• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalyst-free and solvent-free oxidation of cycloalkanes(C5-C8)with molecular oxygen:Determination of autoxidation temperature and product distribution☆

    2018-06-29 09:16:02HaiminShenYanWangJinhuiDengLongZhangYuanbinShe

    Haimin Shen,Yan Wang,Jinhui Deng,Long Zhang,Yuanbin She*

    State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China

    1.Introduction

    The oxidation of cycloalkanes to corresponding cycloalkanols,cycloalkanones and aliphatic diacids is an extremely important chemical transformation not only in chemical industry but also in academic research,especially for cyclohexane[1-9].In the oxidation of cyclohexane,the obtained cyclohexanol and cyclohexanone are very important intermediates in the production of caprolactam,and adipic acid which is the irreplaceable precursor in the production of nylon-66 and nylon-6 polymers[10-19].Glutaric acid,heptanedioic acid and octanedioic acid obtained from oxidation of the corresponding cycloalkane directly or indirectly are important precursors in the production of various macromolecule polymers too[20-24].In addition,cycloalkanols and cycloalkanones are important intermediates and solvents in the chemical industry and academic research[25-31].To realize this necessary transformation from cycloalkanes to their oxidized products,several oxidants can be employed,such as iodosylbenzene[32-38],iodosylbenzene diacetate[34,38-40],tert-butyl hydroperoxide[41-49],m-chloroperoxybenzoic acid[50-55],hydrogen peroxide[56-63],molecular oxygen[64-72],ozone[73,74],and so on.Among these oxidants,molecular oxygen is considered as the most promising choice from the perspective of Green Chemistry,which is inexpensive,readily available,and environmentally benign with harmless water as the only by-product.In current industrial process,the oxidation of cyclohexane is conducted at 150-170°C and 1.0-2.0 MPa pressure using homogeneous cobalt salt as catalyst and molecular oxygen as oxidant,and in order to improve the selectivity of desired products(cyclohexanol and cyclohexanone),the conversion of cyclohexane is usually kept at 3%-8%with an acceptable selectivity towards cyclohexanol and cyclohexanone,80%-85%[12,18,47,75-78].The main drawbacks of the current industrial process are the high temperature,low conversion,low selectivity and low yield,especially the high temperature which induces the oxidation of cyclohexane to process through uncatalyzed and unselective free radical autoxidation pathways,resulting in the low selectivity[75].In order to smooth the transformation from cycloalkanes to their oxidized products employing molecular oxygen as oxidant,several catalytic systems have been explored,such as transition metal complex catalysis[8-81],metal nanoparticle catalysis[68-72,82,83],metal oxide nanoparticle catalysis[3,16],molecular sieve catalysis[84-86],carbon material catalysis[69,87,88],photocatalysis[9,71,89],and so on.Although the conversion of cycloalkanes and the selectivity of desired oxidized products are improved obviously under the catalytic condition,the reaction temperature still stays at about150°C in most of the oxidation systems,and the obtained oxidized products still is a mixture of cycloalkanols and cycloalkanones,even some aliphatic diacids[8,70,72,80-82,86].At so high temperature,the oxidation of cycloalkanes at the presence of molecular oxygen as oxidant processes through both catalytic oxidation pathway and autoxidation pathway which is unselective and limits the improvement in the selectivity.How to eliminate the autoxidation in the catalytic oxidation of cycloalkanes is an enormous challenge in the precise adjustment of the product formation.

    In our attempt to adjust the product formation precisely in the oxidation of cyclohexane using metalloporphyrin as catalyst and molecular oxygen as oxidant[90-95],it was found that,in most of the catalytic systems reported at present,the oxidation of cyclohexane processed through both catalytic oxidation pathway and autoxidation pathway because of the high reaction temperature,resulting in low selectivity[8,70,72,80-82,86].The high reaction temperature is the origin of the autoxidation.It may be a good choice to conduct the oxidation of cycloalkanes at lower temperature to avoid the unselective autoxidation and enhance the desired product selectivity through catalytic oxidation pathway.To the best of our knowledge,there is not a clear document at present involved in the temperature at which the autoxidation of cycloalkanes using molecular oxygen as oxidant would occur,no document distinguishing the autoxidation from the catalytic oxidation in the oxidation of cycloalkanes through reaction temperature control clearly.Thus in this work,we investigate the catalyst-free and solvent-free oxidation of cycloalkanes(C5-C8)with molecular oxygen systematically,focusing on the autoxidation temperature and product distribution,which will act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes.

    2.Results and Discussion

    Scheme 1.Catalyst-free and solvent-free oxidation of cycloalkanes(C5-C8)with molecular oxygen.

    Fig.1.Effect of reaction temperature on the autoxidation of cyclohexane.Reaction condition:cyclohexane(200 mmol,16.8320 g),O2(a.1.0 MPa,b.1.2 MPa,c.1.6 MPa,d.1.8 MPa),8.0 h.The yields of cyclohexanol and cyclohexanone were determined by GC after treatment with PPh3 employing toluene as internal standard,and the yield of cyclohexyl hydroperoxide was determined through the amount of O=PPh3 obtained from reduction of cyclohexyl hydroperoxide with PPh3.The yield of adipic acid and glutaric acid were determined by HPLC with benzoic acid as internal standard.

    Fig.2.Effect of reaction pressure on the autoxidation of cyclohexane.Reaction condition:cyclohexane(200 mmol,16.8320 g),O2,140°C,8.0 h.The yields of cyclohexanol and cyclohexanone were determined by GC after treatment with PPh3 employing toluene as internal standard,and the yield of cyclohexyl hydroperoxide was determined through the amount of O=PPh3 obtained from reduction of cyclohexyl hydroperoxide with PPh3.The yield of adipic acid and glutaric acid were determined by HPLC with benzoic acid as internal standard.

    Fig.3.Effect of reaction temperature on the autoxidation of cyclopentane(a),cycloheptane(b)and cyclooctane(c).Reaction condition:a.cyclopentane(200 mmol,14.0260 g),O2(1.6 MPa),8.0 h.b.cycloheptane(200 mmol,19.6380 g),O2(0.6 MPa),8.0 h.c.cyclooctane(200 mmol,22.4440 g),O2(0.6 MPa),8.0 h.The yields of cycloalkanol and cycloalkanone were determined by GC after treatment with PPh3 employing toluene as internal standard,and the yield of cycloalkyl hydroperoxide was determined through the amount of O=PPh3 obtained from reduction of cycloalkyl hydroperoxide with PPh3.The yield of aliphatic diacids was determined by HPLC with benzoic acid as internal standard.

    In this work,the oxidation of cycloalkanes using molecular oxygen as oxidant under catalyst-free and solvent-free condition was conducted in a 100-ml autoclave reactor equipped with an inner Teflon liner and a magnetic stirrer.Cyclopentane,cyclohexane,cycloheptane and cyclooctane were selected as substrates as shown in Scheme 1 for their ready availability and the high values of their oxidized products.All the oxidized products which can be detected on GC and HPLC were analyzed quantitatively in order to investigate the autoxidation performance of various cycloalkanes in detail,including cycloalkanols,cycloalkanones,cycloalkyl hydroperoxide,aliphatic diacids with the same and one less carbon number compared with parent cycloalkanes.Firstly,catalyst-free and solvent-free oxidation of cyclohexane was carried out at the temperature ranging from 120 °C to 150 °C and the pressure ranging from 0.80 MPa to 2.0 MPa based on some exploratory experiments.The reaction time was selected as 8.0 h in order to achieve obvious oxidized products formation indicated in Fig.S4.As shown in Figs.1,2 and Figs.S1-S3,it is obvious that the reaction temperature plays the mostcriticalrole in the autoxidation ofcyclohexane compared to reaction pressure.When the reaction temperature was 120°C,no obvious oxidized product formed.As the reaction temperature increased,the autoxidation of cyclohexane occurred at about 130°C with obvious oxidized products formation.When the temperature reached 145°C,acceptable yields of oxidized products could be obtained,cyclohexanol(3.18%),cyclohexanone(4.59%),cyclohexyl hydroperoxide(0.15%),adipic acid(1.44%)and glutaric acid(0.39%)under1.0-MPa O2pressure,and no other obvious product was detected in the liquid and solid reaction mixture.The yields of the oxidized products at 145°C and 1.0 MPa increase as following:cyclohexyl hydroperoxide(0.15%)<glutaric acid(0.39%)<adipic acid(1.44%)<cyclohexanol(3.18%)<cyclohexanone(4.59%).The reaction temperature also affected the oxidized product distribution remarkably.For example,at 140°C and 1.0 MPa,the product distribution is very different from 145°C,and the yields of the products increase as following:glutaric acid<cyclohexanol<cyclohexyl hydroperoxide<adipic acid<cyclohexanone.The yield of glutaric acid becomes the lowestone instead of cyclohexyl hydroperoxide,and the yield of cyclohexanone still is the highest one.As for the reaction pressure,it does not seem to have significant effect on the autoxidation of cyclohexane as indicated in Fig.2 and Fig.S5,which just supplies enough oxygen to the oxidation system.

    Then based on the results obtained from the autoxidation of cyclohexane,the substrates were extended to cyclopentane,cycloheptane and cyclooctane.The results were listed in Fig.3.It is demonstrated that the autoxidation temperatures are 120 °C,120 °C and 105 °C for cyclopentane,cycloheptane and cyclooctane respectively,at which obvious oxidized products could be detected.For cyclopentane,acceptable yields of oxidized products could be achieved at 140°C,and the yields of the oxidized products increase as following:cyclopentyl hydroperoxide(0.55%)<succinic acid(2.08%)<cyclopentanone(2.75%)<glutaric acid(3.88%),no obvious cyclopentanolbeing detected in the reaction mixture.Compared with cyclohexane,the yield of the aliphatic diacid possessing the same carbon number with parent cycloalkane became the highest one in the autoxidation of cyclopentane for its high strain energy.As for cycloheptane and cyclooctane,satisfying yields of oxidized products could be obtained at 130 °C and 125 °C respectively,and the products were mainly cycloalkyl hydroperoxides and cycloalkanones,no obvious cycloalkanoland diacid being detected.The yield of cycloalkyl hydroperoxide was higher than cycloalkanone in both autoxidation of cycloheptane and cyclooctane.The reason why the autoxidation of cycloheptane and cyclooctane were notconducted athigher reaction temperature is that the autoxidation process would become uncontrollable and the reaction temperature would be runway to above 170°C at higher initial reaction temperature.

    Thus,it is clear that the autoxidation of cycloalkanes under catalystfree and solvent-free condition could be achieved at the temperature of 120 °C,130 °C,120 °C,and 105 °C for cyclopentane,cyclohexane,cycloheptane and cyclooctane respectively,with obvious oxidized products formation.Acceptable yields of the oxidized products could be obtained at140 °C,145 °C,130 °C and 125 °C for cyclopentane,cyclohexane,cycloheptane and cyclooctane respectively.For cyclopentane,the product distribution at 140°C increased as following:cyclopentyl hydroperoxide(0.55%)<succinic acid(2.08%)<cyclopentanone(2.75%)<glutaric acid(3.88%),no obvious cyclopentanol being detected.For cyclohexane,the product distribution at 145°C increased as following:cyclohexyl hydroperoxide(0.15%)<glutaric acid(0.39%)<adipic acid(1.44%)<cyclohexanol(3.18%)<cyclohexanone(4.59%),and for cycloheptane and cyclooctane,the products were cycloalkyl hydroperoxides and cycloalkanones mainly,no obvious cycloalkanol and diacid being detected.The yield of cycloalkyl hydroperoxide is higher than cycloalkanone.Itis also demonstrated that the autoxidation existed in mostof the currentcatalytic oxidation ofcycloalkanes indeed,especially in the oxidation of cyclohexane in which the reaction temperature is about 150°C[8,70,72,80-82,86].Therefore,it could be a good choice and a meaningful reference to conduct the catalytic oxidation of cycloalkanes below the autoxidation temperature,so the reaction can process smoothly and selectively.Taking into account the security,it is also suggested that(1)the autoxidation of cycloalkanes should be conducted in the autoclave reactor equipped with an inner Teflon liner to avoid the existence of any catalytic metal,which could induce the autoxidation process too severely to explode;(2)the autoxidation temperature should be below 150°C to avid the possible explosion;(3)the autoxidation pressure should be below 2.0 MPa to avid the possible explosion.

    At last,the kinetics of the autoxidation of cycloalkanes were investigated employing cyclopentane and cyclohexane as model substrates based on the results obtained in the autoxidation of cycloalkanes above.It was found that the pseudo-first-order kinetic model fitted the autoxidation of cyclopentane and cyclohexane well,which is expressed as following:-ln(CA/CA0)=kt,whereCA0is the initial concentration of cycloalkane;CAis the concentration of cycloalkane at timet;kis the pseudo-first-order rate constant(h-1).The plots of-ln(CA/CA0)versus tat 130 °C,135 °C,140 °C are presented in Fig.4 and from the slope of the plots,the pseudo-first-order rate constantkfor the autoxidation of cyclopentane and cyclohexane at 130°C,135 °C,140 °C were obtained as shown in Table 1.Then the plots oflnkversus1/Twere listed in Fig.5 and the apparent activation energies(Ea)for the autoxidation of cyclopentane and cyclohexane could be obtained from the slope following equation lnk=-(Ea/R)×(1/T)+lnk0,which were 159.76 kJ·mol-1and 86.75 kJ·mol-1for cyclopentane and cyclohexane respectively.

    Table 1 The pseudo-first-order kinetic parameters for the autoxidation of cycolpentane and cyclohexane at 130 °C,135 °C,140 °C

    Fig.5.Plots of ln k versus 1/T for the autoxidation of cycolpentane and cyclohexane.

    Fig.4.Pseudo-first-order fit for the autoxidation of cyclopentane(a)and cyclohexane(b)at130 °C,135 °C,140 °C.Reaction condition:cycloalkane(100 mmol),O2(1.6 MPa).The yields of cycloalkanol and cycloalkanone were determined by GC after treatment with PPh3employing toluene as internal standard,and the yield of cycloalkyl hydroperoxide was determined through the amount of O=PPh3obtained from reduction of cycloalkyl hydroperoxide with PPh3.The yields of aliphatic diacids were determined by HPLC with benzoic acid as internal standard.

    3.Conclusions

    In conclusion,catalyst-free and solvent-free oxidation of cycloalkanes(C5-C8)with molecular oxygen was conducted systematically for the first time,focusing on the determination of autoxidation temperature and product distribution.It is obvious that the reaction temperature plays the most critical role in the autoxidation of cycloalkanes compared to reaction pressure and the autoxidation occurs at 120 °C,130 °C,120 °C,and 105 °C for cyclopentane,cyclohexane,cycloheptane and cyclooctane respectively,with obvious oxidized products formation.Acceptable yields of the oxidized products could be obtained at 140 °C,145 °C,130 °C and 125 °C respectively for them,and the oxidized products distribution for cyclopentane increased as following:cyclopentyl hydroperoxide(0.55%)<succinic acid(2.08%)<cyclopentanone(2.75%)<glutaric acid(3.88%)at 140°C,no obvious cyclopentanol being detected;the yields of the oxidized products for cyclohexane increased as following:cyclohexyl hydroperoxide(0.15%)<glutaric acid(0.39%)<adipic acid(1.44%)<cyclohexanol(3.18%) < cyclohexanone(4.59%)at 145 °C;for cycloheptane and cyclooctane,the products were mainly cycloalkyl hydroperoxides and cycloalkanones,no obvious cycloalkanol and diacid being detected,cycloheptyl hydroperoxide(6.09%)> cycloheptanone(3.21%)at 130°C and cyclooctylhydroperoxide(10.51%)>cyclooctanone(4.78%)at125°C.At last,the autoxidation of cycloalkanes follow the pseudo- first-order kinetic model and the apparent activation energies(Ea)for the autoxidation of cyclopentane and cyclohexane are 159.76 kJ·mol-1and 86.75 kJ·mol-1respectively.To the best of our knowledge,this study is the first systematic document up to now which revealed the autoxidation temperature and product distribution of the catalyst-free and solvent-free oxidation of cycloalkanes(C5-C8)with molecular oxygen.This study will act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes in the attempt to enhance the oxidized product selectivity.

    Supplementary Material

    Supplementary materialto this article can be found online at https://doi.org/10.1016/j.cjche.2018.02.019.

    [1]Y.Hitomi,K.Arakawa,T.Funabiki,M.Kodera,An iron(III)-monoamidate complex catalyst for selective hydroxylation of alkane C-H bonds with hydrogen peroxide,Angew.Chem.Int.Ed.Eng.51(14)(2012)3448-3452.

    [2]S.Staudt,E.Burda,C.Giese,C.A.Muller,J.Marienhagen,U.Schwaneberg,W.Hummel,K.Drauz,H.Groger,Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water,Angew.Chem.Int.Ed.Eng.52(8)(2013)2359-2363.

    [3]J.H.Tong,L.L.Bo,X.D.Cai,H.Y.Wang,Q.P.Zhang,L.D.Su,Aerobic oxidation of cyclohexane effectively catalyzed by simply synthesized silica-supported cobalt ferrite magnetic nanocrystal,Ind.Eng.Chem.Res.53(25)(2014)10294-10300.

    [4]P.F.Zhang,H.F.Lu,Y.Zhou,L.Zhang,Z.L.Wu,S.Z.Yang,H.L.Shi,Q.L.Zhu,Y.F.Chen,S.Dai,Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons,Nat.Commun.6(2015)8446,https://doi.org/10.1038/ncomms9446.

    [5]A.P.Unnarkat,T.Sridhar,H.T.Wang,S.Mahajani,A.K.Suresh,Cobalt molybdenum oxide catalysts for selective oxidation of cyclohexane,AIChE J.62(12)(2016)4384-4402.

    [6]D.N.J.Xiao,J.Oktawiec,P.J.Milner,J.R.Long,Pore environment effects on catalytic cyclohexane oxidation in expanded Fe-2(dobdc)analogues,J.Am.Chem.Soc.138(43)(2016)14371-14379.

    [7]D.Mandal,S.Shaik,Interplay of tunneling,two-state reactivity,and Bell-Evans-Polanyi effects in C--H activation by nonheme Fe(IV)O oxidants,J.Am.Chem.Soc.138(7)(2016)2094-2097.

    [8]G.Huang,W.L.Wang,X.X.Ning,Y.Liu,S.K.Zhao,Y.A.Guo,S.J.Wei,H.Zhou,Interesting green catalysis of cyclohexane oxidation over metal tetrakis(4-carboxyphenyl)porphyrins promoted by zinc sulfide,Ind.Eng.Chem.Res.55(11)(2016)2959-2969.

    [9]Y.Shiraishi,S.Shiota,H.Hirakawa,S.Tanaka,S.Ichikawa,T.Hirai,Titanium dioxide/reduced graphene oxide hybrid photocatalysts for efficient and selective partial oxidation of cyclohexane,ACS Catal.7(1)(2017)293-300.

    [10]A.Alshammari,A.Koeckritz,V.N.Kalevaru,A.Bagabas,A.Martin,Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts,ChemCatChem4(9)(2012)1330-1336.

    [11]B.Sarkar,P.Prajapati,R.Tiwari,R.Tiwari,S.Ghosh,S.S.Acharyya,C.Pendem,R.K.Singha,L.N.S.Konathala,J.Kumar,T.Sasaki,R.Bal,Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystalline Cr2O3,Green Chem.14(9)(2012)2600-2606.

    [12]A.R.Silva,T.Mourao,J.Rocha,Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands,Catal.Today203(2013)81-86.

    [13]Y.J.Xie,F.Y.Zhang,P.L.Liu,F.Hao,H.A.Luo,Zinc oxide supported trans-CoD(p-Cl)PPCltype Metalloporphyrins catalyst for cyclohexane oxidation to cyclohexanol and cyclohexanone with high yield,Ind.Eng.Chem.Res.54(9)(2015)2425-2430.

    [14]Y.Ide,M.Iwata,Y.Yagenji,N.Tsunoji,M.Sohmiya,K.Komaguchi,T.Sano,Y.Sugahara,Fe oxide nanoparticles/Ti-modified mesoporous silica as a photo-catalyst for efficient and selective cyclohexane conversion with O2and solar light,J.Mater.Chem.A4(41)(2016)15829-15835.

    [15]J.Jian,K.Y.You,Q.Luo,H.X.Gao,F.F.Zhao,P.L.Liu,Q.H.Ai,H.A.Luo,Supported Ni-Al-VPO/MCM-41 As efficient and stable catalysts for highly selective preparation of adipic acid from cyclohexane with NO2,Ind.Eng.Chem.Res.55(13)(2016)3729-3735.

    [16]M.Z.Wu,W.C.Zhan,Y.L.Guo,Y.Guo,Y.S.Wang,L.Wang,G.Z.Lu,An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen,Appl.Catal.A Gen.523(2016)97-106.

    [17]M.Rezaei,A.N.Chermahini,H.A.Dabbagh,Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6,Chem.Eng.J.314(2017)515-525.

    [18]S.Rana,S.B.Jonnalagadda,CuO/graphene oxide nanocomposite as highly active and durable catalyst for selective oxidation of cyclohexane,ChemistrySelect2(7)(2017)2277-2281.

    [19]X.F.Song,J.M.Hao,Y.J.Bai,L.M.Han,G.F.Yan,X.Lian,J.S.Liu,Solvent-free oxidation of cyclohexane by oxygen over Al-Cu-Co alloys:influence of the phase structure and electrical conductivity on catalytic activity,New J.Chem.41(10)(2017)4031-4039.

    [20]V.T.Wyatt,M.Yadav,N.Latona,C.K.Liu,Thermal,mechanical,and absorbent properties of glycerol-based polymer films infused with plant cell wall polysaccharides,Abstr.Pap.Am.Chem.Soc.245(2013)(CELL-164).

    [21]M.Vera,A.Almontassir,A.Rodriguez-Galan,J.Puiggali,Synthesis and characterization of a new degradable poly(ester amide)derived from 6-amino-1-hexanol and glutaric acid,Macromolecules36(26)(2003)9784-9796.

    [22]K.Nemoto,T.Kubo,M.Nomachi,T.Sano,T.Matsumoto,K.Hosoya,T.Hattori,K.Kaya,Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer,J.Am.Chem.Soc.129(44)(2007)13626-13632.

    [23]Y.Yu,Z.Y.Wei,C.Zhou,L.C.Zheng,X.F.Leng,Y.Li,Miscibility and competition of cocrystallization behavior of poly (hexamethylene dicarboxylate)s aliphatic copolyesters:effect of chain length of aliphatic diacids,Eur.Polym.J.92(2017)71-85.

    [24]T.Baba,Y.Tachibana,S.Suda,K.Kasuya,Evaluation of environmental degradability based on the number of methylene units in poly(butylenen-alkylenedionate),Polym.Degrad.Stab.138(2017)18-26.

    [25]H.Wu,Q.Wang,J.P.Zhu,Organocatalytic enantioselective acyloin rearrangement of alpha-hydroxy acetals to alpha-alkoxy ketones,Angew.Chem.Int.Ed.Eng.56(21)(2017)5858-5861.

    [26]T.Tabanelli,E.Monti,F.Cavani,M.Selva,The design of efficient carbonate interchange reactions with catechol carbonate,Green Chem.19(6)(2017)1519-1528.

    [27]Y.Ogawa,K.Yamamoto,C.Miura,S.Tamura,M.Saito,M.Mamada,D.Kumaki,S.Tokito,H.Katagiri,Asymmetric alkylthienyl thienoacenes derived from anthra[2,3-b]thieno[2,3-d]thiophene for solution-processable organic semiconductors,ACS Appl.Mater.Interfaces9(11)(2017)9902-9909.

    [28]Q.Z.Hu,L.N.Yin,A.Ali,A.J.Cooke,J.Bennett,P.Ratcliffe,M.M.C.Lo,E.Metzger,S.Hoyt,R.W.Hartmann,Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability,J.Med.Chem.58(5)(2015)2530-2537.

    [29]W.E.Noland,H.V.Kumar,G.C.Flick,C.L.Aspros,J.H.Yoon,A.C.Wilt,N.Dehkordi,S.Thao,A.K.Schneerer,S.Gao,K.J.Tritch,Hydrated ferric sulfate-catalyzed reactions of indole with aldehydes,ketones,cyclic ketones,and chromanones:synthesis of bisindoles and trisindoles,Tetrahedron73(27-28)(2017)3913-3922.

    [30]J.Y.Shie,J.L.Zhu,Synthesis of bicyclic gamma-butyrolactone derivatives by rhodium catalyzed intramolecular C-H insertion of alpha-dizao alpha-phosphoryl cycloalkyl esters,Tetrahedron72(12)(2016)1590-1601.

    [31]B.M.Trost,C.E.Stivala,D.R.Fandrick,K.L.Hull,A.Huang,C.Poock,R.Kalkofen,Total synthesis of(-)-lasonolide A,J.Am.Chem.Soc.138(36)(2016)11690-11701.

    [32]G.S.Machado,O.J.de Lima,K.J.Ciuffi,F.Wypych,S.Nakagaki,Iron(III)porphyrin supported on metahalloysite:an efficient and reusable catalyst for oxidation reactions,Catal.Sci.Technol.3(4)(2013)1094-1101.

    [33]G.M.Ucoski,F.S.Nunes,G.DeFreitas-Silva,Y.M.Idemori,S.Nakagaki,Metalloporphyrins immobilized on silica-coated Fe3O4nanoparticles:magnetically recoverable catalysts for the oxidation of organic substrates,Appl.Catal.A Gen.459(2013)121-130.

    [34]V.S.da Silva,L.I.Teixeira,E.do Nascimento,Y.M.Idemori,G.DeFreitas-Silva,New manganese porphyrin as biomimetic catalyst of cyclohexane oxidation:effect of water or imidazole as additives,Appl.Catal.A Gen.469(2014)124-131.

    [35]K.A.D.D.Castro,M.M.Q.Simoes,M.D.P.M.S.Neves,J.A.S.Cavaleiro,R.R.Ribeiro,F.Wypych,S.Nakagaki,Synthesis of new metalloporphyrin derivatives from[5,10,15,20-tetrakis(penta fluorophenyl)porphyrin]and 4-mercaptobenzoic acid for homogeneous and heterogeneous catalysis,Appl.Catal.A Gen.503(2015)9-19.

    [36]L.D.Zanatta,I.A.Barbosa,F.B.Zanardi,P.C.de Sousa,L.B.Bolzon,A.P.Ramos,O.A.Serra,Y.Iamamoto,Hydrocarbon oxidation by iron-porphyrin immobilized on SBA-15 as biomimetic catalyst:role of silica surface,RSC Adv.6(106)(2016)104886-104896.

    [37]V.H.A.Pinto,J.S.Reboucas,G.M.Ucoski,E.H.de Faria,B.F.Ferreira,R.A.S.S.Gil,S.Nakagaki,Mn porphyrins immobilized on non-modified and chloropropylfunctionalized mesoporous silica SBA-15 as catalysts for cyclohexane oxidation,Appl.Catal.A Gen.526(2016)9-20.

    [38]V.S.da Silva,W.C.D.Vieira,A.M.Meireles,G.M.Ucoski,S.Nakagaki,Y.M.Idemori,G.DeFreitas-Silva,Biomimetic oxidation of cyclic and linear alkanes:high alcohol selectivity promoted by a novel manganese porphyrin catalyst,New J.Chem.41(3)(2017)997-1006.

    [39]V.S.da Silva,A.M.Meireles,D.C.D.Martins,J.S.Reboucas,G.DeFreitas-Silva,Y.M.Idemori,Effect of imidazole on biomimetic cyclohexane oxidation by first-,second-,and third-generation manganese porphyrins using PhIO and PhI(OAc)2as oxidants,Appl.Catal.A Gen.491(2015)17-27.

    [40]V.S.da Silva,Y.M.Idemori,G.DeFreitas-Silva,Biomimetic alkane oxidation by iodosylbenzene and iodobenzene diacetate catalyzed by a new manganese porphyrin:water effect,Appl.Catal.A Gen.498(2015)54-62.

    [41]R.Maheswari,R.Anand,G.Imran,MnTUD-1:synthesis,characterization and catalytic behavior in liquid-phase oxidation of cyclohexane,J.Porous.Mater.19(3)(2012)283-288.

    [42]D.W.Feng,H.L.Jiang,Y.P.Chen,Z.Y.Gu,Z.W.Wei,H.C.Zhou,Metal-organic frameworks based on previously unknown Zr-8/Hf-8 cubic clusters,Inorg.Chem.52(21)(2013)12661-12667.

    [43]A.Bellifa,A.Choukchou-Braham,C.Kappenstein,L.Pirault-Roy,Preparation and characterization of MTiX for the catalytic oxidation of cyclohexane,RSC Adv.4(43)(2014)22374-22379.

    [44]N.Pal,M.Pramanik,A.Bhaumik,M.Ali,Highly selective and direct oxidation of cyclohexane to cyclohexanone over vanadium exchanged NaY at room temperature under solvent-free conditions,J.Mol.Catal.A Chem.392(2014)299-307.

    [45]Y.M.Yang,N.Y.Liu,S.Qiao,R.H.Liu,H.Huang,Y.Liu,Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,New J.Chem.39(4)(2015)2815-2821.

    [46]T.Lopez-Ausens,M.Boronat,P.Concepcion,S.Chouzier,S.Mastroianni,A.Corma,A heterogeneous mechanism for the catalytic decomposition of hydroperoxides and oxidation of alkanes over CeO2nanoparticles:a combined theoretical and experimental study,J.Catal.344(2016)334-345.

    [47]L.M.D.R.D.Martins,S.A.C.Carabineiro,J.W.Wang,B.G.M.Rocha,F.J.Maldonado-Hodar,A.J.L.D.Pombeiro,Supported gold nanoparticles as reusable catalysts for oxidation reactions of industrial significance,ChemCatChem9(7)(2017)1211-1221.

    [48]M.V.Kirillova,C.I.M.Santos,W.Y.Wu,Y.Tang,A.M.Kirillov,Mild oxidative C-H functionalization of alkanes and alcohols using a magnetic core-shell Fe3O4@mSiO2@Cu4nanocatalyst,J.Mol.Catal.A Chem.426(2017)343-349.

    [49]M.Saha,K.M.Vyas,L.M.D.R.S.Martins,N.M.R.Martins,A.J.L.Pombeiro,S.M.Mobin,D.Bhattacherjee,K.P.Bhabak,S.Mukhopadhyay,Copper(II)tetrazolato complexes:role in oxidation catalysis and protein binding,Polyhedron132(2017)53-63.

    [50]S.Hikichi,K.Hanaue,T.Fujimura,H.Okuda,J.Nakazawa,Y.Ohzu,C.Kobayashi,M.Akita,Characterization of nickel(II)-acylperoxo species relevant to catalytic alkane hydroxylation by nickel complex with m-CPBA,Dalton Trans.42(10)(2013)3346-3356.

    [51]J.Nakazawa,T.Hori,T.D.P.Stack,S.Hikichi,Alkane oxidation by an immobilized nickel complex catalyst:structural and reactivity differences induced by surface-ligand density on mesoporous silica,Chem.Asian.J.8(6)(2013)1191-1199.

    [52]M.Sankaralingam,M.Palaniandavar,Diiron(III)complexes of tridentate 3N ligands as functional models for methane monooxygenases:effect of the capping ligand on hydroxylation of alkanes,Polyhedron67(2014)171-180.

    [53]M.Sankaralingam,M.Balamurugan,M.Palaniandavar,P.Vadivelu,C.H.Suresh,Nickel(II)complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant:a combined experimental and computational study,Chem.Eur.J.20(36)(2014)11346-11361.

    [54]R.R.Reinig,D.Mukherjee,Z.B.Weinstein,W.W.Xie,T.Albright,B.Baird,T.S.Gray,A.Ellern,G.J.Miller,A.H.Winter,S.L.Bud'ko,A.D.Sadow,Synthesis and oxidation catalysis of[tris(oxazolinyl)borato]cobalt(II)scorpionates,Eur.J.Inorg.Chem.(15-16)(2016)2486-2494.

    [55]M.Balamurugan,E.Suresh,M.Palaniandavar,Non-heme μ-Oxo-and bis(μcarboxylato)-bridged diiron(III)complexes of a 3N ligand as catalysts for alkane hydroxylation:stereoelectronic factors of carboxylate bridges determine the catalytic efficiency,Dalton Trans.45(28)(2016)11422-11436.

    [56]E.H.de Faria,G.P.Ricci,L.Marcal,E.J.Nassar,M.A.Vicente,R.Trujillano,A.Gil,S.A.Korili,K.J.Ciuffi,P.S.Calefi,Green and selective oxidation reactions catalyzed by kaolinite covalently grafted with Fe(III)pyridine-carboxylate complexes,Catal.Today187(1)(2012)135-149.

    [57]S.Cheng,J.Li,X.X.Yu,C.C.Chen,H.W.Ji,W.H.Ma,J.C.Zhao,Selective activation of secondary C-H bonds by an iron catalyst:insights into possibilities created by the use of a carboxyl-containing bipyridine ligand,New J.Chem.37(10)(2013)3267-3273.

    [58]I.Prat,A.Company,V.Postils,X.Ribas,L.Que,J.M.Luis,M.Costas,The mechanism of stereospecific CH oxidation by Fe(Pytacn)complexes:bioinspired non-Heme iron catalysts containing cis-labile exchangeable sites,Chem.Eur.J.19(21)(2013)6724-6738.

    [59]M.Grau,A.Kyriacou,F.C.Martinez,I.M.de Wispelaere,A.J.P.White,G.J.P.Britovsek,Unraveling the origins of catalyst degradation in non-heme iron-based alkane oxidation,Dalton Trans.43(45)(2014)17108-17119.

    [60]M.Chen,Y.Pan,H.K.Kwong,R.J.Zeng,K.C.Lau,T.C.Lau,Catalytic oxidation of alkanes by a(salen)osmium(VI)nitrido complex using H2O2as the terminal oxidant,Chem.Commun.51(71)(2015)13686-13689.

    [61]S.Urus,H.Achguzel,M.Incesu,Synthesis of novel N4O4type bis(diazoimine)-metal complexes supported on mesoporous silica:microwave assisted catalytic oxidation of cyclohexane,cyclooctane,cyclohexene and styrene,Chem.Eng.J.296(2016)90-101.

    [62]K.A.D.F.Castro,F.H.C.de Lima,M.M.Q.Simoes,M.G.P.M.S.Neves,F.A.A.Paz,R.F.Mendes,S.Nakagaki,J.A.S.Cavaleiro,Synthesis,characterization and catalytic activity under homogeneous conditions of ethylene glycol substituted porphyrin manganese(III)complexes,Inorg.Chim.Acta455(2017)575-583.

    [63]A.P.C.Ribeiro,L.M.D.R.S.Martins,M.L.Kuznetsov,A.J.L.Pombeiro,Tuning cyclohexane oxidation:combination of microwave irradiation and ionic liquid with the CS corpionate[FeCl2(Tpm)]catalyst,Organometallics36(1)(2017)192-198.

    [64]G.Huang,Z.C.Luo,Y.D.Hu,Y.A.Guo,Y.X.Jiang,S.J.Wei,Preparation and characterization of iron tetra(pentaflurophenyl)-porphyrin(TPFPP Fe)supported on boehmite(BM),Chem.Eng.J.195(2012)165-172.

    [65]Y.Ide,N.Kawamoto,Y.Bando,H.Hattori,M.Sadakane,T.Sano,Ternary modified TiO2as a simple and efficient photocatalyst for green organic synthesis,Chem.Commun.49(35)(2013)3652-3654.

    [66]K.Machado,J.Mishra,S.Suzuki,G.S.Mishra,Synthesis of superparamagnetic carbon nanotubes immobilized Pt and Pd pincer complexes:highly active and selective catalysts towards cyclohexane oxidation with dioxygen,Dalton Trans.43(46)(2014)17475-17482.

    [67]Y.X.Jiang,T.M.Su,Z.Z.Qin,G.Huang,A zinc sulfide-supported iron tetrakis(4-carboxyl phenyl)porphyrin catalyst for aerobic oxidation of cyclohexane,RSC Adv.5(31)(2015)24788-24794.

    [68]X.Liu,M.Conte,M.Sankar,Q.He,D.M.Murphy,D.Morgan,R.L.Jenkins,D.Knight,K.Whiston,C.J.Kiely,G.J.Hutchings,Liquid phase oxidation of cyclohexane using bimetallic Au-Pd/MgO catalysts,Appl.Catal.A Gen.504(2015)373-380.

    [69]X.Wang,Y.W.Li,Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations,J.Mater.Chem.A4(14)(2016)5247-5257.

    [70]G.Huang,Y.Liu,J.L.Cai,X.F.Chen,S.K.Zhao,Y.A.Guo,S.J.Wei,X.Li,Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan,Appl.Surf.Sci.402(2017)436-443.

    [71]D.X.Yang,T.B.Wu,C.J.Chen,W.W.Guo,H.Z.Liu,B.X.Han,The highly selective aerobic oxidation of cyclohexane to cyclohexanone and cyclohexanol over V2O5@TiO2under simulated solar light irradiation,Green Chem.19(1)(2017)311-318.

    [72]L.F.Chen,Y.Y.Zhou,Z.Y.Gui,H.Y.Cheng,Z.W.Qi,Au nanoparticles con fined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation,J.Mater.Sci.52(12)(2017)7186-7198.

    [73]K.C.Hwang,A.Sagadevan,One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light,Science346(6216)(2014)1495-1498.

    [74]A.P.C.Ribeiro,L.M.D.R.S.Martins,A.J.L.Pombeiro,N2O-free single-pot conversion of cyclohexane to adipic acid catalysed by an iron(II)scorpionate complex,Green Chem.19(6)(2017)1499-1501.

    [75]X.Liu,M.Conte,Q.He,D.W.Knight,D.M.Murphy,S.H.Taylor,K.Whiston,C.J.Kiely,G.J.Hutchings,Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide,Chem.Eur.J.23(49)(2017)11834-11842.

    [76]Y.P.Xiao,J.C.Liu,Y.T.Lin,W.J.Lin,Y.X.Fang,Novel graphene oxide-silver nanorod composites with enhanced photocatalytic performance under visible light irradiation,J.Alloys Compd.698(2017)170-177.

    [77]L.M.D.R.S.Martins,M.P.de Almeida,S.A.C.Carabineiro,J.L.Figueiredo,A.J.L.Pombeiro,Heterogenisation of a C-Scorpionate Fe-II complex on carbon materials for cyclohexane oxidation with hydrogen peroxide,ChemCatChem5(12)(2013)3847-3856.

    [78]A.Denicourt-Nowicki,A.Lebedeva,C.Bellini,A.Roucoux,Highly selective cycloalkane oxidation in water with ruthenium nanoparticles,ChemCatChem8(2)(2016)357-362.

    [79]E.Tabor,J.Poltowicz,K.Pamin,S.Basag,W.Kubiak,Influence of substituents in mesoaryl groups of iron μ-oxo porphyrins on their catalytic activity in the oxidation of cycloalkanes,Polyhedron119(2016)342-349.

    [80]Z.Feng,Y.J.Xie,F.Hao,P.L.Liu,H.A.Luo,Catalytic oxidation of cyclohexane to KA oil by zinc oxide supported manganese 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin,J.Mol.Catal.A Chem.410(2015)221-225.

    [81]K.Machado,S.Mukhopadhyay,G.S.Mishra,Nanoparticles silica anchored Cu-(II)and V-(IV)scorpionate complexes for selective catalysis of cyclohexane oxidation,J.Mol.Catal.A Chem.400(2015)139-146.

    [82]S.Saxena,R.Singh,R.G.S.Pala,S.Sivakumar,Sinter-resistant gold nanoparticles encapsulated by zeolite nanoshell for oxidation of cyclohexane,RSC Adv.6(10)(2016)8015-8020.

    [83]Z.Y.Gui,W.R.Cao,L.F.Chen,Z.W.Qi,Propene carbonate intensified cyclohexane oxidation over Au/SiO2catalyst,Catal.Commun.64(2015)58-61.

    [84]W.Z.Zhong,T.Qiao,J.Dai,L.Q.Mao,Q.Xu,G.Q.Zou,X.X.Liu,D.L.Yin,F.P.Zhao,Visible light-responsive sulfated vanadium-doped TS-1 with hollow structure:enhanced photocatalytic activity in selective oxidation of cyclohexane,J.Catal.330(2015)208-221.

    [85]Y.Fu,W.C.Zhan,Y.L.Guo,Y.Q.Wang,X.H.Liu,Y.Guo,Y.S.Wang,G.Z.Lu,Effect of surface functionalization of cerium-doped MCM-48 on its catalytic performance for liquidphase free-solvent oxidation of cyclohexane with molecular oxygen,Microporous Mesoporous Mater.214(2015)101-107.

    [86]X.G.Duan,W.M.Liu,L.M.Yue,W.Fu,M.N.Ha,J.Li,G.Z.Lu,Selective oxidation of cyclohexane on a novel catalyst Mg-Cu/SBA-15 by molecular oxygen,Dalton Trans.44(39)(2015)17381-17388.

    [87]K.Chen,Z.G.Chai,C.Li,L.R.Shi,M.X.Liu,Q.Xie,Y.F.Zhang,D.S.Xu,A.Manivannan,Z.F.Liu,Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4composite for hydrocarbon oxidation,ACS Nano10(3)(2016)3665-3673.

    [88]X.X.Yang,H.J.Wang,J.Li,W.X.Zheng,R.Xiang,Z.K.Tang,H.Yu,F.Peng,Mechanistic insight into the catalytic oxidation of cyclohexane over carbon nanotubes:kinetic and in situ spectroscopic evidence,Chem.Eur.J.19(30)(2013)9818-9824.

    [89]H.Wang,Y.Zhang,Y.Y.Guo,L.M.Zhang,Y.Han,X.X.Zhao,Visible-light-driven oxidation of cyclohexane using Cr-supported mesoporous catalysts prepared via phenyl functionalized mesoporous silica,RSC Adv.6(44)(2016)38176-38182.

    [90]Y.Yuan,H.B.Ji,Y.X.Chen,Y.Han,X.F.Song,Y.B.She,R.G.Zhong,Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst,Org.Process.Res.Dev.8(3)(2004)418-420.

    [91]Y.Chen,Y.She,J.Xu,Y.Li,Studies on QSAR of metalloporphyrin catalysts in the oxidation of cyclohexane to adipic acid,Front.Chem.Eng.China1(2)(2007)155-161.

    [92]H.Li,Y.She,T.Wang,Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane,Front.Chem.Sci.Eng.6(3)(2012)356-368.

    [93]T.Wang,Y.B.She,H.Y.Fu,H.Li,Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts,Catal.Today264(2016)185-190.

    [94]H.Li,Y.B.She,H.Y.Fu,M.J.Cao,J.Wang,T.Wang,Synergistic effect of co-reactant promotes one-step oxidation of cyclohexane into adipic acid catalyzed by manganese porphyrins,Can.J.Chem.93(7)(2015)696-701.

    [95]M.J.Cao,Y.B.She,H.Y.Fu,Y.M.Yu,H.Li,T.Wang,Rate-limiting step of the iron porphyrin-catalysed oxidation of cyclohexane to adipic acid by DFT method,Mol.Simul.41(4)(2015)262-270.

    十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 久久久久视频综合| 免费一级毛片在线播放高清视频 | 91大片在线观看| 大陆偷拍与自拍| 母亲3免费完整高清在线观看| 久久久久久久精品吃奶| 日韩大码丰满熟妇| 1024视频免费在线观看| 国产色视频综合| 国产男女内射视频| 757午夜福利合集在线观看| 免费看十八禁软件| 亚洲黑人精品在线| 日本一区二区免费在线视频| 亚洲免费av在线视频| 中亚洲国语对白在线视频| 欧美大码av| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久免费视频了| 考比视频在线观看| 精品少妇久久久久久888优播| 变态另类成人亚洲欧美熟女 | 久久精品亚洲av国产电影网| 午夜免费鲁丝| 久9热在线精品视频| 成人免费观看视频高清| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 欧美精品啪啪一区二区三区| 又大又爽又粗| 日韩成人在线观看一区二区三区| 精品欧美一区二区三区在线| 制服诱惑二区| 日韩大码丰满熟妇| 亚洲av日韩在线播放| 人妻一区二区av| 国产在线一区二区三区精| 国产亚洲av高清不卡| 免费在线观看视频国产中文字幕亚洲| 欧美日韩福利视频一区二区| 日韩成人在线观看一区二区三区| 国精品久久久久久国模美| 高清毛片免费观看视频网站 | 国产黄频视频在线观看| 国产主播在线观看一区二区| 国产91精品成人一区二区三区 | 日韩欧美免费精品| 欧美日韩亚洲高清精品| 色视频在线一区二区三区| 欧美午夜高清在线| 热re99久久国产66热| 精品一区二区三区四区五区乱码| 国产男靠女视频免费网站| 精品国产国语对白av| 国产精品一区二区精品视频观看| 少妇裸体淫交视频免费看高清 | 亚洲精品在线美女| 成年女人毛片免费观看观看9 | 亚洲第一欧美日韩一区二区三区 | 久久影院123| 黄色视频,在线免费观看| 老熟妇仑乱视频hdxx| 免费看a级黄色片| 亚洲色图综合在线观看| 精品国产国语对白av| 久久精品91无色码中文字幕| 99re在线观看精品视频| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 亚洲欧美精品综合一区二区三区| 欧美乱码精品一区二区三区| 少妇 在线观看| 两个人免费观看高清视频| 国产一区二区三区综合在线观看| 中文字幕色久视频| 两人在一起打扑克的视频| 国产精品久久久久久人妻精品电影 | 亚洲熟妇熟女久久| 九色亚洲精品在线播放| 丝袜在线中文字幕| 免费少妇av软件| 亚洲国产欧美日韩在线播放| 亚洲欧美激情在线| 国产国语露脸激情在线看| 黄色丝袜av网址大全| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 精品高清国产在线一区| 怎么达到女性高潮| 黄色毛片三级朝国网站| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区久久久樱花| 国产三级黄色录像| 亚洲国产欧美一区二区综合| 亚洲国产av影院在线观看| 亚洲国产欧美在线一区| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 国产精品香港三级国产av潘金莲| 十八禁网站免费在线| 亚洲精品中文字幕一二三四区 | 国产97色在线日韩免费| 精品久久久久久久毛片微露脸| 亚洲国产av影院在线观看| 午夜福利免费观看在线| 国产午夜精品久久久久久| 一级,二级,三级黄色视频| 黄色片一级片一级黄色片| 国产亚洲午夜精品一区二区久久| 国产一区二区 视频在线| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 国产野战对白在线观看| 一级毛片电影观看| 国产一区二区激情短视频| 国产精品久久电影中文字幕 | 欧美精品亚洲一区二区| 夜夜骑夜夜射夜夜干| 岛国在线观看网站| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| 别揉我奶头~嗯~啊~动态视频| 91九色精品人成在线观看| 狠狠婷婷综合久久久久久88av| 亚洲人成电影观看| 亚洲精品av麻豆狂野| 黄色 视频免费看| 精品一区二区三卡| 少妇粗大呻吟视频| 久久久国产成人免费| 91麻豆av在线| 国产一卡二卡三卡精品| 国产av又大| 性色av乱码一区二区三区2| 在线亚洲精品国产二区图片欧美| 免费在线观看完整版高清| 波多野结衣一区麻豆| 80岁老熟妇乱子伦牲交| 99久久人妻综合| 老鸭窝网址在线观看| 丰满迷人的少妇在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日韩人妻精品一区2区三区| 国产福利在线免费观看视频| 美女视频免费永久观看网站| 久久性视频一级片| 国产精品自产拍在线观看55亚洲 | 亚洲 国产 在线| 欧美一级毛片孕妇| 在线观看免费视频网站a站| 精品免费久久久久久久清纯 | 亚洲熟女精品中文字幕| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 人妻久久中文字幕网| 自线自在国产av| 黄色视频,在线免费观看| 亚洲熟女毛片儿| 老司机午夜福利在线观看视频 | 成人国产一区最新在线观看| 日本黄色视频三级网站网址 | 亚洲精品国产区一区二| 狂野欧美激情性xxxx| 国产在线视频一区二区| 黑人猛操日本美女一级片| 日韩中文字幕欧美一区二区| 汤姆久久久久久久影院中文字幕| 欧美人与性动交α欧美软件| 一区福利在线观看| 美女视频免费永久观看网站| 国产精品久久电影中文字幕 | 精品国内亚洲2022精品成人 | 亚洲成人免费av在线播放| 在线播放国产精品三级| 婷婷丁香在线五月| 国产成人精品在线电影| 国产一区二区三区视频了| 精品一区二区三区av网在线观看 | 免费在线观看影片大全网站| 欧美激情高清一区二区三区| 国产极品粉嫩免费观看在线| 日本欧美视频一区| www日本在线高清视频| 国产精品秋霞免费鲁丝片| 99久久精品国产亚洲精品| 久久av网站| 国产一区二区三区视频了| 日本精品一区二区三区蜜桃| 欧美激情高清一区二区三区| 午夜免费成人在线视频| 精品少妇久久久久久888优播| 亚洲久久久国产精品| av电影中文网址| 久久九九热精品免费| 在线天堂中文资源库| 国产在线一区二区三区精| 国产精品久久久久久精品古装| 制服人妻中文乱码| 欧美成人免费av一区二区三区 | 久久久国产欧美日韩av| 亚洲五月色婷婷综合| 岛国在线观看网站| 99国产精品一区二区三区| 下体分泌物呈黄色| 免费人妻精品一区二区三区视频| 涩涩av久久男人的天堂| 人妻久久中文字幕网| 如日韩欧美国产精品一区二区三区| 亚洲成人国产一区在线观看| 一区在线观看完整版| 欧美黄色片欧美黄色片| 久久国产精品男人的天堂亚洲| 少妇猛男粗大的猛烈进出视频| 日本撒尿小便嘘嘘汇集6| 亚洲人成电影观看| 国产成人影院久久av| 日韩三级视频一区二区三区| 欧美变态另类bdsm刘玥| 亚洲欧美日韩另类电影网站| 精品国产乱子伦一区二区三区| 热99re8久久精品国产| 99香蕉大伊视频| 国产一区二区激情短视频| 日韩欧美免费精品| 国产精品秋霞免费鲁丝片| 久久久久视频综合| 婷婷丁香在线五月| 久久热在线av| 久久99热这里只频精品6学生| 久久婷婷成人综合色麻豆| 成人国产av品久久久| 免费久久久久久久精品成人欧美视频| 成人av一区二区三区在线看| 啦啦啦免费观看视频1| 不卡一级毛片| xxxhd国产人妻xxx| 久久亚洲真实| 夜夜爽天天搞| 成人精品一区二区免费| 在线观看免费午夜福利视频| 叶爱在线成人免费视频播放| 国产精品成人在线| 国产欧美日韩一区二区三| 成年人午夜在线观看视频| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 欧美激情高清一区二区三区| 99re在线观看精品视频| 国产人伦9x9x在线观看| 久久中文看片网| 在线观看66精品国产| 久久久久久人人人人人| 国产色视频综合| 久久精品国产a三级三级三级| 99精品在免费线老司机午夜| 国产精品久久久久久人妻精品电影 | 久久久久久久久久久久大奶| 免费女性裸体啪啪无遮挡网站| 男女床上黄色一级片免费看| 少妇的丰满在线观看| 中国美女看黄片| av国产精品久久久久影院| 菩萨蛮人人尽说江南好唐韦庄| 丁香欧美五月| 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕在线视频| 新久久久久国产一级毛片| videos熟女内射| 日韩欧美免费精品| 国产区一区二久久| 亚洲情色 制服丝袜| 午夜日韩欧美国产| 91国产中文字幕| 99香蕉大伊视频| 亚洲国产av新网站| 高清毛片免费观看视频网站 | 国产成人精品无人区| 女性生殖器流出的白浆| 一进一出好大好爽视频| 高清视频免费观看一区二区| 精品欧美一区二区三区在线| 高清欧美精品videossex| av线在线观看网站| 亚洲人成电影免费在线| 国产精品久久久久久精品电影小说| 一级a爱视频在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 色94色欧美一区二区| 欧美激情极品国产一区二区三区| 一区二区三区国产精品乱码| 国产一区二区在线观看av| 亚洲欧美一区二区三区黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香欧美五月| 热99re8久久精品国产| 三上悠亚av全集在线观看| 午夜免费成人在线视频| 欧美日韩成人在线一区二区| 国产精品自产拍在线观看55亚洲 | 另类精品久久| 欧美乱妇无乱码| 亚洲av国产av综合av卡| 最近最新中文字幕大全免费视频| 国产精品av久久久久免费| 少妇裸体淫交视频免费看高清 | 精品国内亚洲2022精品成人 | 亚洲国产看品久久| 国产在线免费精品| 久久人妻熟女aⅴ| 两性夫妻黄色片| 夜夜夜夜夜久久久久| 黄片播放在线免费| www日本在线高清视频| 久久婷婷成人综合色麻豆| 精品国产一区二区三区四区第35| 免费在线观看完整版高清| 欧美精品人与动牲交sv欧美| 色婷婷av一区二区三区视频| 91老司机精品| 色婷婷久久久亚洲欧美| 女同久久另类99精品国产91| 亚洲专区中文字幕在线| 亚洲第一青青草原| 亚洲国产精品一区二区三区在线| 视频在线观看一区二区三区| 一本色道久久久久久精品综合| 亚洲欧洲日产国产| 午夜91福利影院| 丰满饥渴人妻一区二区三| tube8黄色片| 91麻豆精品激情在线观看国产 | 国产精品久久电影中文字幕 | 91av网站免费观看| 久久香蕉激情| 人妻久久中文字幕网| 午夜91福利影院| 成人av一区二区三区在线看| 午夜福利一区二区在线看| 99国产精品免费福利视频| 俄罗斯特黄特色一大片| 精品免费久久久久久久清纯 | 18禁美女被吸乳视频| 一区二区av电影网| 久久久精品94久久精品| 咕卡用的链子| 一边摸一边做爽爽视频免费| 十八禁高潮呻吟视频| 午夜福利,免费看| 欧美激情极品国产一区二区三区| 精品福利永久在线观看| 成人国产av品久久久| 免费在线观看日本一区| 国产精品一区二区免费欧美| 欧美激情久久久久久爽电影 | 另类亚洲欧美激情| 免费观看av网站的网址| 久久这里只有精品19| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 欧美精品高潮呻吟av久久| 美女高潮到喷水免费观看| av网站免费在线观看视频| 久久久久视频综合| 午夜91福利影院| 91字幕亚洲| 国产在线免费精品| 99热国产这里只有精品6| 久久青草综合色| 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 亚洲少妇的诱惑av| avwww免费| 女人爽到高潮嗷嗷叫在线视频| 18禁裸乳无遮挡动漫免费视频| 国产男女超爽视频在线观看| 国产欧美亚洲国产| 桃花免费在线播放| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 男女下面插进去视频免费观看| 制服诱惑二区| 欧美精品av麻豆av| 啦啦啦视频在线资源免费观看| 91精品三级在线观看| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美日韩在线播放| 在线观看免费视频日本深夜| 香蕉久久夜色| 美女视频免费永久观看网站| 国产精品熟女久久久久浪| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 国产精品美女特级片免费视频播放器 | 亚洲专区国产一区二区| avwww免费| 日韩人妻精品一区2区三区| 久久久国产一区二区| 淫妇啪啪啪对白视频| 老司机在亚洲福利影院| 国产91精品成人一区二区三区 | 亚洲国产av新网站| 久久久久国产一级毛片高清牌| 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| 女人久久www免费人成看片| 在线观看免费午夜福利视频| 窝窝影院91人妻| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 国产伦人伦偷精品视频| 国产黄色免费在线视频| 中文字幕最新亚洲高清| 精品久久久精品久久久| 欧美在线黄色| 美女高潮到喷水免费观看| 日本撒尿小便嘘嘘汇集6| 高清欧美精品videossex| 中文字幕制服av| 亚洲中文字幕日韩| 麻豆av在线久日| 亚洲伊人久久精品综合| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 成年人免费黄色播放视频| 欧美日韩福利视频一区二区| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频 | 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频 | 最近最新中文字幕大全免费视频| 操美女的视频在线观看| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 午夜福利,免费看| 视频区欧美日本亚洲| 一本色道久久久久久精品综合| 香蕉丝袜av| 国产一区二区在线观看av| 久久精品成人免费网站| 日日爽夜夜爽网站| 亚洲欧美色中文字幕在线| videos熟女内射| 黄频高清免费视频| 91麻豆av在线| 动漫黄色视频在线观看| 一级毛片精品| 亚洲第一av免费看| 成人手机av| 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 日本vs欧美在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 777久久人妻少妇嫩草av网站| 人人妻,人人澡人人爽秒播| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 国产精品九九99| 少妇的丰满在线观看| 色播在线永久视频| 美女午夜性视频免费| 后天国语完整版免费观看| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看 | 纵有疾风起免费观看全集完整版| 国产av又大| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 热99re8久久精品国产| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 亚洲专区中文字幕在线| 欧美日韩亚洲高清精品| kizo精华| 无人区码免费观看不卡 | 高清在线国产一区| 国产日韩欧美视频二区| 亚洲久久久国产精品| 波多野结衣一区麻豆| 欧美性长视频在线观看| a级片在线免费高清观看视频| 久久中文字幕一级| av又黄又爽大尺度在线免费看| 99九九在线精品视频| avwww免费| cao死你这个sao货| 国产亚洲午夜精品一区二区久久| 一本综合久久免费| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久| 大型黄色视频在线免费观看| 免费看十八禁软件| 国产亚洲精品一区二区www | 操美女的视频在线观看| 欧美国产精品一级二级三级| 麻豆成人av在线观看| 亚洲久久久国产精品| 成人国产av品久久久| 制服诱惑二区| 欧美精品啪啪一区二区三区| 亚洲,欧美精品.| 亚洲国产av影院在线观看| 久久久久网色| 十八禁网站免费在线| e午夜精品久久久久久久| 亚洲一码二码三码区别大吗| 成人国语在线视频| 超碰97精品在线观看| 天堂中文最新版在线下载| 日日爽夜夜爽网站| 精品视频人人做人人爽| 视频在线观看一区二区三区| 成人影院久久| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 美女福利国产在线| av视频免费观看在线观看| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 五月开心婷婷网| 亚洲精品美女久久久久99蜜臀| 亚洲欧美一区二区三区黑人| 欧美成人免费av一区二区三区 | 日日夜夜操网爽| 国产无遮挡羞羞视频在线观看| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 精品国产国语对白av| 久久久精品免费免费高清| 69精品国产乱码久久久| 免费在线观看视频国产中文字幕亚洲| 女人高潮潮喷娇喘18禁视频| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 纯流量卡能插随身wifi吗| 最新的欧美精品一区二区| 少妇猛男粗大的猛烈进出视频| 国产精品98久久久久久宅男小说| 波多野结衣av一区二区av| 亚洲一区二区三区欧美精品| 免费在线观看日本一区| 亚洲国产欧美网| 午夜福利一区二区在线看| 18禁黄网站禁片午夜丰满| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月 | 侵犯人妻中文字幕一二三四区| 国产不卡av网站在线观看| 69av精品久久久久久 | 成人三级做爰电影| 亚洲成人免费电影在线观看| 国产成人精品无人区| 人人妻人人添人人爽欧美一区卜| 人人妻人人添人人爽欧美一区卜| 男人操女人黄网站| 不卡av一区二区三区| 性高湖久久久久久久久免费观看| 亚洲七黄色美女视频| 熟女少妇亚洲综合色aaa.| 亚洲精品一卡2卡三卡4卡5卡| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 黄色丝袜av网址大全| 日韩有码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 久久这里只有精品19| 亚洲自偷自拍图片 自拍| 乱人伦中国视频| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 一区在线观看完整版| 久久久国产一区二区| 亚洲欧美激情在线| 亚洲av第一区精品v没综合| 国产1区2区3区精品| kizo精华| 精品午夜福利视频在线观看一区 | 2018国产大陆天天弄谢| 国产视频一区二区在线看| 露出奶头的视频| 亚洲精品乱久久久久久| 欧美人与性动交α欧美软件| 搡老岳熟女国产| 女性生殖器流出的白浆| 久久久久久久精品吃奶| 亚洲午夜理论影院| 十八禁网站网址无遮挡| 99热网站在线观看| 精品亚洲成a人片在线观看| 桃红色精品国产亚洲av| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 午夜精品久久久久久毛片777| 精品少妇久久久久久888优播| 国产精品免费视频内射| 啦啦啦 在线观看视频| 亚洲欧洲日产国产| 乱人伦中国视频| 精品熟女少妇八av免费久了|