• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition☆

    2018-06-29 09:16:00TaoMengNanRenZhenMa
    關(guān)鍵詞:圖表事項(xiàng)音頻

    Tao Meng ,Nan Ren *,Zhen Ma *

    1 School of Chemical and Environmental Engineering,Shanghai Institute of Technology,Shanghai 201418,China

    2 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention(LAP3),Department of Environmental Science and Engineering,Fudan University,Shanghai 200433,China

    3 Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Department of Chemistry,Fudan University,Shanghai 200433,China

    4 Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092,China

    1.Introduction

    Nitrous oxide(N2O),one of NOxpollutants,contributes to global warming and the ozone-layer depletion[1,2].To eliminate N2O coming from industrial production and vehicle exhausts,one may subject the formed N2O to catalytic decomposition,i.e.,N2O is decomposed into N2and O2over a heterogeneous catalyst.

    Initially,Iwamoto and co-workers[3]found that Cu-ZSM-5(Cu-exchanged ZSM-5 zeolite)is active for catalytic decomposition of NO(another NOxpollutant).Since then,many researchers have explored the application of a number of metal cation-exchanged zeolites in catalytic decomposition ofN2O[4-11].It was found that Cu-ZSM-5 shows higher activity than other transition metal cation-exchanged ZSM-5 zeolite(M-ZSM-5,where M=Ni,Mn,Pd,Ce,Zn,Cd)in N2O decomposition[5,12].Cu-ZSM-5 is also more active than some other Cu-exchanged zeolites(e.g.,Cu-FER,Cu-MOR,Cu-BEA,Cu-Y)in N2O decomposition[4].These observations demonstrate that Cu-ZSM-5 is a good candidate for catalytic decomposition of N2O.Moreover,Wanget al.[13]found that the catalytic activity of Cu-ZSM-5 for N2O decomposition increased with the Cu ion-exchange level,and the Cu+content on Cu-ZSM-5 is much higher than that on Cu-Y.Thus,Cu+has been regarded as the active center for catalytic decomposition of N2O,and the catalytic activity should be correlated to the number of Cu+species in Cu-exchanged zeolites.

    The catalytic activity of Cu-ZSM-5 in N2O decomposition was found to be enhanced when decreasing the Si/Al ratio of Cu-ZSM-5,as explained by the increased amount of active Cu+species and the weakened reducibility of active sites[11].In addition,the catalytic performance of Cu-ZSM-5 can be tuned by adjusting its structures[14]or particle sizes[15].The structures of ZSM-5 samples can influence the dispersion of framework Al species,thus influencing the dispersion of active Cu species[14].Zouetal.[16]found that Cu-ZSM-5 nanosheets showed higher activity in N2O decomposition than conventional Cu-ZSM-5 particles,probably due to the better accessibility of Cu+active sites,better reducibility of Cu+species,and the weakened interaction between oxygen and Cu+for Cu-ZSM-5 nanosheets.

    The catalytic activity and physicochemical properties of Cu-containing catalysts can be greatly influenced by Cu precursors used in the preparation process.For example,Sunet al.[17]prepared CuO/CeO2catalysts by impregnation using different Cu precursors(acetate,nitrate,chloride,and sulfate).Among these catalysts,CuO/CeO2prepared by using copper acetate as a Cu precursor was found to be the most active in CO oxidation,due to the presence of more finely dispersed CuO.Buláneket al.[18]prepared Cu-ZSM-5 by ion-exchange using Cu(CH3COO)2,Cu(NO3)2,or CuCl2as the Cu precursor.The authors found that Cu-ZSM-5 prepared using Cu(CH3COO)2exhibited high activity and high selectivity in total oxidation of propane.Yashniket al.[19]found that the Cu/Al ratio in Cu-ZSM-5 prepared from Cu(CH3COO)2was 2-3 times higher than those of the samples prepared from CuCl2,Cu(NO3)2,or CuSO4solutions,and the former Cu-ZSM-5 catalyst was more active than the latter catalysts(even with the same Cu/Al ratio)in selective catalytic reduction of NO by C3H8.As the amount of supported Cu species may influence catalytic activity,alternative Cu precursors for making Cu-ZSM-5 catalysts have been sought.It was found that more Cu species can be exchanged onto ZSM-5 when using copper-ammonia solution as the precursor[19,20].Cu-ZSM-5 catalysts prepared that way were found to be active for DeNOx[20].However,the influence of different Cu precursors on the performance of Cu-ZSM-5 in catalytic decomposition of N2O has been rarely studied systematically.

    We previously studied the decomposition ofN2O on Silicalite-1@Cu-ZSM-5 core-shell structure[14]and Cu-ZSM-5 with different particle sizes[15].In both studies,Cu(CH3COO)2was used as the Cu precursor.In the current work,Cu-ZSM-5 catalysts were prepared using five different Cu precursors(CuCl2,Cu(NO3)2,CuSO4,Cu(CH3COO)2,and ammoniacal copper(II)complex ion),and their catalytic performance in N2O decomposition was compared.The effect of Cu precursors on the active Cu+species and catalytic performance are discussed based on the characterization results.

    2.Experimental

    2.1.Sample preparation

    A commercial NH4-ZSM-5(Alfa-Aesar,Si/Al ratio=15)was used as the starting material for ion exchange.The commercial zeolite was first exchanged with NaNO3followed by Cu2+exchange[4,21].First,10 g NH4-ZSM-5 was dispersed in 1 L of0.1 mg·L-1aqueous NaNO3solution and the slurry was magnatically stirred at 80°C for 8 h.Then,the mixture was filtrated and washed by de-ionized water.This Na-exchange procedure was repeated three times,and the sample collected was dried at 100°C for 8 h.

    A defined amount of Na-ZSM-5 sample was added into an appropriate amount of 0.1 mg·L-1aqueous solution of a copper salt(with the liquid to solid ratio of150 mlsolution per gram of Na-ZSM-5)under vigorous stirring.The copper salts used were Cu(CH3COO)2,Cu(NO3)2,CuSO4,CuCl2,and ammoniacal copper(II)complex ion(prepared by adding concentrated aqueous ammonia to CuSO4solution till a stable dark blue color appeared).

    The mixture was then stirred continuously at room temperature for 24 h,and it was then washed three times with de-ionized water(200 ml water for each time)except when using ammoniacal copper(II)complex ion,the sample was washed with 0.1 mg·L-1aqueous ammonia solution.The ion exchange procedure was repeated for three times.

    The Cu-ZSM-5 samples prepared from Cu(NO3)2,CuSO4,CuCl2,Cu(CH3COO)2,or ammoniacal copper(II)complex ion precursors are denoted as CZM-CN,CZM-CS,CZM-CC,CZM-CA,and CZM-AC(II),respectively.

    2.2.Catalyst characterization

    X-ray diffraction(XRD)experiments were conducted on a PANalytical X'Pert diffractometer(operated at 40 kV and 40 mA)with Ni β- filtered Cu Kαradiation.The scanning speed was 6(°)·min-1.Inductively coupled plasma atomic emission spectrometer(ICP-AES,Electron IRIS Intrepid II XSP,Thermo)was used to determine the Cu and Al contents of catalysts.Transmission electron microscopy(TEM)and EDX-mapping experiments were conducted on a FEI Tecani G2F20 S-Twin instrument.N2adsorption-desorption experiments at 77 K were conducted using a Micrometrics ASAP 2020 M+C adsorption apparatus.

    In situDRIFTS spectra of adsorbed CO were recorded on a FTIR spectrometer(Nicolet 6700)equipped with an MCT detector cooled by liquid N2.Cu-ZSM-5,placed in an IR cell,was pretreated in He(50 ml/min)at room temperature,250,or 400°C for 2 h.The sample was then cooled down to room temperature,and exposed to flowing 0.2 vol%CO-He mixture for 1 h.The sample was then swept by flowing He flow at room temperature for 1 h,and the CO-adsorbed IR spectra(with a resolution of 4 cm-1and accumulation of 100 scans)were recorded subsequently.

    2.3.Catalytic evaluation

    Catalytic decomposition of N2O was carried out in fixed-bed microreactor under atmospheric pressure.Prior to catalytic reaction testing,0.2 g catalyst(40-60 mesh)was fixed in a U-shape quartz tube,and pretreated in the microreactor by He(50 ml·min-1)at 500°C for 2 h.

    After undergoing pretreatment in He,the catalyst was cooled down to room temperature,and the reactant gas mixture(0.5%N2O,with balance He)with a total flow rate of 60 ml·min-1was flowed through the catalyst bed for 1 h.The reaction temperature was subsequently ramped to 100,150,200,250,275,300,325,350,375,400,425,450,475,and 500°C,and maintained at each temperature step for 0.5 h.The effluent gas was analyzed online with a gas chromatograph(7890A,Agilent)equipped with a TCD detector[14].

    3.Results

    3.1.Catalytic activity in N2O decomposition

    Fig.1.N2O conversion over different Cu-ZSM-5 zeolites.

    Fig.1 shows N2O conversions over Cu-ZSM-5 catalysts,as tested as a function of reaction temperature.CZM-CS,CZM-CN,and CZM-CC show similar catalytic activity for N2O decomposition.These three samples are virtually inactive below 350°C,and then the N2O conversion increases as the reaction temperature rises above 350°C and reaches about 90%at 500°C.CZM-CA is more active than these three catalysts mentioned above,initially being active above 325°C and showing almost complete N2O conversion at 425°C.The most active catalyst among these five Cu-ZSM-5 samples is CZM-AC(II).The N2O conversion on CZM-AC(II)increases above 250 °C,and it is close to 100%at 400 °C.The T50(temperature required for 50%conversion)values of CZM-CS,CZM-CN,CZM-CC,CZM-CA,and CZM-AC(II)are 430,437,430,375,and 358°C,respectively.The data indicate that the influence of different Cu precursors is significant.In addition,CZM-AC(II)is more active than Fe-ZSM-5(Fe content=3.83 wt%)and a commercial Co3O4(Fig.S1).

    3.2.Basic physicochemical properties of Cu-ZSM-5 samples

    Table 1 shows the Cu contents of five Cu-ZSM-5 samples,as determined by ICP analysis.The Cu contents of these samples follow the sequence of CZM-AC(II)(9.4 wt%)>CZM-CA(2.8 wt%)>CZM-CS(1.7 wt%)≈CZM-CN(1.7 wt%)≈CZM-CC(1.6 wt%).The Cu/Al molar ratios of these catalysts follow the same sequence.The data mean that the Cu contents of the samples prepared using different Cu precursors can differ significantly,and such a difference may influence the catalytic activity.Because CZM-AC(II)is the most active catalyst,CZM-CA is the second most active catalyst,whereas CZM-CS,CZM-CN,and CZM-CC show similar activities and Cu contents,we picked CZM-AC(II),CZMCA,and CZM-CS for further characterization.

    Table 2 shows the surface areas and pore volumes of representative Cu-ZSM-5 samples.The surface areas of CZM-AC(II),CZM-CA,and CZM-CS are 194,231,and 365 m2·g-1,respectively,indicating that the existence of more Cu species can decrease the surface area significantly.As seen in Table 2,the existence of more Cu species can also decrease the pore volume obviously.

    Table 1 Cu contents and Cu/Al molar ratios of Cu-ZSM-5 samples

    Table 2 Surface areas and pore volumes of Cu-ZSM-5 samples

    Fig.2 shows the XRD patterns of three representative Cu-ZSM-5 samples collected after being treated in He at500°C for2 h.Such a treatment is adopted in our catalytic studies prior to reaction testing.As shown in Fig.2,the MFI zeolite structure is preserved after ion-exchange.No obvious peaks other than those of zeolites can be observed in CZM-CA and CZM-CS,but some small peaks(2θ=35.5°,38.8°)corresponding to CuO are observed in CZM-AC(II).The observation is consistent with the low Cu contents(2.8 wt%and 1.7 wt%,respectively)of CZM-CA and CZM-CS as well as high Cu content(9.4 wt%)of CZM-AC(II).

    Fig.2.XRD patterns of different Cu-ZSM-5 zeolites after pretreatment.

    Fig.3.TEM images of fresh CZM-AC(II)(a)and CZM-CS(b)after pretreatment.

    Fig.3 displays the TEM images of CZM-AC(II)and CZM-CS.There are lots of nanoparticles dispersed on CZM-AC(II)after being pretreated in He at 500°C,and most of the nanoparticles are as large as 50 nm(Fig.3a).Combined with XRD diffraction peaks,these nanoparticles should be CuO.In contrast,no particles are seen on pretreated CZM-CS(Fig.3b),indicating that Cu species disperse highly on the surface.

    TEM-mapping analysis was further used to investigate the existing form of the Cu species.For pretreated CZM-AC(II)(Fig.4),besides the well dispersed Cu species,there are still aggregated Cu species,most likely CuO nanoparticles.However,Cu species are well dispersed on He-pretreated CZM-CS(Fig.5).

    Fig.4.TEM-Mapping images of CZM-AC(II)after pretreatment.

    3.3.CO-IR

    Cu-ZSM-5 samples prepared by different Cu precursors show different catalytic activities in N2O decomposition(Fig.1).It is obvious that the catalytic activities(in view of the N2O conversions)of Cu-ZSM-5 samples increase with the Cu contents(Table 1).However,not all of the Cu species are catalytically active.Therefore,in situFT-IR experiments using COas a probe were conducted to clarify the nature of active sites.The oxidation state,the coordination state,and the concentration ofCu species can be determined by the positions and intensities of the IR peaks ascribed to adsorbed CO.

    Fig.6 presents the DRIFTS spectra of CO adsorbed on CZM-AC(II).These experiments are individual experiments using CZM-AC(II)from the same batch.In each experiment,CZM-AC(II)was pretreated in the IR cell with flowing He at a certain temperature,cooled down,allowed for CO adsorption,and the IR spectra were recorded at room temperature.The fresh CZM-AC(II)(without being heated in He)showed no CO peaks at 2000-2300 cm-1.The Cu species of fresh CZM-AC(II)may exist in the form of Cu2+and CO does not interact with Cu2+at room temperature[22,23].CZM-AC(II)exhibited two peaks at 2138 cm-1(assigned to CO adsorbed on dimeric Cu+(Cu+-CO-Cu+)sites[11,24-26])and 2157 cm-1(assigned to isolated Cu+(Cu+-CO)sites[11,24-28])when the pretreatment temperature was 250°C and above.The intensities of both peaks increased significantly with the pretreatment temperature was increased from 250 to 400°C,indicating that the pretreatment of Cu-ZSM-5 in He at elevated temperatures can lead to the reduction of some framework Cu2+to Cu+(including dimeric and isolated Cu+)and the amount of Cu+increases with the pretreatment temperature.

    Fig.7 and Table 3 compare the CO-IR spectra ofCZM-AC(II),CZM-CA,and CZM-CS pretreated in He at 400°C.CZM-CA and CZM-CS also contain dimeric Cu+(Cu+-CO-Cu+)at 2138 cm-1and isolated Cu+(Cu+-CO)at 2157 cm-1,indicating that reduction of some framework Cu2+to Cu+during thermal treatment in He is common for these samples.Nevertheless,both the peak area of dimeric Cu+and the total peaks area follow the sequence of CZM-AC(II)>CZM-CA>CZM-CS(Table 3).The data correlated nicely with the catalytic activity,as will be discussed later.

    Fig.5.TEM-mapping images of CZM-CS after pretreatment.

    Fig.6.CO-IR spectra for room-temperature CO adsorption on of CZM-AC(II)pretreated in He at different temperatures.

    Fig.7.CO-IR spectra for room-temperature CO adsorption on of Cu-ZSM-5 samples pretreated in He at 400°C.

    Table 3 In situ CO-IR data of pretreated Cu-ZSM-5 zeolites

    3.4.Effect of co-fed O2 or H2O on catalytic performance

    As the presence of impurity gases(e.g.,O2,H2O)in the actual environment is unavoidable and may influence the catalytic activity,we then investigated the influence of these gases.The influence of co-fed 5%O2or 2%H2O on the catalytic performance of CZM-AC(II),CZM-CA,and CZM-CS was investigated at a fixed reaction temperature of 390°C.O2(5%)or H2O(2%)was switched on and off periodically during the reaction at 390°C.As shown in Figs.8,S2,and S3,in the first step(0-2 h)when no O2or H2O was added,the N2O conversions for each catalyst at 390°C were consistent with the values seen in Fig.1.However,the N2O conversion decreased dramatically when O2or H2O was added into the reaction mixture(2-4 h).By removing O2or H2O in the third step(4-6 h),the N2O conversion was partially recovered.A similar trend was observed in an additional cycle.After two cycles of periodic addition of O2or H2O,the N2O conversions(8-10 h)of CZM-AC(II),CZM-CA,and CZM-CS decreased.

    Fig.8.N2O Conversion over CZM-AC(II)in the presence of O2 or H2O.

    3.5.Catalytic stability

    Fig.S4 shows N2O conversion over different Cu-ZSM-5 samples in 2-cycle experiments.In each set of experiment,the catalyst was tested in the first cycle as described in Section 2.3,cooled down to room temperature,and tested again.The T50values of these catalysts in the second cycle clearly show the sequence of CZM-AC(II)>CZM-CA>CZM-CS,consistent with the trend seen in the first cycle.A marginal decrease in the N2O conversion was observed for all catalysts.

    The catalytic stability was also compared by testing the N2O conversion as a function of reaction time at390°C.As shown in Fig.9,the initial N2O conversions of CZM-AC(II),CZM-CA,and CZM-CS are 91%,75%,and 24%,respectively.The N2O conversion over CZM-AC(II),CZM-CA,and CZM-CS decreased gradually with the reaction time.However,their activities still follow the sequence ofCZM-AC(II)>CZM-CA>CZM-CS during 50 h testing.

    4.Discussion

    Here we prepared Cu-ZSM-5 catalysts using different Cu precursors(CuCl2,Cu(NO3)2,CuSO4,Cu(CH3COO)2,or ammoniacal copper(II)complex ion)by ion-exchange.The activities of these catalysts in N2O decomposition follow the sequence of CZM-AC(II)>CZM-CA>CZMCS≈CZM-CN≈CZM-CC(Fig.1).

    CRP電子文件是指高校從事教學(xué)、科研、管理等活動(dòng)形成的文字、圖表、圖像、音頻、視頻、數(shù)據(jù)庫等不同形式的電子信息記錄,以及履行公共服務(wù)等職能活動(dòng)在網(wǎng)上辦事大廳通過申請(qǐng)、受理、辦理、辦結(jié)等辦理事項(xiàng)過程中形成、獲取的電子文件。高校CRP平臺(tái)實(shí)現(xiàn)了審批事項(xiàng)集中進(jìn)駐、網(wǎng)上服務(wù)集中提供、數(shù)據(jù)資源集中共享。但是,CRP平臺(tái)畢竟只是一個(gè)集成的業(yè)務(wù)系統(tǒng),它只關(guān)注于業(yè)務(wù)的形成和辦理,對(duì)于辦理完畢的電子文件的憑證價(jià)值、歸檔保存和安全利用等問題并未做重點(diǎn)關(guān)注,隨著高校CRP平臺(tái)建設(shè)的全面推進(jìn),產(chǎn)生的電子文件越來越多,電子文件的歸檔問題越來越凸顯。

    Both the Cu contents(≈1.7 wt%)and Cu/Al molar ratio(≈0.30)of CZM-CS,CZM-CN,and CZM-CC are fairly similar,whereas they are much lower than those of CZM-AC(II)and CZM-CA(Table 1).This can be explained by the fact that in 0.1 mol·L-1CuSO4,Cu(NO3)2,or CuCl2solutions used for ion-exchange,Cu2+exists as hydrated mononuclear ions[Cu(H2O)6]2+and[Cu(OH)(H2O)5]+[19].For comparison,a significant portion of Cu2+species in 0.1 mol·L-1Cu(CH3COO)2solution exist as binuclear hydroxocomplexes[Cu2(OH)2(H2O)8]2+[19,20,29],thus leading to the increase of the Cu content(2.8 wt%)and Cu/Al molar ratio(0.50)of CZM-CA.

    As the pH value of CuSO4solution is raised when adding aqueous ammonia,dinuclear and polynuclear hydroxocopper cations are formed by partialhydrolysis and polycondensation of hydrated copper ions[19,20,30].Thus,the highest Cu content(9.4 wt%)is obtained when Cu-ZSM-5 is prepared from ammoniacal copper(II)complex ion solution(CZM-AC(II)).An excess of ion exchange level over the theoretically stoichiometric value(Cu/Al=1.90 instead of 0.5)is clearly observed in Table 1.As shown in Fig.S5,there are some nanoparticles(about 5-10 nm)on the surface of fresh CZM-AC(II)(without being heated in He),con firming the formation of large copper polyhydroxocomplexes.These nanoparticles on fresh CZM-AC(II)aggregate to form big CuO particles upon pretreating in He at 500°C(Figs.2-4).In contrast,no CuO particles is found on CZM-CS with low Cu content(Cu/Al=0.3)(Figs.2,3,5).

    Not allCu species are involved in catalytic N2O decomposition.Maet al.found that mesoporous CuO(composed of CuO nanoparticles)and commercial bulk CuO are not active at all for this reaction[31].On the other hand,Cu+has been widely recognized as the active center for N2O decomposition[22,23,32-36].In Cu-ZSM-5,Cu2+is reduced to Cu+(including isolated and dimeric Cu+)gradually by thermal treatment in He flow at 250°C and above(Fig.6).The contents of dimeric Cu+and total Cu+,as derived from the integrated areas of the IR band at ca.2157 cm-1and 2138 cm-1,follow the sequence of CZM-AC(II)>CZM-CA>CZM-CS(Fig.7,Table 2),consistent with the activity trend(Fig.1).Note that the specific rates(the moles of the N2O molecules decomposed per gramof Cu per hour)of catalysts at375°C follow the sequence of CZM-CA>CZM-AC(II)>CZM-CS≈CZM-CN≈CZM-CC(Table S1).The fact that CZM-AC(II)shows a lower specific rate than CZM-CA is due to the presence of a number of inactive CuO nanoparticles on CZM-AC(II).

    N2O decomposition entails the adsorption of N2O on active sites followed by decomposition,resulting in the formation of N2and surface oxygen.The surface oxygen can be desorbed by combining with another oxygen atom or by directly reacting with another N2O[37-40].Cu+in Cu-exchanged zeolite catalysts has been widely recognized as the active center for N2O decomposition,and Cu+includes isolated Cu+and dimeric Cu+.The distance between dimeric Cu+sites is shorter that the distance between isolated Cu+sites,so oxygen atoms can combine on dimeric Cu+sites more easily,thus favoring N2O decomposition[4,34,41].Therefore,CZM-AC(II)shows the highest activity in N2O decomposition because of its high dimeric Cu+content.

    A negative effect of O2or H2O on the N2O decomposition is observed for all Cu-ZSM-5 catalysts(Fig.8 and Figs.S2-S3),in agreement with our previous results[14,15].In our experiment,the release of O2may be restricted by co-fed O2.The periodical exposure to O2results in a partial deactivation of all Cu-ZSM-5,which may be caused by the oxidation of a portion of Cu+[16].The obvious inhibiting effect of H2O is consistent with the literature[41-43].The catalytic activity of all Cu-ZSM-5 decrease in the presence of H2O,most likely due to competitive adsorption of H2O on the active Cu sites[41].Of course,the dealumination of Cu-ZSM-5 or the sintering of Cu ions may also lead to deactivation in the long run[43-45].

    The activity of each Cu-ZSM-5 in the second cycle of N2O decomposition is similar to that in the first cycle(Fig.S4),probably because the reaction period(especially the period during which the catalyst is exposed to the reaction ambient at high temperatures)is relatively short.In contrast,after 50 h reaction at 390°C,the N2O conversions on CZM-AC(II),CZM-CA,and CZM-CS decrease more obviously(Fig.9).The oxidation of a portion of Cu+by O2produced from N2O decomposition at 390°C may be responsible for the loss of catalytic activity[14].

    5.Conclusions

    Supplementary Material

    Supplementary data to this article can be found online athttps://doi.org/10.1016/j.cjche.2018.02.015.

    [1]S.Parres-Esclapez,I.Such-Basa?ez,M.J.Illán-Gómez,C.Salinas-Martínez de Lecea,A.Bueno-López,Study by isotopic gases and in situ spectroscopies(DRIFTS,XPS and Raman)of the N2O decomposition mechanism on Rh/CeO2and Rh/γ-Al2O3catalysts,J.Catal.276(2010)390-401.

    [2]Y.Lin,T.Meng,Z.Ma,Catalytic decomposition of N2O over RhOxsupported on metal phosphates,J.Ind.Eng.Chem.28(2015)138-146.

    [3]M.Iwamoto,H.Furukawa,Y.Mine,F.Uemura,S.Mikuriya,S.Kagawa,Copper(II)ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide,J.Chem.Soc.Chem.Commun.(1986)1272-1273.

    [4]P.J.Smeets,M.H.Groothaert,R.M.van Teeffelen,H.Leeman,E.J.M.Hensen,R.A.Schoonheydt,Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites:Elucidating the influence of the Cu-Cu distance on oxygen migration,J.Catal.245(2007)358-368.

    [5]B.M.Abu-Zied,W.Schwieger,A.Unger,Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method,Appl.Catal.B84(2008)277-288.

    [6]J.K.Lee,Y.J.Kim,H.J.Lee,S.H.Kim,S.J.Cho,I.S.Nam,S.B.Hong,Iron-substituted TNU-9,TNU-10,and IM-5 zeolites and their steam-activated analogs as catalysts for direct N2O decomposition,J.Catal.284(2011)23-33.

    [7]X.Y.Zhang,Q.Shen,C.He,Y.F.Wang,J.Cheng,Z.P.Hao,CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide,J.Hazard.Mater.192(2011)1756-1765.

    [8]X.Y.Zhang,Q.Shen,C.He,C.Y.Ma,J.Cheng,Z.M.Liu,Z.P.Hao,Decomposition of nitrous oxide over co-zeolite catalysts:role of zeolite structure and active site,Catal.Sci.Technol.2(2012)1249-1258.

    [9]N.Liu,R.D.Zhang,B.H.Chen,Y.P.Li,Y.X.Li,Comparative study on the direct decomposition of nitrous oxide over M(Fe,Co,Cu)-BEA zeolites,J.Catal.294(2012)99-112.

    [10]Q.Xiao,F.F.Yang,J.Zhuang,G.P.Qiu,Y.J.Zhong,W.D.Zhu,Facile synthesis of uniform FeZSM-5 crystals with controlled size and their application to N2O decomposition,Microporous Mesoporous Mater.167(2013)38-43.

    [11]P.F.Xie,Z.Ma,H.B.Zhou,C.Y.Huang,Y.H.Yue,W.Shen,H.L.Xu,W.M.Hua,Z.Gao,Catalytic decomposition of N2O over Cu-ZSM-11 catalysts,Microporous Mesoporous Mater.191(2014)112-117.

    [12]Y.Li,J.N.Armor,Catalytic decomposition of nitrous oxide on metal exchanged zeolites,Appl.Catal.B1(1992)L21-L29.

    [13]J.Wang,N.Mizuno,M.Misono,Comparison of catalytic decomposition of dinitrogen oxide and nitrogen monoxide over Cu/ZSM-5 and Cu/Y zeolites,Bull.Chem.Soc.Jpn.71(1998)947-954.

    [14]T.Meng,N.Ren,Z.Ma,Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition,J.Mol.Catal.A404-405(2015)233-239.

    [15]T.Meng,Y.Lin,Z.Ma,Effect of the crystal size of Cu-ZSM-5 on the catalytic performance in N2O decomposition,Mater.Chem.Phys.163(2015)293-300.

    [16]W.Zou,P.F.Xie,W.M.Hua,Y.D.Wang,D.J.Kong,Y.H.Yue,Z.Ma,W.M.Yang,Z.Gao,Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets,J.Mol.Catal.A394(2014)83-88.

    [17]S.S.Sun,D.S.Mao,J.Yu,Z.Q.Yang,G.Z.Lu,Z.Ma,Low-temperature CO oxidation on CuO/CeO2catalysts:The significant effect of copper precursor and calcination temperature,Catal.Sci.Technol.5(2015)3166-3181.

    [18]R.Bulánek,B.Wichterlová,Z.Sobalík,J.Tichy,Reducibility and oxidation activity of Cu ions in zeolites:Effect of Cu ion coordination and zeolite framework composition,Appl.Catal.B31(2001)13-25.

    [19]S.A.Yashnik,Z.R.Ismagilov,V.F.Anufrienko,Catalytic properties and electronic structure of copper ions in Cu-ZSM-5,Catal.Today110(2005)310-322.

    [20]S.Yashnik,Z.Ismagilov,Cu-substituted ZSM-5 catalyst:Controlling of DeNOxreactivity via ion-exchange mode with copper-ammonia solution,Appl.Catal.B170-171(2015)241-254.

    [21]M.H.Groothaert,P.J.Smeets,B.F.Sels,P.A.Jacobs,R.A.Schoonheydt,Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites,J.Am.Chem.Soc.127(2005)1394-1395.

    [22]Z.R.Ismagilov,R.A.Shkrabina,L.T.Tsikoza,S.A.Yashnik,V.A.Sazonov,V.V.Kuznetsov,M.V.Luzgin,A.V.Kalinkin,H.Veringa,The stability of monolith CuZSM-5 catalysts for the selective reduction of nitrogen oxides with hydrocarbons:I.Synthesis and characterization of bulk CuZSM-5 catalysts,Kinet.Catal.42(2001)847-853.

    [23]H.B.Zhou,Z.Huang,C.Sun,F.Qin,D.S.Xiong,W.Shen,H.L.Xu,Catalytic decomposition of N2O over CuxCe1-xOymixed oxides,Appl.Catal.B125(2012)492-498.

    [24]K.I.Hadjiivanov,M.M.Kantcheva,D.G.Klissurski,IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2catalysts:σ and π components of the Cu+-CO bond,J.Chem.Soc.Faraday Trans.92(1996)4595-4600.

    [25]T.T.H.Dang,H.L.Zubowa,U.Bentrup,M.Richter,A.Martin,Microwave-assisted synthesis and characterization of Cu-containing AlPO4-5 and SAPO-5,Microporous Mesoporous Mater.123(2009)209-220.

    [26]L.Wang,W.Li,G.S.Qi,D.Weng,Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3,J.Catal.289(2012)21-29.

    [27]J.Y.Yan,G.D.Lei,W.M.H.Sachtler,H.H.Kung,Deactivation of Cu/ZSM-5 catalysts for lean NOxreduction:Characterization of changes of Cu state and zeolite support,J.Catal.161(1996)43-54.

    [28]Y.Kuroda,Y.Yoshikawa,R.Kumashiro,M.Nagao,Analysis of active sites on copper ion-exchanged ZSM-5 for CO adsorption through IR and adsorption-heat measurements,J.Phys.Chem.B101(1997)6497-6503.

    [29]C.F.Baes Jr.,R.F.Mesmer,The hydrolysis of cations,Wiley/Interscience,New York,1976.

    [30]L.T.Tsikoza,E.V.Matus,Z.R.Ismagilov,V.A.Sazonov,V.V.Kuznetsov,Correlation between the Cu/Al value and activity of Cu-ZSM-5 catalysts and the chemical nature of the starting copper salt,Kinet.Catal.46(2005)613-617.

    [31]Z.Ma,Y.Ren,Y.B.Lu,P.G.Bruce,Catalytic decomposition of N2O on ordered crystalline metal oxides,J.Nanosci.Nanotechnol.13(2013)5093-5103.

    [32]M.V.Konduru,S.S.C.Chuang,Dynamics of NO and N2O decomposition over Cu-ZSM-5 under transient reducing and oxidizing conditions,J.Catal.196(2000)271-286.

    [33]P.E.Fanning,M.A.Vannice,A DRIFTS study of Cu-ZSM-5 prior to and during its use for N2O decomposition,J.Catal.207(2002)166-182.

    [34]X.Liu,Z.Y.Yang,Y.P.Li,F.Z.Zhang,Theoretical study of N2O decomposition mechanism over binuclear Cu-ZSM-5 zeolites,J.Mol.Catal.A396(2015)181-187.

    [35]L.Chen,H.Y.Chen,J.Lin,K.L.Tan,FTIR,XPS and TPR studies of N2O decomposition over Cu-ZSM-5,Surf.Interface Anal.28(1999)115-118.

    [36]E.S.Shpiro,W.Grunert,R.W.Joyner,G.N.Baeva,Nature,distribution and reactivity of copper species in over-exchanged Cu-ZSM-5 catalysts:An XPS/XAES study,Catal.Lett.24(1994)159-169.

    [37]F.Kapteijn,G.Marbán,J.Rodriguez-Mirasol,J.A.Moulijn,Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts,J.Catal.167(1997)256-265.

    [38]G.Mul,J.Pérez-Ramírez,F.Kapteijn,J.A.Moulijn,NO-assisted N2O decomposition over ex-framework FeZSM-5:mechanistic aspects,Catal.Lett.77(2001)7-13.

    [39]E.V.Kondratenko,J.Pérez-Ramírez,Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products,J.Phys.Chem.B110(2006)22586-22595.

    [40]C.M.Fu,V.N.Korchak,W.K.Hall,Decomposition of nitrous oxide on FeY zeolite,J.Catal.68(1981)166-171.

    [41]P.J.Smeets,B.F.Sels,R.M.van Teeffelen,H.Leeman,E.J.M.Hensen,R.A.Schoonheydt,The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2,NO and H2O on recombination of oxygen,J.Catal.256(2008)183-191.

    [42]M.K?gel,V.H.Sandoval,W.Schwieger,A.Tissler,T.Turek,Catalytic activity and hydrothermal stability of Cu-ZSM-5 used for the decomposition of N2O,Chem.Eng.Technol.21(1998)655-658.

    [43]B.I.Palella,M.Cadoni,A.Frache,H.O.Pastore,R.Pirone,G.Russo,S.Coluccia,L.Marchese,On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition:A comparison with CuZSM-5,J.Catal.217(2003)100-106.

    [44]A.Frache,B.I.Palella,M.Cadoni,R.Pirone,H.O.Pastore,L.Marchese,CuAPSO-34 catalysts for N2O decomposition in the presence of H2O.A study of zeolitic structure stability in comparison to Cu-SAPO-34 and Cu-ZSM-5,Top.Catal.22(2003)53-57.

    [45]B.I.Palella,R.Pirone,G.Russo,A.Albuquerque,H.O.Pastore,M.Cadoni,A.Frache,L.Marchese,On the activity and hydrothermal stability of CuMCM-22 in the decomposition of nitrogen oxides:A comparison with CuZSM-5,Catal.Commun.5(2004)191-194.

    猜你喜歡
    圖表事項(xiàng)音頻
    如果要獻(xiàn)血,需注意以下事項(xiàng)
    中老年保健(2022年4期)2022-08-22 03:01:48
    宜昌“清單之外無事項(xiàng)”等
    疫情期間,這些事項(xiàng)請(qǐng)注意!
    青銅器收藏10大事項(xiàng)
    必須了解的音頻基礎(chǔ)知識(shí) 家庭影院入門攻略:音頻認(rèn)證與推薦標(biāo)準(zhǔn)篇
    基于Daubechies(dbN)的飛行器音頻特征提取
    電子制作(2018年19期)2018-11-14 02:37:08
    音頻分析儀中低失真音頻信號(hào)的發(fā)生方法
    電子制作(2017年9期)2017-04-17 03:00:46
    雙周圖表
    足球周刊(2016年14期)2016-11-02 10:54:56
    雙周圖表
    足球周刊(2016年15期)2016-11-02 10:54:16
    雙周圖表
    足球周刊(2016年10期)2016-10-08 18:30:55
    丝袜脚勾引网站| 国产一区亚洲一区在线观看| 亚洲国产精品999| 国产色婷婷99| 欧美成人午夜免费资源| 一本一本综合久久| 久久午夜福利片| 日日摸夜夜添夜夜爱| 国产精品国产三级国产av玫瑰| 久久国产乱子免费精品| 永久免费av网站大全| 美女脱内裤让男人舔精品视频| 国产精品99久久久久久久久| 精品视频人人做人人爽| 97精品久久久久久久久久精品| 在现免费观看毛片| 91精品国产国语对白视频| 亚洲情色 制服丝袜| 一级毛片电影观看| 日韩大片免费观看网站| 我的女老师完整版在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲精品一区蜜桃| 久久人人爽人人片av| 国产片特级美女逼逼视频| 国产av国产精品国产| 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 久久ye,这里只有精品| 如日韩欧美国产精品一区二区三区 | 综合色丁香网| 2018国产大陆天天弄谢| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 99久久中文字幕三级久久日本| 人人妻人人澡人人看| 欧美日韩在线观看h| 视频区图区小说| 国产欧美日韩综合在线一区二区 | 日韩av免费高清视频| 26uuu在线亚洲综合色| 男女边摸边吃奶| 亚洲av中文av极速乱| 国产有黄有色有爽视频| 中文字幕亚洲精品专区| 免费看av在线观看网站| 精品亚洲成a人片在线观看| 在线观看人妻少妇| 九九爱精品视频在线观看| 日韩一区二区三区影片| 特大巨黑吊av在线直播| 韩国高清视频一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 久久精品夜色国产| 我要看黄色一级片免费的| 啦啦啦视频在线资源免费观看| 国产成人a∨麻豆精品| 久久99热这里只频精品6学生| 国产男人的电影天堂91| 一本—道久久a久久精品蜜桃钙片| av免费观看日本| 日韩中文字幕视频在线看片| 免费不卡的大黄色大毛片视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区精品91| 日本av免费视频播放| 亚洲精品自拍成人| 日韩av在线免费看完整版不卡| 亚洲激情五月婷婷啪啪| 这个男人来自地球电影免费观看 | 高清欧美精品videossex| 嫩草影院新地址| 亚洲欧美日韩卡通动漫| 久久99热这里只频精品6学生| 精品卡一卡二卡四卡免费| av一本久久久久| 国产男女内射视频| 大片电影免费在线观看免费| 免费不卡的大黄色大毛片视频在线观看| 美女国产视频在线观看| 国产极品粉嫩免费观看在线 | 久久久久久久大尺度免费视频| av卡一久久| 男女国产视频网站| 亚洲情色 制服丝袜| 最近中文字幕高清免费大全6| 久久精品久久精品一区二区三区| 各种免费的搞黄视频| 极品人妻少妇av视频| 一本色道久久久久久精品综合| 91aial.com中文字幕在线观看| 男女边摸边吃奶| 精华霜和精华液先用哪个| 精品午夜福利在线看| 视频中文字幕在线观看| 久久韩国三级中文字幕| 简卡轻食公司| 精品国产国语对白av| 亚洲成人手机| 国产片特级美女逼逼视频| 国产精品久久久久久精品电影小说| 精品久久久久久久久av| 国国产精品蜜臀av免费| 欧美性感艳星| 亚洲,一卡二卡三卡| 最近中文字幕高清免费大全6| 夜夜骑夜夜射夜夜干| 少妇人妻精品综合一区二区| 99九九在线精品视频 | 免费大片黄手机在线观看| 夫妻性生交免费视频一级片| 91午夜精品亚洲一区二区三区| av福利片在线观看| 亚洲电影在线观看av| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 3wmmmm亚洲av在线观看| 桃花免费在线播放| 七月丁香在线播放| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 9色porny在线观看| 亚洲色图综合在线观看| 久久精品久久精品一区二区三区| 久久 成人 亚洲| 亚洲精品日本国产第一区| 少妇人妻精品综合一区二区| 亚洲成人一二三区av| 久久久久久久国产电影| 亚洲第一av免费看| 精品亚洲成国产av| 成年女人在线观看亚洲视频| 亚洲性久久影院| 人体艺术视频欧美日本| 成人毛片a级毛片在线播放| 亚洲精品日韩在线中文字幕| 亚洲真实伦在线观看| 久久热精品热| 久久99一区二区三区| 91午夜精品亚洲一区二区三区| 日本与韩国留学比较| 精品一区二区免费观看| 国产精品三级大全| 精品卡一卡二卡四卡免费| 9色porny在线观看| 国产美女午夜福利| 国产精品国产三级国产专区5o| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说| 国产白丝娇喘喷水9色精品| 看十八女毛片水多多多| 精品熟女少妇av免费看| 男人舔奶头视频| 国产伦精品一区二区三区视频9| 欧美精品国产亚洲| 91久久精品国产一区二区三区| 好男人视频免费观看在线| 国产 精品1| 蜜桃久久精品国产亚洲av| 午夜影院在线不卡| a级一级毛片免费在线观看| 99国产精品免费福利视频| 国产黄片美女视频| 国产女主播在线喷水免费视频网站| 亚洲美女黄色视频免费看| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 日韩av免费高清视频| √禁漫天堂资源中文www| 日本爱情动作片www.在线观看| 夜夜骑夜夜射夜夜干| 狂野欧美激情性bbbbbb| 国产精品99久久99久久久不卡 | 午夜激情久久久久久久| 在线观看免费高清a一片| 我要看黄色一级片免费的| 另类精品久久| 国产日韩欧美在线精品| 久久女婷五月综合色啪小说| 午夜av观看不卡| 成人特级av手机在线观看| 亚洲成人手机| 日韩一区二区三区影片| 极品少妇高潮喷水抽搐| 亚洲丝袜综合中文字幕| 女人久久www免费人成看片| 美女大奶头黄色视频| 少妇人妻久久综合中文| 在线观看国产h片| 2021少妇久久久久久久久久久| 成人二区视频| 在线观看www视频免费| 亚洲人成网站在线观看播放| 中文字幕人妻丝袜制服| 蜜臀久久99精品久久宅男| 18禁裸乳无遮挡动漫免费视频| 国产高清有码在线观看视频| 亚洲,一卡二卡三卡| 欧美日韩av久久| 国产亚洲av片在线观看秒播厂| 欧美+日韩+精品| 欧美日韩综合久久久久久| 这个男人来自地球电影免费观看 | 欧美激情国产日韩精品一区| 高清午夜精品一区二区三区| 一区二区三区精品91| 视频区图区小说| 伦理电影免费视频| 一区二区三区免费毛片| 国产片特级美女逼逼视频| 老女人水多毛片| 国产精品一区二区在线观看99| 亚洲真实伦在线观看| 成人影院久久| 国产在视频线精品| 99热这里只有是精品在线观看| 一个人免费看片子| 久久久久久久久久成人| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 老司机亚洲免费影院| 亚洲国产欧美日韩在线播放 | 少妇人妻 视频| 成人影院久久| 国产黄色视频一区二区在线观看| 国产深夜福利视频在线观看| 免费看不卡的av| 人妻夜夜爽99麻豆av| 欧美日韩视频精品一区| 色哟哟·www| 男男h啪啪无遮挡| 老司机影院成人| 午夜精品国产一区二区电影| 国产又色又爽无遮挡免| 亚洲经典国产精华液单| 午夜日本视频在线| 色哟哟·www| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 中文字幕亚洲精品专区| 欧美+日韩+精品| 免费观看av网站的网址| 国产 一区精品| 欧美另类一区| 亚洲四区av| 色视频www国产| 亚洲第一av免费看| 免费看不卡的av| 亚洲精品,欧美精品| 久久ye,这里只有精品| 一本大道久久a久久精品| 久久99热6这里只有精品| 欧美精品高潮呻吟av久久| 国产欧美亚洲国产| 三级国产精品欧美在线观看| 精品久久久久久久久亚洲| 精品久久久久久久久av| 亚洲高清免费不卡视频| 国产精品久久久久久久久免| 亚洲av在线观看美女高潮| 国产精品蜜桃在线观看| 久久久欧美国产精品| a级一级毛片免费在线观看| 亚洲av欧美aⅴ国产| 亚洲一区二区三区欧美精品| 少妇的逼好多水| 国语对白做爰xxxⅹ性视频网站| 久久久久久人妻| 免费大片黄手机在线观看| 久久久午夜欧美精品| 十分钟在线观看高清视频www | 久热久热在线精品观看| 国产毛片在线视频| 边亲边吃奶的免费视频| 桃花免费在线播放| 国产免费视频播放在线视频| 国产精品一二三区在线看| 在线观看一区二区三区激情| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 中国三级夫妇交换| 久久影院123| 国产亚洲精品久久久com| 成人无遮挡网站| 免费看av在线观看网站| av视频免费观看在线观看| 国内少妇人妻偷人精品xxx网站| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 五月玫瑰六月丁香| 国产美女午夜福利| 久久久精品免费免费高清| 国产永久视频网站| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 婷婷色麻豆天堂久久| 亚洲,一卡二卡三卡| 色视频www国产| 夫妻性生交免费视频一级片| 日日撸夜夜添| 大香蕉97超碰在线| 久久久精品免费免费高清| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 超碰97精品在线观看| 亚洲久久久国产精品| 一区二区av电影网| 久久国内精品自在自线图片| 在线观看免费视频网站a站| 日本与韩国留学比较| 午夜免费鲁丝| 久久精品久久久久久久性| 欧美高清成人免费视频www| 国产黄色免费在线视频| 在线观看美女被高潮喷水网站| 精品99又大又爽又粗少妇毛片| 久久久国产精品麻豆| 久久久久精品久久久久真实原创| 久久青草综合色| 一个人免费看片子| 两个人的视频大全免费| 九色成人免费人妻av| 亚洲国产色片| 中文在线观看免费www的网站| 国产有黄有色有爽视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 久久狼人影院| 精品熟女少妇av免费看| 自拍欧美九色日韩亚洲蝌蚪91 | www.av在线官网国产| 如日韩欧美国产精品一区二区三区 | 黄色欧美视频在线观看| 亚洲精品aⅴ在线观看| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 在线观看三级黄色| 精品一区二区三区视频在线| 久热这里只有精品99| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 狂野欧美白嫩少妇大欣赏| 日韩在线高清观看一区二区三区| 午夜福利网站1000一区二区三区| 九色成人免费人妻av| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 日韩不卡一区二区三区视频在线| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| 久久免费观看电影| 偷拍熟女少妇极品色| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 男的添女的下面高潮视频| 精品久久久噜噜| 天堂中文最新版在线下载| 一级毛片电影观看| 一级av片app| 欧美三级亚洲精品| 9色porny在线观看| 在线观看www视频免费| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久| 久久久久精品性色| 亚洲无线观看免费| 一本色道久久久久久精品综合| 国产乱来视频区| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| av线在线观看网站| 亚洲av二区三区四区| 成人国产麻豆网| 水蜜桃什么品种好| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 久久午夜福利片| av专区在线播放| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 高清在线视频一区二区三区| 国产成人精品无人区| 丰满迷人的少妇在线观看| 新久久久久国产一级毛片| 中文天堂在线官网| 久久精品久久精品一区二区三区| 国产中年淑女户外野战色| 日韩,欧美,国产一区二区三区| av免费在线看不卡| 国产精品一区www在线观看| 日韩一区二区视频免费看| 观看av在线不卡| 99热6这里只有精品| 国产成人精品福利久久| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 啦啦啦在线观看免费高清www| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| xxx大片免费视频| 亚洲综合精品二区| 尾随美女入室| av免费在线看不卡| 狂野欧美激情性bbbbbb| 国产高清不卡午夜福利| 日本wwww免费看| 国产美女午夜福利| 国产精品人妻久久久久久| www.色视频.com| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 免费高清在线观看视频在线观看| 免费大片18禁| 亚洲精品一区蜜桃| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 久久久国产欧美日韩av| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 欧美成人午夜免费资源| 交换朋友夫妻互换小说| 国产亚洲欧美精品永久| 国产91av在线免费观看| 亚洲精品乱码久久久久久按摩| 中文字幕精品免费在线观看视频 | 欧美 亚洲 国产 日韩一| 欧美激情国产日韩精品一区| 美女主播在线视频| 免费大片18禁| 亚洲三级黄色毛片| 久久99蜜桃精品久久| av国产精品久久久久影院| 亚洲第一av免费看| 久久精品国产a三级三级三级| 深夜a级毛片| 国产中年淑女户外野战色| 国产精品久久久久久久电影| 中国国产av一级| 丝袜喷水一区| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 日日爽夜夜爽网站| 91精品一卡2卡3卡4卡| 桃花免费在线播放| 国产精品久久久久久精品古装| 成年美女黄网站色视频大全免费 | 久久久久久久精品精品| 欧美精品高潮呻吟av久久| av免费观看日本| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 午夜av观看不卡| 一级黄片播放器| 亚洲精品aⅴ在线观看| 一区二区三区免费毛片| 岛国毛片在线播放| 欧美另类一区| 十八禁高潮呻吟视频 | 久久久久国产精品人妻一区二区| 免费看光身美女| 大码成人一级视频| 日韩中文字幕视频在线看片| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区 | 午夜福利,免费看| 亚洲欧洲日产国产| 国产日韩欧美在线精品| 少妇人妻久久综合中文| 欧美 日韩 精品 国产| 国产精品成人在线| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 热re99久久国产66热| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 欧美日韩一区二区视频在线观看视频在线| 男男h啪啪无遮挡| 伊人久久精品亚洲午夜| 美女xxoo啪啪120秒动态图| 国产日韩欧美在线精品| 美女国产视频在线观看| 丝袜在线中文字幕| av在线观看视频网站免费| 国产成人aa在线观看| 边亲边吃奶的免费视频| 亚洲国产最新在线播放| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 两个人免费观看高清视频 | 午夜影院在线不卡| 亚洲欧洲国产日韩| 成人二区视频| 亚洲av中文av极速乱| 麻豆成人午夜福利视频| av福利片在线观看| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 久久午夜综合久久蜜桃| 久热这里只有精品99| 亚洲av福利一区| av在线app专区| 99热国产这里只有精品6| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区 | 亚洲精品视频女| 丝袜脚勾引网站| 国产免费福利视频在线观看| 久久国内精品自在自线图片| 插逼视频在线观看| 最后的刺客免费高清国语| 大陆偷拍与自拍| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 午夜免费鲁丝| 亚洲国产精品999| 亚洲精品国产成人久久av| 日韩欧美一区视频在线观看 | 午夜影院在线不卡| 七月丁香在线播放| 九九爱精品视频在线观看| 少妇人妻 视频| 老熟女久久久| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 亚洲电影在线观看av| 精品卡一卡二卡四卡免费| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 大码成人一级视频| 国产免费又黄又爽又色| 十分钟在线观看高清视频www | 在线天堂最新版资源| 午夜老司机福利剧场| 国产在线免费精品| 91精品伊人久久大香线蕉| 久久久久国产网址| 一二三四中文在线观看免费高清| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 国产伦理片在线播放av一区| 成人影院久久| 久久久欧美国产精品| 国产视频首页在线观看| 国产伦在线观看视频一区| 一级二级三级毛片免费看| 国产伦理片在线播放av一区| 18禁在线播放成人免费| 少妇被粗大的猛进出69影院 | 涩涩av久久男人的天堂| 一本—道久久a久久精品蜜桃钙片| 成人美女网站在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | av又黄又爽大尺度在线免费看| 美女中出高潮动态图| 一级a做视频免费观看| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 亚洲,欧美,日韩| 免费观看无遮挡的男女| 久久久久久久久久久免费av| 夜夜骑夜夜射夜夜干| 永久网站在线| 人妻少妇偷人精品九色| 久久久久久久久久久久大奶| 人妻少妇偷人精品九色| 亚洲精品视频女| 韩国av在线不卡| 欧美日韩在线观看h| 免费看日本二区| 精品久久久久久久久亚洲| 新久久久久国产一级毛片| 777米奇影视久久| 美女中出高潮动态图| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 国精品久久久久久国模美| 亚洲成色77777| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看 | 日本免费在线观看一区| 国产美女午夜福利| 免费高清在线观看视频在线观看| 国产69精品久久久久777片| 亚洲精品,欧美精品| 婷婷色av中文字幕| 99久久精品热视频| 少妇精品久久久久久久| 高清av免费在线| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 精品国产一区二区三区久久久樱花| 久久久久精品性色| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 免费不卡的大黄色大毛片视频在线观看|