocs to cause sludge bulking.Therefore,how to find the reasons of sludge bulking is still an open problem[7].

    To find a general explanation of sludge bulking,several theories have been reported,such as the diffusion-based selection[3],the kinetic selection theory[8],the storage selection theory[9]and the nitric oxide(NO)hypothesis[10].However,most of them still lack experimental verification[11].In recent years,many researchers focused on the enumeration of the bacterial community by using molecular approaches to identify filamentous bacteria for explaining sludge bulking(including denaturing gradient gel electrophoresis[12],16S rRNA gene clone library analysis[13]and transmission electron microscopy[14]).For these molecular approaches,since there are many microorganisms related to the sludge bulking,and many new types of filamentous bacteria have been identified.It is more and more complex to determine sludge bulking by identifying filamentous bacteria[15].In addition,the microscopic identification of filamentous bacteria requires a well-trained operator to avoid the wrong judgments[16].

    Recently,in order to quantify sludge bulking,the SVI is used to measure the settle ability of activated sludge[17].SVI is the most common parameter to determine the settling characteristics of suspended growth activated sludge solids[18].As a general guideline,bulking is said to occur when the SVI is higher than 150 ml·g-1,regardless of its cause[19].To obtain the information about sludge bulking,the value of SVI should be monitored.Giokaset al.developed a nonlinear model using an integrated and unified settling characteristics database for detecting SVI values[20].This nonlinear model can be applied for designing the secondary settling tank for WWTPs.Raminet al.developed a new settling velocity model,including hindered,transient and compression settling,to test and diagnosis sludge settling[21].The experimental results show that the representation of compression settling in the proposed model can significantly influence the prediction of sludge distribution in the secondary settling tanks.However,due to the complex biological reactions,as well as highly time-varying and multivariable,these methods are still difficult to be used in a real WWTP[22].

    To overcome the above problems,in recent years,the data-driven methods have been developed as an efficient alternative way for predicting sludge bulking,in which the necessary process information can be extracted directly from the process data.For example,Smetset al.introduced a dynamic auto-regressive exogenous(ARX)model to predict the SVI values in[23].This proposed dynamic ARX model is investigated as a function of organic loading and digital image analysis information.The experiment results show that this proposed dynamic ARX model can predict the SVI values online.Xavieret al.proposed a risk assessment model based on a knowledge-based decision tree to detect the favorable conditions for sludge bulking in[3].The simulation results demonstrate that this risk assessment model is able to detect the conditions of sludge bulking in the secondary clarifier.In addition,Bagheriet al.developed a hybrid artificial neural networks-genetic algorithm method for predicting SVI values in[24].The comparison of the results indicated that the multi-layer perceptron artificial neural networks-genetic algorithm model is more accurate because of higher coefficient of determination and lower root mean squared error values.Moreover,a self-organizing radial basis function(SORBF)neural network was introduced to predict the SVI values online in[25].In this method,a growing and pruning algorithm is designed to improve the generalization performance of the model and the predicting accuracy of SVI values,and some other models,based on the artificial neural networks,have been widely reported for process monitoring in WWTPs[26].Although many studies have been carried out,the available sludge bulking predicting technologies are still not as developed as other process industries[27].Thus,a cause-effect relationship between the specific microorganisms and their roles in filamentous bulking are likely to be studied[28].

    To obtain a model with satisfactory accuracy and interpretation capability of the sludge bulking,a multivariate local quadratic polynomial regression(MLQPR)method,based on the historical measurements of easy-to-measure process variables,is develop to predict the SVI values in this paper.In addition,a local estimation method is developed to improve the predicting accuracy.In order to show the effectiveness of the proposed method,it is applied to predict the SVI values in a real WWTP.The remainder of this paper is as follows.The definition of SVI and the hardware setup are firstly discussed.Then,the MLQPR method,as well as the data preprocessing and variable selection,are developed to design a model for predicting the SVI values.Furthermore,this proposed model is applied in a real WWTP.The experimental results demonstrate the effectiveness of the proposed method.The final section gives the conclusions.

    2.SVI Prediction

    2.1.SVI

    Sludge settling is one of the most important characteristics of ASP,which is the most commonly applied technology for WWTP.Sludge bulking,leading to poor settling in the secondary clarifier and allowing the unsettled biomass to escape with the effluent,is caused by the overdevelopment of filamentous bacteria.Sludge bulking is one of the main operational problems in activated sludge systems.

    The SVI values are the standard measure of the physical characteristics of activated sludge solids which were used to quantitatively characterize sludge bulking.When the SVI of a given mixed liquor sample is low,the settle able sludge fraction is dense with good settle ability[29].SVI indicates the tendency of activated sludge solids to thicken or to become concentrated during the sedimentation process.SVI is calculated in the following manners:1)The mixed liquor sample from the aeration basin is settled for 30 min.2)The suspended solids concentration of the same mixed liquor is determined.3)The SVI values are calculated by dividing the measured wet volume of the settled sludge.

    2.2.Hardware setup

    In order to introduce the proposed method,a sampling system is installed.The anaerobic-anoxic-oxic(A2/O)wastewater treatment system is shown in Fig.1.This A2/O wastewater treatment system includes an anaerobic tank,an anoxic tank and three oxic tanks.These tanks are constantly mixed through using the mechanical mixers.The average working volume of each tank is 60 L(a height of 110 cm and an internal diameter of 15 cm).The aeration tank is followed by a sedimentation tank(30 L).After the pretreatment processes,the wastewater enters to the anaerobic tank with a hydraulic retention time(HRT)of 0.5 h and then to the anoxic tank.The anoxic phase is completed with a HRT of 2 h and then wastewater to the aeration tank.The F/M ratio changes from 0.1 to 0.9 in the aeration tank.The aeration is performed in the aeration tank with a HRT of 8 h,and then the wastewater enters the secondary clarifier.The internal recycle is performed from the last aerobic tank to the last anoxic tank.A gas stripping device is installed at the bottom of secondary clarifier.Then the sludge in the secondary clarifier is regularly pumped into the sludge tank to ensure the stable sludge digestion.The external recycle is operated from the under flow of the secondary settler to the front end of the plant.The effluent is disinfected at the end of the process and the treated wastewater is discharged into the river.Moreover,the sludge used in this simple A2/O wastewater treatment system is from a real WWTP.

    Fig.1.Schematic diagram of A2/O wastewater treatment system.

    In addition,the online sensors are schematically distributed in the experimental hardware setup.The online sensors consist of twelve parts:the influent flow rate(Qin)mater,the external circulating flow rate(Qet)mater,the effluent flow rate(Qw)mater,the biological oxygen demand(BOD)instrument,the chemical oxygen demand(COD)instrument,the DO concentration probe,the pH instrument,the temperature(TEM)meter,three MLSS instrument and the ammonia nitrogen(NH4-N)instrument.Since there is no direct contact between the sensors and the PC-computer,a data transmitting system has been designed.All the instruments are operated in continuous/online measurement mode in the present study.The sampling points and positions are clearly shown in Fig.1.The monitored parameters includesQin,Qet,Qw,DO,food-to-microorganism ratio(F/M),sludge re flux ratio(Rr),sludge retention time(SRT),TEM,influent BOD,influent COD,NH4-N,effluent pH value(pH),MLSS1(sludge concentration at sampling point 3),MLSS2(sludge concentration at sampling point 5)and MLSS3(sludge concentration at sampling point 6).These main apparatus and instruments used in this setup are explained in Table 1.

    Table 1 The information of the online measured variables

    The values of DO,NH4-N,BOD,COD,TEM,pH,Qin,Qet,Qw,MLSS1,MLSS2and MLSS3are obtained by the online instruments.Since it is time consuming and less efficient to import the data through the USB ports,a data recorder is installed to automatically record the data from the online instruments and import the data into the computer directly.The values of F/M,Rr and SRT are gained from the calculation of some of the above parameters automatically.F/M is calculated using the BOD,Qinand MLSS1.Rr is computed using theQinandQet.SRT is related with MLSS1,MLSS2,MLSS3andQw.Furthermore,the calculation is performed using the mean value of a full day sampled MLSS1,MLSS2and MLSS3,which can represent the changes in sludge concentration,so as to ensure the accuracy of the calculation.

    2.3.Variable selection

    The normalized data matrix of the monitored parameters is M,anm×kmatrix.M can be factored into three matrices by the principal component analysis(PCA)method:

    where S=[s1,…,sk],anm×kmatrix,is the principal component scores of M;E is the residual matrix,pi;andk×1 matrix,is the eigenvector corresponding to λi(e.g.theith largest eigenvalue)of MTM,P=[p1,…,pk].kis the number of characteristic variablesis the contribution rate ofith principal component,is the interpreted cumulative contribution rate of the firstjprincipal components.The maximum of pi(i=1,…,j)indicates the highest existing correlation among variables and corresponding components.If the number in thelth(l<k)row of piis the maximum of pi,thelth characteristic variable is chosen as a principal variable.Based on the results of PCA,DO,F/M,Rr,SRT and TEM,the principal variables are chosen.

    2.4.Multivariate local quadratic polynomial regression(MLQPR)method

    In this study,the MLQPR method is used to design the SVI model according to date of the input-output variables.This method combines the multivariate quadratic polynomial regression(MQPR)model and the local linear regression(LLR).The MQPR equation is defined as:

    wheret=1,2,…,m,α(t)=[α0(t),α1(t),α2(t),…,αp(t)]Tis the regression coefficient matrix,X(t)=[X1(t),X2(t)],X1(t)=[x0(t),x1(t),…,xn(t)],X2(t)=[x1(t)x2(t),x1(t)x3(t),…,xn(t)xn(t)],x0(t)=1,xi(t)is theith variable of x(t),x(t)=[DO(t),F/M(t),Rr(t),SRT(t),TEM(t)].

    In fact,the multivariate quadratic polynomial relationship of the MQPR model cannot indicate the impact of each variable.Therefore,a significant test should be taken for each variable to determine its state.The test statistic is defined as[30].

    wheree(t)=yd(t)-y1(t),yd(t)is real output value of thetth observation sample,ciirepresents theith element of main diagonal of the matrix(XT(t)X(t))-1.

    The significance of regression coefficients is analyzed according to the test indicators in statistics.Given the significance level λ=0.05,the critical value is obtained asTλ/2(m-p-1),if|η(t)|>Tλ/2(m-p-1),theith regression coefficient of α(t)is not significant and theith variable of X(t)is deleted.After eliminating the nonsignificant input variables in X(t),the MLQPR model can be written as:

    where Z(t)=[z0(t),z1(t),…,zq(t)],zi(t),(i=0,1,…,q)represents the remaining input variables in X(t),andz0(t)=1,θ(t)=[θ0(t),θ1(t),…,θq(t)]Tis the coefficient matrix,and

    wheretis in the neighborhood oft0,θ′iis the derivative of θi(t).The square sum of errors is:

    whereKh(t-t0)=his the bandwidth used to control of the size of the local neighborhood.

    To minimize the square sum of errors in Eq.(6),the coefficients are calculated based on the weighted least squares:and three indicators are considered to determine the appropriate value of bandwidthh0.

    where^y(t)|his the estimated value at thetth sample when the smoothing parameter ish.The value ofC(h)is given within a small range.h′=h+1,U(h′)is the relative variation ofC(h′),andU(h′) ≤1,D(h′)is the relative variation ofU(h′).C(h)andD(h)are limited to a reasonable range respectively.The lower bound ofD(h)is given.

    2.5.SVI model based on MLQPR

    To express the relation between the selected monitored process variables and the SVI clearly,the MLQPR model of SVI is discussed in details.In fact,the error of MLQPR model is related to the indicators ofC(h),U(h)andD(h).The MLQPR model is able to obtain suitable test performance whenC(h)is small.However,whenC(h)is close to zero,the generalization performance of the model is poor due to the noise in the data.Therefore,C(h)is limited within the range of[0.0003 0.0015]in this paper.Meanwhile,U(h)is used to judge the local variation performance of the MLQPR model.WhenU(h)is close to 1,the MLQPR model will be easily subjected to noise.On the other hand,ifU(h)is close to 0,the complexity of the MLQPR model will be reduced and the performance of the MLQPR model will be poor.Here,theU(h)is given within the range of[0.01 0.03].Moreover,the minimum ofD(h)is used to judge the stability of the MLQPR model.Based on the former results,the minimum ofD(h)is pre-set as 0.001.Then,according to Eqs.(2)-(4),the MSQPR model is obtained,and the appropriatehis selected by Eqs.(11)-(13).Finally,based on the above discussion,the MLQPR model is:

    where θ0(t),θ1(t),…,θ11(t)represent the corresponding coefficients of each variable in the multivariate local quadratic polynomial regression model.

    The basic idea of the proposed MLQPR model is to improve the precision of the final multivariate quadratic polynomial regression by taking the local approximation scheme.Initially,an MQPR model is established and the significance of each regression coefficient is tested.In addition,a local approximation scheme is applied into the regression coefficient.For clarification,the procedure of the establishment of the MLQPR model can be summarized as follows.

    Step 1)Create an MQPR model as Eq.(2).The input variables not only contain the selected process variable,but also the quadratic combination of them.

    Step 2)The hypothesis test in Eq.(3)is used to analyze the significance of regression coefficients.The least significant coefficient and its corresponding input variable is deleted,and the remaining input variables are used to establish a new quadratic polynomial regression model.

    Step 3)Repeat Step 2,until all the regression coefficients are significant.

    Step 4)The remaining input variables are used as the input variables of MLQPR model in Eq.(4).The θi(t)is calculated using Eq.(8).The initialhis given.

    Step 5)The value ofC(h)andU(h)are given within a small range,the lower bound ofD(h)is given.Compute theC(h)using Eq.(11).

    Step 6)h=h+1,Compute theU(h)andD(h)using Eqs.(12)and(13).IfC(h)orU(h)exceeds the limit of the given small range,orD(h)is less than the lower bound ofD(h),stop.Then go to step 4,the MLQPR model is obtained.

    3.Experiment Studies

    In this experiment,the MLQPR model is proposed to predict the SVI values.The DO,F/M,Rr,SRT and TEM are used as the inputs for the model to estimate the SVI values.A dataset containing 600 process samples(from1st March 2015 to 30th September 2015)was selected in this experiment.After deleting abnormal data,583 samples were obtained and normalized.The last 100 samples were used as testing data,while the remaining samples were employed as training data.All data are normalized and de-normalized between 0 and 1 before and after application in the MLQPR model.

    All the simulations are programmed with MATLAB version 7.01,and were run on a Pentium 4 with a clock speed of2.6 GHZ and 1 GB of RAM,under a Microsoft Windows 8 environment.

    In order to evaluate the performance of the proposed method,the following indices are used.The root mean square error(RMSE)is defined as:

    the Theil inequality coefficient(TIC)is defined as:

    the prediction accuracy is defined as:

    wheremis the number of samples of the test set;yd(t)is real output of thetth observation sample;^y(t)is the predictive value of thetth observation sample.

    3.1.SVI prediction and evaluation of the MLQPR method

    For indicating the effectiveness of the different models,in this study,two cases of the evaluations are discussed.In case 1 study,the MLQPR comparison to the same MLQPR method when the training dataset is prone to the disturbance.In case 2 study,the MLQPR comparison to the other local regression models and the SVI mathematical models.

    3.1.1.Case 1 study

    The predicting results of the MLQPR model with and without disturbance are shown in details.In this case,the disturbance was normally distributed with a standard deviation of 0.0316.

    The optimum bandwidth of kernel function ish=31.The predicting results of SVI are shown in Figs.2-3.Fig.2 displays the predicting results of the SVI values without disturbance,together with the real process output.The predicting results of the SVI values in the condition that the training dataset is prone to the disturbance are presented in Fig.3,together with the real process output.Fig.4 shows the error between the plant output and the testing results.When there exists disturbance in the input-output dataset,the error between the plant output and the testing results is given in Fig.5.More specifically,the blank parts of Figs.2 and 3 are the real SVI values.The blue parts in Figs.2 and 4 represent the predicted SVI values and the errors between the plant output and the testing results when there is no disturbance.The red parts in Figs.3 and 5 are the predicted SVI values and the errors between the plant output and the testing results with disturbance.The predicting errors in both conditions,respectively shown in Figs.4 and 5,are less than ±2.5 ml·g-1.Moreover,the performance of the two conditions is compared in Table 2.The root mean square error,the Theil inequality coefficient,and the prediction accuracy are computed according to Eq.(17),Eq.(18)and Eq.(19).

    Fig.2.The predicting outputs without disturbance.

    Fig.3.The predicting outputs with disturbance.

    Fig.4.The predicting errors without disturbance.

    Fig.5.The predicting errors with disturbance.

    Based on the results in Table 2,the following specific comments canbe made.1)The accuracies of the proposed MLQPR models are better for SVI prediction,due to the low RMSE,low TIC and high accuracy whether there exists disturbance or not.2)The comparisons demonstrate that the proposed model has a certain ability of interference immunity.

    Table 2 Comparative performance for SVI prediction

    3.1.2.Case 2 study

    In this case,the MLQPR model is compared with the other models:the LLR model,the MLQPR1 model(without squared terms in the model).The variables and descriptions of them are shown in Table 3.

    The performance comparison of these three methods is shown inTable 4,and the root mean square error,Theil inequality coefficient,prediction accuracy are computed according to Eq.(17),Eq.(18)and Eq.(19).

    Table 3 The variables and descriptions for the local regression methods

    Table 4 Comparative performance for SVI prediction

    From Table 4,the following specific comments can be made.1)The accuracy of the proposed MLQPR model is better than that of the LLR method and the MLQPR1 model.2)The testing RMSE value of the proposed MLQPR model is the smallest.The comparisons demonstrate that the MLQPR model is more suitable for the SVI prediction than some existing methods.

    In addition,the predicting performance of MLQPR model is compared to the image analysis model in[18],the mathematic model in[20],the dynamic ARX model in[22],the feed forward neural network in[29],and the SORBF in[26].Their performance is compared in Table 5,for fair comparison,some experimental result of the other SVI models are the same as the initial papers.The results in Table 5 indicate that the prediction system with MLQPR method has the following advantages for SVI prediction compared to other methods.(1)As shown in the Table 5,the proposed MLQPR prediction method obtains the best testing RMSE values for the predictions of SVI than other prediction methods.(2)In this case,the MLQPR model gets the best accuracy(best value is 99.7%)both for the minima and maxima values.The results show that the SVI values can be predicted well by the MLQPR method to meet the limits specified by the regulations.(3)This dynamic characteristic of MLQPR is very useful to predict the SVI values for the WWTP.

    Table 5 A comparison of the performance of different models

    3.2.Analysis of the experimental results

    The MLQPR method has been successfully used in the process industries.It has been proved to be an efficient method to predict SVI values according to the above results.To gain deeper understanding of the proposed SVI predicting plant with the MLQPR method,the special comparisons of the SVI prediction performance among the two methods:the LLR and the MLQPR1 were analyzed.According to the results in Table 3,it can be seen that the proposed MLQPR not only can obtain a compact structure,but also can obtain a high-precision prediction result than other methods.Compared with the adaptive methods(LLR and MLQPR1),it is more suitable for modeling the nonlinear system by utilizing the significance test for the regression coefficients.

    For comparison purposes,the image analysis,the mathematic model,the dynamic ARX and the feed-forward neural network in case 2 are used for comparison.Table 5 shows that the MLQPR method can obtain higher mean accuracy than that in the image analysis model,the mathematic model,the dynamic ARX and the feed-forward neural network in the SVI predicting.The results demonstrate that the proposed MLQPR featuring higher predicting performance can be effectively applied for the sludge bulking risks in the WWTPS.

    Moreover,predicting sludge bulking in this way can give accurate results(see Tables 3,4 and 5).It can be used to prevent sludge bulking,and ensure the effluent quality during sewage treatment operation process in time.The results demonstrate that the SVI trends in WWTP can be predicted with acceptable accuracy using the DO,F/M,Rr,SRT and TEM data as model input variables.

    4.Conclusions

    In this paper,a data-driven model,based on the MLQPR method,is proposed to predict the SVI values.The proposed MLQPR model is able to describe the relationship between SVI and the relative variables,as well as adjust the weights of model to improve the accuracy.Then,a real SVI predicting system,using the MLQPR model,is developed.Based on the results,the key findings of this study can be summarized as:

    (1)A novel method—the MLQPR model,combining the MQPR method and the LLR method is developed to describe the nonlinear and complicated relationships between SVI and the variables of DO,F/M,SRT,Rr and TEM with a certain interference immunity.

    (2)This proposed MLQPR model is able to update the regression coefficient onlineviahypothesis test.Therefore,this proposed MLQPR model can predict the SVI values with suitable accuracy.

    (3)The results indicate that the proposed MLQPR model is a robust and effective model for predicting the SVI values.Furthermore,the proposed system with MLQPR is successfully applied in a real WWTP,which is essential to develop an efficient controller according to the predicting results.

    [1]R.Dewil,J.Baeyensa,R.Goutvrind,The use of ultrasonics in the treatment of waste activated sludge,Chin.J.Chem.Eng.14(1)(2006)105-113.

    [2]A.D.Kotzapetros,P.A.Paraskevas,A.S.Stasinakis,Design of a modern automatic control system for the activated sludge process in wastewater treatment,Chin.J.Chem.Eng.23(8)(2015)1340-1349.

    [3]X.Flores-Alsina,J.Comas,I.Rodriguez-Roda,K.V.Gernaey,C.Rosen,Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model,Water Res.43(18)(2009)4527-4538.

    [4]M.Laureni,D.G.Weissbrodt,I.Szivák,O.Robin,J.L.Nielsen,E.Morgenroth,A.Joss,Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater,Water Res.80(1)(2015)325-336.

    [5]J.Wang,Q.Li,R.Qi,V.Tandoi,M.Yang,Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant,Process Biochem.49(12)(2014)2258-2265.

    [6]W.Li,P.Zheng,Y.L.Wu,E.C.Zhan,Z.H.Zhang,R.Wang,Y.J.Xing,G.Abbas,B.S.Zeb,Sludge bulking in a high-rate denitrifying automatic circulation(DAC)reactor,Chem.Eng.J.240(6)(2014)387-393.

    [7]J.Wang,R.Qi,M.Liu,Q.Li,H.Bao,Y.Li,S.Wang,V.Tandoi,M.Yang,The potential role ofCandidatus Microthrix parvicellain phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants,Water Sci.Technol.70(2)(2014)367-375.

    [8]I.Lou,Combination of respirometry and molecular approach for re-evaluating microbial kinetic selection of filamentous bulking in wastewater treatment system,Adv.Sci.Lett.9(1)(2012)540-544.

    [9]P.H.Nielsen,P.Roslev,T.E.Dueholm,J.L.Nielsen,Microthrix parvicella,a specialized lipid consumer in anaerobic-aerobic activated sludge plants,Water Sci.Technol.46(1-2)(2002)73-80.

    [10]H.Han,J.F.Qiao,Prediction of activated sludge bulking based on a self-organizing RBF neural network,J.Process Control22(6)(2012)1103-1112.

    [11]M.Tampus,A.Martins,L.M.Van,The effect of anoxic selectors on sludge bulking,Water Sci.Technol.50(6)(2004)261-268.

    [12]J.H.Choi,H.L.Sang,K.Fukushi,K.Yamamoto,Comparison of sludge characteristics and PCR-DGGE based microbial diversity of nanofiltration and micro filtration membrane bioreactors,Chemosphere67(8)(2007)1543-1550.

    [13]M.Eschenhagen,M.Schuppler,I.R?ske,Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents,Water Res.37(13)(2003)3224-3232.

    [14]A.A.Zinatizadeh,A.R.Mohamed,M.D.Mashitah,A.Z.Abdullah,I.M.Hasnain,Characteristics of granular sludge developed in an up- flow anaerobic sludge fixedfilm bioreactor treating palm oil mill effluent,Water Environ.Res.79(8)(2007)833-844.

    [15]A.M.Martins,K.Pagilla,J.J.Heijnen,M.C.van Loosdrecht,Filamentous bulking sludge:a critical review,Water Res.38(4)(2004)793-817.

    [16]S.M.Kotay,T.Datta,J.Choi,R.Goel,Biocontrol of biomass bulking caused byHaliscomenobacter hydrossisusing a newly isolated lytic bacteriophage,Water Res.45(1)(2011)694-704.

    [17]I.Lou,Y.C.Zhao,Sludge bulking prediction using principle component regression and artificial neural network,Math.Probl.Eng.583(3)(2012)295-308.

    [18]D.P.Mesquita,O.Dias,A.M.A.Dias,A.L.Amaral,E.C.Ferreira,Correlation between sludge settling ability and image analysis information using partial least squares,Anal.Chim.Acta642(1)(2009)94-101.

    [19]M.G.Adonadaga,Effect of dissolved oxygen concentration on morphology and settle ability of activated sludge flocs,J.Appl.Environ.Microbiol.3(2)(2015)31-37.

    [20]D.L.Giokas,G.T.Daigger,M.von Sperling,Y.Kim,P.A.Paraskevas,Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database,Water Res.37(16)(2003)3821-3836.

    [21]E.Ramin,D.S.Wágner,L.Yde,P.J.Binning,M.R.Rasmussen,P.S.Mikkelsen,B.G.Plósz,A new settling velocity model to describe secondary sedimentation,Water Res.66(1)(2014)447-458.

    [22]D.Jassby,Y.Xiao,A.J.Schuler,Biomass density and filament length synergistically affect activated sludge settling:systematic quantification and modeling,Water Res.48(1)(2014)457-465.

    [23]I.Y.Smets,E.N.Banadda,J.Deurinck,N.Renders,R.Jenné,J.F.van Impe,Dynamic modeling of filamentous bulking in lab-scale activated sludge processes,J.Process Control16(3)(2006)313-319.

    [24]M.Bagheri,S.A.Mirbagheri,Z.Bagheri,A.M.Kamarkhani,Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach,Process Saf.Environ.Prot.95(1)(2015)12-25.

    [25]H.Han,J.Qiao,Hierarchical neural network modeling approach to predict sludge volume index of wastewater treatment process,IEEE Trans.Control Syst.Technol.21(6)(2013)2423-2431.

    [26]H.Han,Q.Chen,J.Qiao,An efficient self-organizing RBF neural network for water quality prediction,Neural Netw.24(7)(2011)717-725.

    [27]S.Yin,S.X.Ding,X.Xie,H.Luo,A review on basic data-driven approaches for industrial process monitoring,IEEE Trans.Ind.Electron.61(11)(2014)6418-6428.

    [28]H.Haimi,M.Mulas,F.Corona,R.Vahala,Data-derived soft-sensors for biological wastewater treatment plants:an overview,Environ.Model.Softw.47(1)(2013)88-107.

    [29]J.M.Brault,R.Labib,M.Perrier,P.Stuart,Prediction of activated sludge filamentous bulking using ATP data and neural networks,Can.J.Chem.Eng.89(4)(2011)901-913.

    [30]Q.Q.Tian,J.J.Chen,J.K.Dong,A method of constructing the fuel efficiency model based on quadratic polynomial regression,Procedia Eng.15(1)(2011)3749-3753.

    中文在线观看免费www的网站| 99国产综合亚洲精品| 欧美黄色淫秽网站| 日韩人妻高清精品专区| 夜夜夜夜夜久久久久| 精品国产亚洲在线| 美女cb高潮喷水在线观看 | 亚洲精品中文字幕一二三四区| 成人永久免费在线观看视频| 一本久久中文字幕| 人妻夜夜爽99麻豆av| 亚洲国产精品久久男人天堂| 精品久久久久久久毛片微露脸| 亚洲va日本ⅴa欧美va伊人久久| 一本一本综合久久| 一级毛片女人18水好多| 亚洲性夜色夜夜综合| 亚洲真实伦在线观看| 亚洲av片天天在线观看| 午夜免费观看网址| 巨乳人妻的诱惑在线观看| 亚洲欧美日韩无卡精品| 日韩中文字幕欧美一区二区| 亚洲男人的天堂狠狠| 色播亚洲综合网| 久久久久精品国产欧美久久久| 久久久久九九精品影院| 性色avwww在线观看| cao死你这个sao货| 亚洲七黄色美女视频| 制服丝袜大香蕉在线| or卡值多少钱| 嫩草影院精品99| 国产精品一区二区三区四区久久| 丰满的人妻完整版| 国产高清激情床上av| 亚洲自拍偷在线| 精品福利观看| 精品午夜福利视频在线观看一区| 国产欧美日韩一区二区精品| 亚洲专区国产一区二区| 三级国产精品欧美在线观看 | 天天一区二区日本电影三级| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 久久天躁狠狠躁夜夜2o2o| 91av网一区二区| 在线国产一区二区在线| 国产精品久久视频播放| 国产乱人视频| 黄色丝袜av网址大全| 免费人成视频x8x8入口观看| 国产av在哪里看| 一本精品99久久精品77| 成在线人永久免费视频| 国产乱人视频| 麻豆一二三区av精品| 母亲3免费完整高清在线观看| 午夜视频精品福利| 韩国av一区二区三区四区| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久 | 啪啪无遮挡十八禁网站| 天堂动漫精品| 国产av麻豆久久久久久久| 国产成年人精品一区二区| 这个男人来自地球电影免费观看| 日本黄大片高清| 国产视频内射| 午夜免费观看网址| 在线a可以看的网站| 日日摸夜夜添夜夜添小说| 无人区码免费观看不卡| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久免费视频| 日本 欧美在线| 国语自产精品视频在线第100页| 精品久久久久久久末码| www.自偷自拍.com| 免费一级毛片在线播放高清视频| 天天躁日日操中文字幕| 人人妻,人人澡人人爽秒播| 91老司机精品| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 亚洲精品乱码久久久v下载方式 | 国产高清videossex| 国产精品九九99| 亚洲专区国产一区二区| 午夜久久久久精精品| 91在线精品国自产拍蜜月 | 免费观看的影片在线观看| 午夜福利高清视频| 人妻丰满熟妇av一区二区三区| 最近在线观看免费完整版| 日韩欧美三级三区| 一区二区三区激情视频| 国内久久婷婷六月综合欲色啪| 日本一二三区视频观看| 深夜精品福利| 日本黄大片高清| 成人一区二区视频在线观看| 久99久视频精品免费| 老汉色av国产亚洲站长工具| 国产视频一区二区在线看| 国产成人啪精品午夜网站| av在线天堂中文字幕| 免费无遮挡裸体视频| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 亚洲国产精品久久男人天堂| 桃红色精品国产亚洲av| 国产成年人精品一区二区| 免费在线观看影片大全网站| 一本精品99久久精品77| 久久久国产成人免费| 久久久国产精品麻豆| 国产精品久久久久久精品电影| 午夜两性在线视频| 黑人欧美特级aaaaaa片| 国产淫片久久久久久久久 | 欧美黑人巨大hd| 国产男靠女视频免费网站| 国产亚洲精品av在线| 久99久视频精品免费| 嫩草影院精品99| 久久久久亚洲av毛片大全| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久久久久久| 性色avwww在线观看| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 一个人免费在线观看电影 | 噜噜噜噜噜久久久久久91| 少妇熟女aⅴ在线视频| 欧美色欧美亚洲另类二区| 免费人成视频x8x8入口观看| 久久精品夜夜夜夜夜久久蜜豆| 国产一区在线观看成人免费| 欧美av亚洲av综合av国产av| 午夜a级毛片| 成年女人看的毛片在线观看| 亚洲最大成人中文| 欧美最黄视频在线播放免费| 久久午夜综合久久蜜桃| 精品熟女少妇八av免费久了| 91av网站免费观看| 亚洲精品美女久久av网站| 巨乳人妻的诱惑在线观看| av天堂在线播放| 黄色成人免费大全| 久久久久免费精品人妻一区二区| 日本三级黄在线观看| 免费看日本二区| 国内精品久久久久久久电影| 最近最新免费中文字幕在线| 亚洲国产精品成人综合色| 欧美成人性av电影在线观看| 亚洲国产欧美人成| 在线免费观看的www视频| 日韩精品青青久久久久久| 全区人妻精品视频| 黄色日韩在线| 香蕉久久夜色| 小蜜桃在线观看免费完整版高清| 美女扒开内裤让男人捅视频| 中亚洲国语对白在线视频| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件 | 精品一区二区三区视频在线观看免费| 一级毛片高清免费大全| 中文在线观看免费www的网站| 欧美3d第一页| cao死你这个sao货| 综合色av麻豆| 在线视频色国产色| 亚洲av成人不卡在线观看播放网| 又紧又爽又黄一区二区| h日本视频在线播放| 亚洲国产高清在线一区二区三| 99国产精品一区二区三区| 一级毛片精品| 制服人妻中文乱码| 精品久久久久久成人av| 成人高潮视频无遮挡免费网站| 亚洲中文日韩欧美视频| 亚洲电影在线观看av| 日韩欧美精品v在线| 久久久水蜜桃国产精品网| 嫩草影院入口| 免费看美女性在线毛片视频| 国内毛片毛片毛片毛片毛片| 欧美一区二区国产精品久久精品| 无遮挡黄片免费观看| 久久精品人妻少妇| 一级毛片精品| 最新美女视频免费是黄的| 首页视频小说图片口味搜索| 免费在线观看成人毛片| 亚洲成a人片在线一区二区| 亚洲成a人片在线一区二区| 国产淫片久久久久久久久 | 国产高清三级在线| 这个男人来自地球电影免费观看| 亚洲,欧美精品.| 国产一区二区在线观看日韩 | av视频在线观看入口| 国产高清视频在线观看网站| 国产男靠女视频免费网站| 熟女电影av网| 欧美日韩国产亚洲二区| 欧美不卡视频在线免费观看| 国产免费男女视频| 天堂影院成人在线观看| 亚洲第一欧美日韩一区二区三区| 免费人成视频x8x8入口观看| 嫩草影院精品99| 午夜影院日韩av| 国产乱人伦免费视频| 久久香蕉精品热| 国产精品一区二区三区四区免费观看 | 最新美女视频免费是黄的| 亚洲欧美激情综合另类| 我要搜黄色片| 男人舔女人下体高潮全视频| 国产精品影院久久| av福利片在线观看| 欧美最黄视频在线播放免费| 在线看三级毛片| 免费观看的影片在线观看| 精品国产乱码久久久久久男人| 久久人人精品亚洲av| 久久久久久久久中文| 国产 一区 欧美 日韩| 美女 人体艺术 gogo| 亚洲成人久久爱视频| 午夜激情欧美在线| 男女之事视频高清在线观看| 日韩三级视频一区二区三区| av欧美777| 99视频精品全部免费 在线 | 成人欧美大片| 成人18禁在线播放| 日韩欧美在线二视频| 91麻豆av在线| 午夜激情欧美在线| 成人av在线播放网站| 97超视频在线观看视频| 美女大奶头视频| 国产黄片美女视频| 日韩精品中文字幕看吧| 国产精品一区二区三区四区免费观看 | 精品国产超薄肉色丝袜足j| 成年女人看的毛片在线观看| 91av网一区二区| 日韩 欧美 亚洲 中文字幕| 麻豆国产97在线/欧美| 亚洲欧美一区二区三区黑人| 亚洲成av人片免费观看| 亚洲男人的天堂狠狠| 日韩国内少妇激情av| 动漫黄色视频在线观看| h日本视频在线播放| netflix在线观看网站| 丁香六月欧美| 看免费av毛片| 99热精品在线国产| 久久久久久久久免费视频了| 天堂网av新在线| 色av中文字幕| 午夜成年电影在线免费观看| 欧美中文综合在线视频| 成人三级做爰电影| 亚洲欧美精品综合久久99| 午夜福利成人在线免费观看| 首页视频小说图片口味搜索| 欧美3d第一页| xxxwww97欧美| 岛国在线免费视频观看| 国产精品久久久久久人妻精品电影| 在线观看午夜福利视频| 成年人黄色毛片网站| 欧美乱妇无乱码| 成人性生交大片免费视频hd| 两人在一起打扑克的视频| 熟女少妇亚洲综合色aaa.| 亚洲一区高清亚洲精品| 国产97色在线日韩免费| 亚洲精品456在线播放app | 啦啦啦韩国在线观看视频| 成熟少妇高潮喷水视频| 久久九九热精品免费| 18美女黄网站色大片免费观看| 欧美成人一区二区免费高清观看 | 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看| 成人亚洲精品av一区二区| 成年免费大片在线观看| 久久精品国产99精品国产亚洲性色| 午夜成年电影在线免费观看| 香蕉久久夜色| 999精品在线视频| 国产伦精品一区二区三区视频9 | 午夜免费成人在线视频| 精品电影一区二区在线| 亚洲精品在线观看二区| 亚洲电影在线观看av| 亚洲精品乱码久久久v下载方式 | 一区二区三区激情视频| 啦啦啦韩国在线观看视频| 成在线人永久免费视频| 99热这里只有精品一区 | 亚洲国产精品sss在线观看| 两个人的视频大全免费| 成人永久免费在线观看视频| 又黄又粗又硬又大视频| 久久国产精品影院| 成人av一区二区三区在线看| 日韩成人在线观看一区二区三区| 村上凉子中文字幕在线| 神马国产精品三级电影在线观看| 国产av在哪里看| 嫩草影视91久久| 国内揄拍国产精品人妻在线| 亚洲性夜色夜夜综合| 国产成人av教育| 国产激情久久老熟女| 欧美3d第一页| 中文字幕最新亚洲高清| 亚洲av片天天在线观看| 在线a可以看的网站| 91av网一区二区| 国产精品一区二区三区四区久久| 黄色视频,在线免费观看| 国产精品 国内视频| 高清毛片免费观看视频网站| 别揉我奶头~嗯~啊~动态视频| 国模一区二区三区四区视频 | 国产视频内射| 免费在线观看成人毛片| 国产成人欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色丝袜av网址大全| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线美女| 亚洲成人精品中文字幕电影| 国产精品综合久久久久久久免费| 19禁男女啪啪无遮挡网站| 久久久久免费精品人妻一区二区| 一个人看的www免费观看视频| 好男人电影高清在线观看| 嫩草影院入口| 一个人看视频在线观看www免费 | 中文字幕最新亚洲高清| 精品久久久久久,| 少妇裸体淫交视频免费看高清| 啦啦啦韩国在线观看视频| 午夜免费观看网址| 色尼玛亚洲综合影院| 日本五十路高清| 99久久国产精品久久久| 欧美日韩综合久久久久久 | 亚洲成av人片在线播放无| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 久99久视频精品免费| 国产一级毛片七仙女欲春2| 国模一区二区三区四区视频 | 麻豆成人午夜福利视频| 黄色 视频免费看| 免费观看的影片在线观看| 精品不卡国产一区二区三区| 欧美成人一区二区免费高清观看 | 一级作爱视频免费观看| 亚洲精品在线美女| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩一级在线毛片| 久久精品人妻少妇| 精品一区二区三区四区五区乱码| 最好的美女福利视频网| 欧美3d第一页| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 久久久国产成人精品二区| 人人妻人人澡欧美一区二区| 色视频www国产| 人人妻人人澡欧美一区二区| 99久国产av精品| 91av网一区二区| 精品日产1卡2卡| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 国产激情久久老熟女| 久久婷婷人人爽人人干人人爱| 国产激情久久老熟女| 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 午夜免费观看网址| 精品国产乱子伦一区二区三区| 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| a级毛片a级免费在线| 在线国产一区二区在线| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 国产av不卡久久| 国产精品电影一区二区三区| or卡值多少钱| 亚洲专区字幕在线| 国产精品av久久久久免费| 欧美高清成人免费视频www| 午夜福利免费观看在线| 国产激情欧美一区二区| 亚洲无线在线观看| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 在线观看午夜福利视频| 欧美日韩黄片免| 熟女人妻精品中文字幕| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 亚洲avbb在线观看| 香蕉av资源在线| 欧美国产日韩亚洲一区| 天堂动漫精品| 少妇的逼水好多| 嫩草影院精品99| 成人永久免费在线观看视频| 成人午夜高清在线视频| 在线观看66精品国产| 久久天躁狠狠躁夜夜2o2o| 男人的好看免费观看在线视频| 久久久精品大字幕| 床上黄色一级片| 精品99又大又爽又粗少妇毛片 | 老司机深夜福利视频在线观看| 听说在线观看完整版免费高清| 中文资源天堂在线| 国产成人精品无人区| h日本视频在线播放| 高清毛片免费观看视频网站| 不卡一级毛片| 美女 人体艺术 gogo| 2021天堂中文幕一二区在线观| 女人被狂操c到高潮| 日本 av在线| 亚洲人成网站高清观看| 视频区欧美日本亚洲| 亚洲无线观看免费| 日本 欧美在线| 精品国产亚洲在线| 久99久视频精品免费| 日本与韩国留学比较| 老司机午夜福利在线观看视频| 午夜福利欧美成人| www.熟女人妻精品国产| 十八禁网站免费在线| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 黑人巨大精品欧美一区二区mp4| 精品一区二区三区视频在线 | 一二三四社区在线视频社区8| 亚洲av中文字字幕乱码综合| 日韩欧美免费精品| 麻豆成人av在线观看| 久久久色成人| 神马国产精品三级电影在线观看| 国产v大片淫在线免费观看| 欧美在线黄色| 中文字幕最新亚洲高清| 国产成人福利小说| 人人妻人人看人人澡| 亚洲七黄色美女视频| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 白带黄色成豆腐渣| 国产成人精品久久二区二区91| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| 中文字幕人成人乱码亚洲影| 亚洲av成人精品一区久久| 久久久精品欧美日韩精品| 免费无遮挡裸体视频| 后天国语完整版免费观看| 久久久久亚洲av毛片大全| 色av中文字幕| 五月玫瑰六月丁香| 国产亚洲精品av在线| 男女视频在线观看网站免费| 黄色 视频免费看| 国产单亲对白刺激| 丰满人妻一区二区三区视频av | 不卡av一区二区三区| 这个男人来自地球电影免费观看| www.自偷自拍.com| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 99国产精品一区二区三区| 国产亚洲av嫩草精品影院| 国产三级中文精品| 午夜成年电影在线免费观看| 久久久久久国产a免费观看| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 一级a爱片免费观看的视频| 国产综合懂色| 舔av片在线| h日本视频在线播放| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区三| 波多野结衣巨乳人妻| 亚洲av熟女| 日本黄大片高清| 欧美丝袜亚洲另类 | 久久久久久久久免费视频了| 国产精品av久久久久免费| 熟女电影av网| 99久久精品国产亚洲精品| 在线永久观看黄色视频| 麻豆一二三区av精品| 欧美在线一区亚洲| 国内揄拍国产精品人妻在线| 欧美大码av| 国产精品av久久久久免费| 熟女电影av网| 男人的好看免费观看在线视频| 欧美日韩瑟瑟在线播放| 免费大片18禁| 国产精品99久久久久久久久| 久久中文字幕人妻熟女| 搞女人的毛片| 毛片女人毛片| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 欧美zozozo另类| 免费在线观看影片大全网站| 国产单亲对白刺激| АⅤ资源中文在线天堂| 亚洲国产精品合色在线| 国产成人aa在线观看| 热99在线观看视频| 一区二区三区国产精品乱码| 国产精品 国内视频| 国产乱人视频| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 久久国产精品影院| 美女高潮的动态| 欧美黄色片欧美黄色片| 熟妇人妻久久中文字幕3abv| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 可以在线观看毛片的网站| 夜夜爽天天搞| 嫩草影视91久久| www.熟女人妻精品国产| 叶爱在线成人免费视频播放| 久久精品91蜜桃| 婷婷丁香在线五月| 国产黄a三级三级三级人| 黄色日韩在线| 美女高潮的动态| 亚洲精品美女久久av网站| 久久久久国产精品人妻aⅴ院| 欧美日韩一级在线毛片| 日韩欧美一区二区三区在线观看| 亚洲av片天天在线观看| 嫁个100分男人电影在线观看| 97人妻精品一区二区三区麻豆| 欧美一级a爱片免费观看看| 岛国在线免费视频观看| 嫩草影视91久久| 观看免费一级毛片| 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 亚洲国产中文字幕在线视频| 亚洲无线在线观看| 亚洲电影在线观看av| 久久草成人影院| 亚洲国产欧洲综合997久久,| 欧美日韩精品网址| 无人区码免费观看不卡| 国产欧美日韩一区二区三| 一个人看视频在线观看www免费 | 中文字幕高清在线视频| 日韩av在线大香蕉| 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 久久久久久大精品| 亚洲电影在线观看av| 校园春色视频在线观看| 亚洲无线在线观看| 午夜福利在线观看免费完整高清在 | 久久久久久久午夜电影| 精品福利观看|