• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and simulation study of nylon 6 solid-liquid extraction process☆

    2018-06-29 09:15:52ChunxiQinJieTangFengleiBiZhenhaoXiLingZhao

    Chunxi Qin ,Jie Tang ,Fenglei Bi,Zhenhao Xi,2,Ling Zhao ,2,*

    1 Shanghai Key Laboratory of Multiphase Materials Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

    2 State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

    1.Introduction

    Solid-liquid extraction has attracted great interest due to it wide use in industrial processes,such as food engineering,bioengineering and polymer engineering[1].In polymer engineering,solid-liquid extraction processes are often applied to eliminate small molecules,i.e.,monomers and oligomers,from the polymer.The industrial extraction process of nylon 6 is a typicalsolid-liquid extraction,in which caprolactam(CL),cyclic dimers(CD)and cyclic trimers(CT)[2]are eliminated by hot water or CL-water solutions to meet the demands of industrial applications.

    Nylon 6 solid-liquid extraction is a heterogeneous mass transfer process in which small molecules diffuse from the polymer phase to the solvent phase.Thus,it is of great importance to acquire the accurate mass transfer parameters of small molecules.Tai[2]and Seavey[3,4]estimated the CL diffusion coefficients in the nylon 6 melting system.Gaglione[5]acquired solubility data of CD in water and its CL solutions by molecular simulation.He found that the solubility of CD in water was larger than that in the CL-water solution,which contrasted with the similarity intermiscibility theory.Meanwhile,over the past few decades,simulations of nylon 6 extraction towers have drawn considerable attention.Chen simulated a nylon 6 extraction tower.However,due to the lack of detailed diffusion coefficients and equilibrium constants of CL,CD and CT,their simulations deviated from practice.Seavey[6]used Aspen Plus to simulate an extraction tower based on the work of Gaglione,which may not reproduce the CD extraction behavior in the tower due to the abovementioned inaccurate estimation of the CD solubility.

    In industry,nylon 6 solid-liquid extraction often occurs in a countercurrent extraction tower,in which the polymer phase moves down and the solvent phase,water or its CL solution, flows upward.To improve the extraction efficiency,a new type of extraction tower was designed[7].At the top of this tower,the polymer particles are extracted by a high-concentration CL-water solution to eliminate most of the CD and CT.As the polymerparticles move down,CL and trace amounts of residual CD and CT are then extracted by water.Therefore,the whole extraction tower can be generally divided into two parts,i.e.,extraction of CD and CT with the CL-water solution and extraction of CL with water.To optimize this extraction process,it is of great importance to obtain the diffusion coefficients and equilibrium constants of CL diffusing from the polymer phase to water,as well as those of CD and CT diffusing from the polymer phase to the CL-water solution.

    In this paper,nylon 6 particles were extracted by water and its CL solution separately to acquire the equilibrium constants and internal diffusion coefficients of CL,CD and CT.Then,with the acquired parameters,a simple but efficient numerical model was developed to simulate an industrial countercurrent extraction tower.Hopefully,the acquired parameters and established numerical model generate fundamental data and provide valuable insight to the industrial nylon 6 solid-liquid extraction process.

    2.Experimental Method

    2.1.Materials

    Raw unextracted nylon 6 particles of which the shape was cylinder with a diameter of 0.70 mm and a height of 3.00 mm were provided by FangYuan Polymer Fiber Co.,Ltd.(Zhejiang,China).Other physical properties were listed in Table 1.The other reagents,including methanol and CL(analytically pure,>99%),were purchased from Aladdin(Shanghai,China).

    Table 1 Physical properties of the unextracted nylon 6 particles

    2.2.Experimental procedure

    To investigate the extraction processes of CL and its oligomers(CD and CT),nylon 6 particles were separately extracted by water and its CL solution at a temperature of industrial interest,namely,338-383 K.All experiments were conducted in a 500 ml homemade glass batch vessel equipped with vigorous mechanical stirring.The mechanical stirring instrument was provided by ShenSheng Biotech Co.,Ltd.(Shanghai,China).

    In a typical experiment,the weighed unextracted nylon 6 particles and solvent(water or CL-water solution at a specified concentration)were placed in the vessel to give a fixed liquid-solid(L-S)ratio of 3.Then,the vessel was placed in an electric heating bowl to maintain the system at the desired temperature within±1 K,and the mechanical stirring was set at an agitation rate of900 r·min-1to eliminate external mass transfer resistance.After a given time,samples of the solvent and polymer particles were extracted separately.Finally,the samples of the polymer particles were vacuum-dried in an oven at338 K for 48 h to ensure that the particle mass reached to a constant value.

    2.3.Sample analysis

    High-performance liquid chromatography(HPLC)(Waters 1525),equipped with an Agilent C18 column(4.6 mm i.d.,200 mm,particle size 5 μm)and an ultraviolet detector(Waters 2487,detection wavelength 210 nm),was used to quantify the concentration of CL,CD and CT in the solvent samples.The detailed analytical method was described in the literature[8].Then,the mass fractions of CL,CD and CT extracted from the polymer particles were acquired by mass conservation.

    To monitor the variation in the microstructures of the polymer particles,scanning electron microscopy(SEM)(Nova NanoSEM 450,provided by FEI,America)and mercury intrusion porosimetry(PoreMaster33,supplied by Quantachrome,America)were applied.The pressure applied in mercury intrusion porosimetry(MIP)was in the range of 10 kPa-135 MPa,which corresponded to a pore radius range of 10-200000 nm.With the assumptions of cylindrical pores,480 mN·m-1surface tension and 141.3°contact angle,the mathematical relationship between pressure and the pore radius distribution was calculated using the Washburn equation[9].

    3.Mathematical Models

    3.1.Batch extraction models

    The batch extraction models are developed under the following hypotheses:(1)The particles are isotropic,and diffusion only occurs in one dimension,i.e.,in the radial direction.(2)The equilibrium constant and diffusion coefficient are two invariant constants at fixed operation conditions.(3)The equilibrium correlation between the polymerand solvent phases is linear.

    Forthe extraction experiments in a batch vessel,the extraction rate of CL,CD and CT can be described by the mass transfer equation under the hypothesis of(3),as shown in Eq.(1).Meanwhile,the mass conservation between the polymer and solvent phases is described by Eq.(2).Substituting Eq.(2)into Eq.(1)and then integrating Eq.(1),the extracted mass fractions of CL,CD and CT can be expressed as Eq.(3).Accordingly,using Eq.(3)to fit the experimental data,the equilibrium constants of the small molecules at different operation conditions can be determined.

    whereK,wandmrepresent the mass transfer coefficient,liquid-solid ratio and equilibrium constant,respectively;CandWare the mass concentration and mass;and the subscripts p,s and ini represent the polymer phase,solvent phase and initial moment,respectively.

    To acquire the diffusion coefficients,Fick's law under the hypotheses of(1)and(2)is adopted,as shown in Eq.(4).From the work of Crank[10],Eq.(4)can be resolved analytically under the initial and boundary conditions of Eq.(5).Its result is shown in Eq.(6).Thus,applying Eq.(6)to reliably reproduce the experimental data,the diffusion coefficients of the small molecules at different operation conditions can be acquired.

    whereDis the diffusion coefficient,qnare the positive,non-zero roots of Eq.(7),andais expressed as Eq.(8).

    whereJ0andJ1are the Bessel functions of the first kind of orders 0 and 1,R0andAmrepresent the particle radius and submerged area of total particles,respectively.At the L-S ratio of 3,the particles can be considered to be completely immersed.

    3.2.Model of the extraction tower

    In the nylon 6 extraction tower,the velocities of the liquid and solid phases are approximately 1 mm·s-1,which indicates a low particle Reynolds number(approximately 10).In the condition of a packed bed,the effect of axial dispersion can be neglected because the Peclet number is approximately 30[11].Furthermore,the non-significance of axial dispersion has been also verified by cold-model experiments(see ‘Supplementary Material’for details).Thus,both the polymer and solvent phases are assumed to move in plug flow.Other assumptions are the same as those mentioned in Section 3.1.

    For countercurrent extraction,the mass balance between the particle inlet and any other height(Fig.1a)can be written as Eq.(9).

    Fig.1.Mass balance between the particle inlet and any other height(a)and schematic diagram of small molecules diffusing from the polymer interior to the solvent(b).

    where φvindicates the mass flow,the subscripts av.,i and 0 represent the average concentration of particles extracted at the same time,the particle interface and the particle inlet,respectively.

    The mass conservation equation can be transformed into Eq.(10),in which the dimensionless number Λ is the capacity factor.

    The nylon 6 solid-liquid extraction process in the tower can be characterized by unsteady internal diffusion in the polymer phase accompanied by a mass transfer process between the polymer surface and the surrounding solvent phase,as shown in Fig.1b.Thus,the internal diffusion of small molecules and their initial and boundary conditions can be written as Eqs.(11)and(12).Clearly,as shown in Eq.(12),the rate of small molecules diffusing from the particles is equal to the mass transfer rate between the polymer interface and the solvent phase.

    whereksrepresents the mass transfer coefficient at the polymer interface.Since particles in the nylon 6 extraction tower move very slowly,kscan be estimated through the empirical correlation acquired from a packed bed,as displayed in Eqs.(13)and(14)[12,13].

    where

    By introducing four dimensionless numbers,θ,Ft,yandBim,which represent the dimensionless concentration,dimensionless time,dimensionless radius and ratio of internal and external diffusion resistance,respectively,Eqs.(11)and(12)can be transformed into Eqs.(16)and(17)correspondingly.

    Solving Eq.(16)by Laplace transform,the average dimensionless concentration of small molecules in the particles can be obtained as follows[14]:when Λ≠1

    whereI0andI1represent the modified Bessel function of the first kind of orders 0 and 1,respectively,andsandQnare the positive roots of Eq.

    Then,two other dimensionless numbers,the dimensionless concentrations of polymer phaseXand solvent phaseY,involved in the mass balance of the extraction tower and the diffusion model of a single particle are defined in Eqs.(23)and(24).In the extraction tower,Ftis a function of tower height,as shown in Eq.(25).Ultimately,the mass fraction of small molecules in the polymer and solvent phases at different tower heights are acquired by substituting θavandFtinto Eqs.(23)and(24),respectively.

    Fig.2.Temperature effects on the extracted CL mass fraction with water and a L-S ratio of3.

    4.Results and Discussion

    4.1.Batch extraction behavior

    The extraction rate in the batch extraction experiments can be described by Eq.(1).For nylon 6 solid-liquid extraction process,the small molecules diffuse out from solid phase into liquid phase continuously.The concentration of small molecules in the liquid phase,namelyCs,increases with the extraction proceeded,while that in the solid phase,namelyCp,decreases,resulting in the reduced driving force of mass transfer,as shown in Eq.(1).Thus,the extraction rate is close to zero with a long extraction time,and the profiles of extracted mass fraction of small molecules increase firstly,along with an equilibrium tendency subsequently,as shown in Figs.2 and 3.

    Figs.2 and 3a display the temperature effects on the extracted mass fraction of CL and CD using water and 20 wt%CL-water,respectively.The figures clearly show that the extraction rate is accelerated by an increase in temperature because the molecular thermal-motion is enhanced.Fig.3b displays the effects of the CL-water concentration on the elimination of CD at a temperature of 358 K.It is obvious that the extraction rate of CD is insensitive to the CL-water concentration.This is because the extraction rate is mostly influenced by the internal diffusion resistance after eliminating the external resistance by stirring.Because nylon 6 particles do not swell in CL-water solutions[15],the internal diffusion rate is not influenced by the CL-water concentration.Meanwhile,as shown in Figs.2 and 3,the equilibrium extracted CL mass fraction is significantly enhanced with increasing temperature,while that of CD is improved by increases in both the temperature and the CL-water concentration.

    As the extraction proceeds,the porous structure at the particle surface becomes clearer,as shown in Fig.4.Moreover,the pore size distributions of the particles measured by MIP are displayed in Fig.5.The distributions clearly show that macro-pores larger than 10000 nm begin to appear at approximately 10 min and obviously increase as the extraction proceeds.This phenomenon reveals that in the initial 10 min,surface diffusion,which represents the dissolution of small molecules attached to the polymer surface,is dominant.Then,small molecules gradually diffuse from the particle interior,forming an increasing amount of macro-pores,which indicates that the process controlling extraction shifts from surface diffusion to internal diffusion.

    As discussed above,two distinctsteps,characterized as surface diffusion and internal diffusion,indeed occur in our batch extraction experiments.To reproduce the experimental data,studies have noted that these two distinct steps should be described by two different diffusion coefficients[16-18].Thus,it is necessary to determine the demarcation point between these two steps.Table 2 lists the CL mass fraction extracted from the polymer particles using 20 wt%and 40 wt%CL-water at 368 K.It is obvious that 2.7 wt%CL can be extracted,although the 20 wt%and 40 wt%CL-water solutions highly exceed the equilibrium concentration.Thus,this 2.7 wt%CL can be regarded as the amount of substance attaching to the particle surface and is supposed to be the demarcation point between the surface diffusion and internal diffusion steps.Accordingly,the demarcation time is displayed in Table 3,based on 2.7 wt%CL as the demarcation point.It clearly presents that the demarcation time at 368 K is 7.2 min,which is consistent with the MIP result in which macro-pores begin to appear in the range of 6-10 min.This further proves that regarding 2.7 wt%CL as the demarcation point is credible.Similarly,the demarcation point of CD and CT are determined by the same method,and as shown in Table 2,their values are 0.12 wt%and 0.13 wt%,respectively.

    Fig.3.Temperature effects on the extracted CD mass fraction with 20 wt%CL-water and a L-S ratio of 3(a)and CL-water concentration effects on the extracted CD mass fraction at 358 K and a L-S ratio of 3(b).

    Fig.4.Microstructures of the particle surface at different extraction times(a.6 min,b.10 min,c.30 min,and d.60 min;extraction conditions:368 K,water solvent,L-S ratio of 3).

    Fig.5.Pore size distributions of the particles extracted at different times(extraction conditions:368 K,water solvent,L-S ratio of 3).

    Table 2 Extracted CL,CD and CT mass fraction at different times with different solvents(extraction conditions:368 K,L-S ratio of 3)

    Table 3 Demarcation time at different temperatures

    By applying two different diffusion coefficients,the experimental data are well reproduced by the diffusion model,as shown in Fig.6.It is clear that the surface diffusion coefficient is much larger than the internal diffusion coefficient.In industry,substances attached to the particle surface are removed in the pre-extraction tower.In Section 4.2,our simulation focuses on the main-extraction tower,in which only internal diffusion occurs.Therefore,only the internal diffusion coefficients are displayed here.

    Fig.6.Assuming 2.7 wt%CL as the demarcation point to reproduce the experimental data(extraction conditions:348 K,water solvent,L-S ratio of 3).

    Applying the mass transfer mechanism[Eq.(3)]and the diffusion model[Eq.(6)]of the two distinct steps,i.e.,surface diffusion and internal diffusion,to fit the experimental data shown in Fig.2 separately,the equilibrium constants and internal diffusion coefficients of CL can be acquired,as shown in Fig.7.It can be clearly seen that both the internal diffusion coefficients and equilibrium constants of CL increase with temperature.In addition,they can be expressed in the form of the Arrhenius equation[Eqs.(26)and(27)].

    Fig.7.Internal diffusion coefficients(a)and equilibrium constants(b)of CL with respect to temperature using water to the extract particles.

    Similarly,the equilibrium constants and internal diffusion coefficients of CD and CT can also be obtained by reproducing the experimental data shown in Fig.3(other experimental data are shown in the‘Supplementary Material’)using the mass transfer mechanism[Eq.(3)]and the diffusion model[Eq.(6)]of the two distinct steps,respectively.The results are listed in Tables 4 and 5.Obviously,the equilibrium constants and internal diffusion coefficients of CT are larger than those of CD,which reveals that CD is more difficult to remove from the particles.This phenomenon possibly results from stronger hydrogen bonding existing in the CD molecules[19,20].Furthermore,the equilibrium constant is enhanced with an increase in either the temperature or the CL-water concentration,whereas the internal diffusion coefficient is only influenced by the temperature due to the un-swelling effect of the CL-water solution on the nylon 6 particles.Ultimately,the equilibrium constants and diffusion coefficients of CD can also be expressed in the form of an Arrhenius equation as follows.

    Table 4 Equilibrium constants and diffusion coefficients of CD at different temperatures and solvent concentrations

    Table 5 Equilibrium constants and diffusion coefficients of CT at different temperatures and solvent concentrations

    4.2.Simulation of the extraction tower

    To verify our numerical model,a nylon 6 extraction tower reported in the literature is simulated,the parameters of which are listed in Table 6[21].Table 7 shows the comparison of the design values andour simulation results.It is clear that the simulation results are very close to the design values,which reveals that our numerical model and acquired parameters are credible.

    Table 6 Parameters of the extraction tower

    Table 7 Comparison of the design values and our simulation results

    Fig.8.Temperature distribution in the extraction tower[supplied by the FangYuan Polymer Fiber Co.,Ltd.(Zhejiang,China)].

    A temperature distribution frequently exists in industrial nylon 6 extraction towers.Fig.8 shows the temperature distributions monitored by proportional-integral-derivation(PID)controllers(supplied by the FangYuan Polymer Fiber Co.,Ltd.(Zhejiang,China)).The temperature at the bottom portion of the tower is higher than that at the upper portion because water in the bottom of the tower can be superheated with the pressure provided by the water in the upper tower.Meanwhile,the division point between the low-and high-temperature areas is almost in the middle of the tower.Thus,the extraction tower can be divided equally into a low-temperature upper portion and a high-temperature bottom portion.

    The effect of temperature on CL elimination with water as the solvent is shown in Fig.9,where the zero point of thex-axis represents the top of the tower.Obviously,the profile shape of CL elimination is convex.This is because at the L-S ratio of 1,the equilibrium between the water and polymer phases is still an important factor due to the equilibrium constant of CL being less than 1 for temperatures in the range of 363-383 K.Meanwhile,for the countercurrent extraction process,the effect of the equilibrium is amplified at the upper portion of the tower.As shown in cases 1 and 2 and cases 3 and 4,increasing the temperature at the upper portion of the tower has little effect on the extraction efficiency,whereas enhancing the temperature at the bottom portion of the tower obviously improves the extraction efficiency,which is clearly shown in cases 1 and 3 and cases 4 and 5.This is because for CL elimination at the upper portion of the tower,the extraction rate,expressed in Eq.(30),mainly depends onCsi-Csdue to the polymer and solvent phases approaching the equilibrium state.However,at the bottom portion of the tower,the polymer and solvent phases are far from the equilibrium state,and the extraction rate is influenced by bothCsi-Csandks,which results in the extraction efficiency becoming more sensitive to the temperature at the bottom portion of the tower.Meanwhile,comparing cases 4 and 6,the extraction time can be reduced from 22 h to 15 h by increasing the temperature at the bottom portion of the tower by only 5 K.

    Fig.9.Temperature effects on CL elimination in the extraction tower with water and a L-S ratio of 1(the elements in the legend(A[B C]D)represent case number,temperature at the upper portion of the tower,temperature at the bottom portion of the tower and total residence time,respectively).

    As mentioned in Section 4.1,CD is more difficult to remove from the particles because the equilibrium constants and internal diffusion coefficients of CT are larger than those of CD.Thus,in the following section,only the extraction process of CD is discussed.Fig.10 displays the effect of the feeding point of 30 wt%CL-water on CD extraction.It is clear that CD can be removed more efficiently compared with the water extraction process.Meanwhile,the elimination of CD becomes increasingly efficient with an increasing amount of particles extracted by 30 wt%CL-water.These results occur because the high-concentration CL-water solution enhances the equilibrium constant,which amplifiesCsi-Csand makes CD elimination more efficient.However,the excessively large amount of particles extracted by the high-concentration CL-water solution leads to a reduction in CL elimination.Therefore,it is significant to determine the preferable location at which the high-concentration CL-water solution should be fed.Table 8 lists the mass fraction of CD in particles at different feeding points using different CL-water solutions.It is obvious that when the feeding point is higher than the dimensionless tower height of 0.3636,CD elimination becomes insensitive to the increasing portion of particles extracted by the CL-water solution.For example,using 40 wt%CL-water,the CD mass fraction decreases by 0.11 wt%when the feeding point is raised from 0.2727 to 0.3636,compared with only 0.08 wt%when the feeding point is raised from 0.3636 to 0.4545.Thus,the feeding point of the high-concentration CL-water solution should be lower than the dimensionless tower height of 0.3636.

    Fig.10.Feeding point effects on CD elimination in the extraction tower with 30 wt%CL-water and a L-S ratio of 1([368,373]20 h).

    Table 8 Mass fraction of CD in particles at different feeding points and concentrations of the CL-water solutions(368 K,zero represents the top of the tower.)

    Furthermore,the profile shape of CD elimination is concave,which is different from that of CL elimination.This is because mass transfer is more important to CD elimination at the L-S ratio of 1 because equilibrium constants of CD are larger than 1.15 at368 K.As the extraction proceeds,CD becomes increasingly difficult to diffuse from the particle interior,which results in an insignificant change in the extraction efficiency near the particle outlet.

    5.Conclusions

    Two distinct steps,characterized as surface diffusion and internal diffusion steps,indeed exist in the nylon 6 batch extraction experiments.With the mass transfer mechanism and the diffusion model of two distinct steps,the equilibrium constants between solid-liquid phases and internal diffusion coefficients of the small molecules are obtained.It is found that the equilibrium constants are influenced by both temperature and solvent concentration,whereas the diffusion coefficients are only affected by temperature.In an industrial countercurrent nylon 6 extraction tower,increasing the temperature at the bottom portion of the tower can clearly improve the extraction efficiency.The CD removal efficiency is significantly improved by using high-concentration CL-water solutions,where the feeding point is preferably less than the dimensionless tower height of 0.3636.Furthermore,in the extraction tower the equilibrium between solid-liquid phases is significant to CL elimination,whereas mass transfer plays an important role in CD elimination.

    Nomenclature

    aratio of the solution and particle volumes,defined in Eq.(8)

    Amsubmerged area of the polymer,m2

    Bimdefined in Eq.(15)

    Cmass fraction

    Ddiffusion coefficient,m2·s-1

    dcharacteristic length,m

    Ftdimensionless time

    F11total residence time of polymer phase in the tower

    Gadefined in Eq.(14)

    gacceleration of gravity,m2·s-1

    Htotal tower height,m

    J0Bessel function of the first kind of order 0

    J1Bessel function of the first kind of order 1

    Koverall mass transfer coefficient,s-1

    ksL-S interface mass transfer coefficient,m·s-1

    I0modi fed Bessel function of the first kind of order 0

    I1modi fed Bessel function of the first kind of order 1

    mequilibrium constant

    Nextraction rate,s-1

    Necdefined in Eq.(25)

    Qnpositive roots of

    qnpositive roots ofaqnJ0(qn)+2J1(qn) =0

    R0radius of unextracted particles,mm

    Resdefined in Eq.(14)

    rradius,mm

    Scsdefined in Eq.(14)

    Shsdefined in Eq.(14)

    sroot of

    Ttemperature,K

    ttime,h

    vvelocity of solvent phase,m·s-1

    Wmass,kg

    wL-S ratio

    Xdimensionless concentration of the polymer phase in the tower,defined in Eq.(23)

    Ydimensionless concentration of the solvent phase in the tower,defined in Eq.(24)

    ydimensionless ratio,defined in Eq.(15)

    ZTower height,m

    θ dimensionless concentration of the polymer phase,defined in Eq.(15)

    δ defined in Eq.(19)

    Λ capacity factor,defined in Eq.(10)

    μsviscosity of the solvent phase,Pa·s

    ρsdensity of the solvent phase,kg·m-3

    φvmass flux,kg·h-1

    Superscripts

    0 Particle inlet

    1 Particle outlet

    Subscripts

    av average

    CD cyclic dimer

    CL caprolactam

    i interphase

    ini initial

    p polymer

    s solvent

    [1]X.Jing,H.Y.Mi,T.Cordie,M.Salick,X.F.Peng,L.S.Turng,Fabrication of porous poly(ε-caprolactone)scaffolds containing chitosan nanofibers by combining extrusion foaming,leaching,and freeze-drying methods,Ind.Eng.Chem.Res.53(46)(2014)17909-17918.

    [2]K.Tai,T.Tagawa,The kinetics of hydrolytic polymerization ofε-caprolactam.V.Equilibrium data on cyclic oligomers,J.Appl.Polym.Sci.27(8)(1982)2791-2796.

    [3]K.C.Seavey,N.P.K.And,Y.A.Liu,T.N.Williams,C.C.Chen,A new phase-equilibrium model for simulating industrial nylon-6 production trains,Ind.Eng.Chem.Res.42(17)(2003)3900-3913.

    [4]K.C.Seavey,Y.Liu,B.Lucas,N.P.Khare,T.Lee,J.Pettrey,T.N.Williams,J.Mattson,E.Schoenborn,C.Larkin,New mass-transfer model for simulating industrial nylon-6 production trains,Ind.Eng.Chem.Res.43(17)(2004)5063-5076.

    [5]A.Gaglione,Multiscale Modeling of an Industrial Nylon-6 Leacher,Master Thesis,Virginia Polytechnic Institute and State University,America,2007.

    [6]K.Seavey,Y.A.Liu,Step-growth polymerization process modeling and product design,John Wiley&Sons,England,2009.

    [7]J.Erbes,A.Ludwig,G.Pipper,Continuous polyamide extraction process,China Pat.,1284095 A,2001.

    [8]Y.Xing,Control strategy of cyclic dimer in nylon 6 manufacture process,Master Thesis,East China University of Science and Technology,China,2014.

    [9]E.W.Washburn,Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material,Cambridge University Press,England,1921.

    [10]J.Crank,The Mathematics of Diffusion,Oxford University Press,England,1979.

    [11]J.C.Urban,A.Gomezplata,Axial dispersion coefficients in packed beds at low reynolds numbers,Can.J.Chem.Eng.47(4)(2010)353-359.

    [12]Yao,Principles of Chemical Engineering,second edition Tanjin University Press,Tianjin,1999.

    [13]D.Van Krevelen,P.Hoftijzer,Studies of gas absorption.I.Liquid film resistance to gas absorption in scrubbers,Recueil des Travaux Chimiques des Pays-Bas66(1)(1947)49-65.

    [14]P.J.A.M.Kerkhof,Countercurrent plug flow mass exchange with internal particle diffusion,Chem.Eng.Sci.62(7)(2007)2040-2067.

    [15]Y.Fujiwara,S.H.Zeronian,Crystallization of cyclic oligomers on the surface of nylon 6 fibers,J.Appl.Polym.Sci.23(12)(2010)3601-3619.

    [16]V.S.Moholkar,M.M.C.G.Warmoeskerken,Investigations in mass transfer enhancement in textiles with ultrasound,Chem.Eng.Sci.59(2)(2004)299-311.

    [17]F.Veglio,M.Trifoni,F.Pagnanelli,L.Toro,Shrinking core model with variable activation energy:a kinetic model of manganiferous ore leaching with sulphuric acid and lactose,Hydrometallurgy60(2)(2001)167-179.

    [18]B.Avvaru,S.Roy,S.Chowdhury,K.Hareendran,A.B.Pandit,Enhancement of the leaching rate of uranium in the presence of ultrasound,Ind.Eng.Chem.Res.45(22)(2006)7639-7648.

    [19]Y.Arai,K.Tai,H.Teranishi,T.Tagawa,Kinetics of hydrolytic polymerization of ε-caprolactam:3.Formation of cyclic dimer,Polymer22(2)(1981)273-277.

    [20]S.Negoro,T.Ohki,N.Shibata,K.Sasa,H.Hayashi,H.Nakano,K.Yasuhira,D.Kato,M.Takeo,Y.Higuchi,Nylon-oligomer degrading enzyme/substrate complex:catalytic mechanism of 6-aminohexanoate-dimer hydrolase,J.Mol.Biol.370(1)(2007)142.

    [21]C.Wang,Process Simulation and Analysis of Nylon 6 Manufacture Process,East China University of Science and Technology,China,2015.

    欧美日韩中文字幕国产精品一区二区三区| 免费av观看视频| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 偷拍熟女少妇极品色| 亚洲最大成人手机在线| 男女那种视频在线观看| 午夜福利在线观看免费完整高清在 | 国产av在哪里看| 国产高清视频在线观看网站| 久久性视频一级片| 免费观看精品视频网站| 欧美一区二区精品小视频在线| 美女黄网站色视频| 午夜福利在线观看吧| 特大巨黑吊av在线直播| 国产伦一二天堂av在线观看| 日本与韩国留学比较| 综合色av麻豆| 色视频www国产| 午夜视频国产福利| 此物有八面人人有两片| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 亚洲人成网站高清观看| 免费在线观看影片大全网站| 久久精品综合一区二区三区| 久9热在线精品视频| 观看免费一级毛片| 免费在线观看影片大全网站| 综合色av麻豆| 国产成人欧美在线观看| 久久精品国产亚洲av涩爱 | 乱人视频在线观看| 热99re8久久精品国产| 看片在线看免费视频| 国产高潮美女av| 男女床上黄色一级片免费看| 可以在线观看的亚洲视频| 免费在线观看日本一区| 不卡一级毛片| 综合色av麻豆| 两人在一起打扑克的视频| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 亚洲七黄色美女视频| 国产v大片淫在线免费观看| 内射极品少妇av片p| 亚洲成人精品中文字幕电影| 免费搜索国产男女视频| 国产色爽女视频免费观看| 久久香蕉精品热| 色吧在线观看| 99riav亚洲国产免费| 天堂影院成人在线观看| 成人av一区二区三区在线看| 国产av不卡久久| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 一区二区三区激情视频| 国产一区二区亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 精品欧美国产一区二区三| 亚洲av电影不卡..在线观看| 欧美大码av| 国产精品亚洲一级av第二区| 亚洲内射少妇av| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 99热6这里只有精品| 在线国产一区二区在线| 91av网一区二区| 国产黄色小视频在线观看| 欧美一级毛片孕妇| 国产精品久久久久久久电影 | 成人精品一区二区免费| 波多野结衣高清无吗| 综合色av麻豆| 精品久久久久久成人av| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 黄片大片在线免费观看| 中文字幕av在线有码专区| 欧美+亚洲+日韩+国产| 成人特级av手机在线观看| 一级黄片播放器| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 日本免费一区二区三区高清不卡| 搡女人真爽免费视频火全软件 | 亚洲av熟女| а√天堂www在线а√下载| 久久久久国内视频| 麻豆成人午夜福利视频| 欧美日本视频| 国产伦精品一区二区三区视频9 | 三级男女做爰猛烈吃奶摸视频| 香蕉av资源在线| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 午夜久久久久精精品| 国产99白浆流出| 长腿黑丝高跟| www国产在线视频色| 欧美不卡视频在线免费观看| 99精品欧美一区二区三区四区| 99精品久久久久人妻精品| 午夜视频国产福利| 3wmmmm亚洲av在线观看| 久久久色成人| 国产激情偷乱视频一区二区| 午夜福利欧美成人| 99在线视频只有这里精品首页| 国产av麻豆久久久久久久| 午夜福利在线在线| 久久6这里有精品| 国产av一区在线观看免费| 精品国产超薄肉色丝袜足j| 久久久久久久久久黄片| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 亚洲av熟女| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看| 亚洲国产欧洲综合997久久,| 久久久久国内视频| av女优亚洲男人天堂| 国产精品av视频在线免费观看| 在线视频色国产色| 国产私拍福利视频在线观看| 波多野结衣高清作品| 国产一区二区亚洲精品在线观看| 岛国在线免费视频观看| bbb黄色大片| 九色国产91popny在线| 亚洲国产精品合色在线| 好男人电影高清在线观看| 国产91精品成人一区二区三区| 性色av乱码一区二区三区2| 欧美日韩福利视频一区二区| 天堂影院成人在线观看| 成人国产综合亚洲| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 日本一二三区视频观看| 久久伊人香网站| 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 欧美色视频一区免费| 一级毛片高清免费大全| 免费av毛片视频| 99在线视频只有这里精品首页| 香蕉久久夜色| 高清日韩中文字幕在线| 桃色一区二区三区在线观看| 午夜两性在线视频| 一个人免费在线观看的高清视频| 天堂影院成人在线观看| 精品久久久久久,| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 夜夜看夜夜爽夜夜摸| 精品久久久久久久毛片微露脸| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 一个人观看的视频www高清免费观看| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 一级黄片播放器| 亚洲色图av天堂| 亚洲18禁久久av| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 亚洲内射少妇av| 国产美女午夜福利| 国内久久婷婷六月综合欲色啪| 脱女人内裤的视频| 久久精品亚洲精品国产色婷小说| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 久久久久久久精品吃奶| 色视频www国产| av专区在线播放| 国产成人aa在线观看| 欧美黄色淫秽网站| 欧美日本视频| ponron亚洲| 国产精品日韩av在线免费观看| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 日本黄色视频三级网站网址| 国产欧美日韩一区二区三| 夜夜爽天天搞| svipshipincom国产片| 少妇高潮的动态图| 婷婷六月久久综合丁香| 嫩草影院入口| 日韩欧美在线二视频| 国语自产精品视频在线第100页| 在线观看一区二区三区| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 无人区码免费观看不卡| 亚洲一区高清亚洲精品| 国产熟女xx| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 国产69精品久久久久777片| 久久精品国产综合久久久| 男女午夜视频在线观看| 我要搜黄色片| 国产精品久久久久久久久免 | 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 人人妻,人人澡人人爽秒播| a级毛片a级免费在线| 国产97色在线日韩免费| www日本在线高清视频| 有码 亚洲区| 欧美另类亚洲清纯唯美| 精品电影一区二区在线| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 热99在线观看视频| 国产一区二区激情短视频| 97碰自拍视频| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 亚洲av成人精品一区久久| 亚洲 欧美 日韩 在线 免费| 亚洲av免费在线观看| 久9热在线精品视频| av专区在线播放| 欧美日本亚洲视频在线播放| 亚洲av熟女| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 国产真实乱freesex| av专区在线播放| av天堂在线播放| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 全区人妻精品视频| 亚洲内射少妇av| 国产97色在线日韩免费| 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看 | 人人妻人人看人人澡| 一级毛片女人18水好多| 国产麻豆成人av免费视频| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 我要搜黄色片| 校园春色视频在线观看| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 成人性生交大片免费视频hd| netflix在线观看网站| 一级a爱片免费观看的视频| 国产精品久久视频播放| 国产高清三级在线| 我的老师免费观看完整版| 黄色视频,在线免费观看| 狂野欧美激情性xxxx| h日本视频在线播放| 久久精品影院6| 99久久精品国产亚洲精品| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀| 一级作爱视频免费观看| 欧美大码av| 激情在线观看视频在线高清| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 国产麻豆成人av免费视频| 免费无遮挡裸体视频| 天天添夜夜摸| 中文字幕高清在线视频| 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 五月伊人婷婷丁香| x7x7x7水蜜桃| 男人舔奶头视频| 国产欧美日韩一区二区精品| 久久国产精品影院| 女人十人毛片免费观看3o分钟| 搡老熟女国产l中国老女人| 国产一区二区激情短视频| 黑人欧美特级aaaaaa片| 岛国视频午夜一区免费看| 国产久久久一区二区三区| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 91字幕亚洲| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 国产精华一区二区三区| 国产99白浆流出| 日韩高清综合在线| 国产视频一区二区在线看| 91久久精品国产一区二区成人 | 午夜福利18| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 俺也久久电影网| h日本视频在线播放| 国产高清有码在线观看视频| 欧美精品啪啪一区二区三区| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 国产一区二区亚洲精品在线观看| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 国产av麻豆久久久久久久| 亚洲国产欧洲综合997久久,| 脱女人内裤的视频| 国产三级黄色录像| 国产av麻豆久久久久久久| АⅤ资源中文在线天堂| 可以在线观看毛片的网站| 色吧在线观看| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| or卡值多少钱| 欧美日韩国产亚洲二区| 一夜夜www| 搡老熟女国产l中国老女人| 国产国拍精品亚洲av在线观看 | eeuss影院久久| 国产视频内射| 成人三级黄色视频| 校园春色视频在线观看| 亚洲美女视频黄频| 中文在线观看免费www的网站| 欧美+亚洲+日韩+国产| 亚洲av熟女| 老司机福利观看| 色哟哟哟哟哟哟| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 亚洲精品在线美女| 亚洲欧美日韩高清专用| 亚洲成人久久性| 久久久国产成人免费| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 国产乱人视频| 一级黄片播放器| 99国产极品粉嫩在线观看| 美女 人体艺术 gogo| 大型黄色视频在线免费观看| 成人av在线播放网站| 久久久久久人人人人人| 51国产日韩欧美| 日韩精品青青久久久久久| 午夜激情福利司机影院| 亚洲自拍偷在线| 少妇的丰满在线观看| 亚洲精品日韩av片在线观看 | 男人舔奶头视频| 99热6这里只有精品| 婷婷精品国产亚洲av在线| 亚洲成a人片在线一区二区| 午夜影院日韩av| 性欧美人与动物交配| 欧美av亚洲av综合av国产av| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 国产 一区 欧美 日韩| 久久中文看片网| 99热这里只有是精品50| 久久久久久国产a免费观看| 小蜜桃在线观看免费完整版高清| 天天添夜夜摸| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看| bbb黄色大片| 亚洲精品在线观看二区| 亚洲第一欧美日韩一区二区三区| 婷婷六月久久综合丁香| 久久久久久久亚洲中文字幕 | 成人av在线播放网站| 日韩人妻高清精品专区| 两人在一起打扑克的视频| 少妇人妻一区二区三区视频| 法律面前人人平等表现在哪些方面| 日本 av在线| 级片在线观看| 亚洲内射少妇av| 免费av观看视频| 制服丝袜大香蕉在线| 欧美激情久久久久久爽电影| 国产精品 国内视频| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| 精品电影一区二区在线| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 久久人妻av系列| АⅤ资源中文在线天堂| 91九色精品人成在线观看| 亚洲欧美一区二区三区黑人| 国产老妇女一区| 亚洲欧美日韩高清专用| 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看| 99热只有精品国产| 看黄色毛片网站| 国产精品精品国产色婷婷| 内射极品少妇av片p| 久久亚洲真实| 国产一级毛片七仙女欲春2| 可以在线观看的亚洲视频| 日本与韩国留学比较| 欧美日韩亚洲国产一区二区在线观看| 美女黄网站色视频| 少妇的逼水好多| 性色av乱码一区二区三区2| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 91字幕亚洲| 首页视频小说图片口味搜索| 久久久成人免费电影| 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女| 成人国产综合亚洲| 亚洲成av人片免费观看| 国产av在哪里看| 欧美另类亚洲清纯唯美| 精品乱码久久久久久99久播| 中文字幕人妻熟人妻熟丝袜美 | 精品久久久久久,| 禁无遮挡网站| 女同久久另类99精品国产91| 国产精品 国内视频| 日韩国内少妇激情av| 在线观看美女被高潮喷水网站 | 免费看日本二区| 日韩精品青青久久久久久| xxx96com| 悠悠久久av| 久久性视频一级片| 一级黄色大片毛片| 免费搜索国产男女视频| 国产探花极品一区二区| 天天添夜夜摸| 小蜜桃在线观看免费完整版高清| 少妇的逼好多水| 国产探花在线观看一区二区| 欧美午夜高清在线| svipshipincom国产片| 午夜福利欧美成人| 国产v大片淫在线免费观看| 精品久久久久久,| 很黄的视频免费| 久久欧美精品欧美久久欧美| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 亚洲av免费高清在线观看| 欧美又色又爽又黄视频| 亚洲男人的天堂狠狠| 亚洲av美国av| 国产熟女xx| 久久天躁狠狠躁夜夜2o2o| 老熟妇仑乱视频hdxx| 国产精品久久久久久久久免 | 国产亚洲欧美在线一区二区| 欧美日韩瑟瑟在线播放| 真人一进一出gif抽搐免费| 亚洲乱码一区二区免费版| 精品电影一区二区在线| 色综合欧美亚洲国产小说| 香蕉av资源在线| 一级毛片高清免费大全| 老鸭窝网址在线观看| 日韩欧美 国产精品| 久久草成人影院| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 一个人观看的视频www高清免费观看| 老汉色∧v一级毛片| 欧美中文日本在线观看视频| 亚洲av美国av| 香蕉久久夜色| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 国产精品永久免费网站| a级毛片a级免费在线| 网址你懂的国产日韩在线| 欧美日韩一级在线毛片| 精华霜和精华液先用哪个| 天堂网av新在线| 午夜亚洲福利在线播放| 亚洲中文字幕一区二区三区有码在线看| 国产中年淑女户外野战色| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 热99在线观看视频| 精品久久久久久久人妻蜜臀av| 俄罗斯特黄特色一大片| 亚洲中文字幕日韩| 欧美3d第一页| 久久精品国产亚洲av香蕉五月| 99久久精品一区二区三区| 亚洲国产精品成人综合色| 久久久久久人人人人人| 亚洲男人的天堂狠狠| 国产三级黄色录像| 国语自产精品视频在线第100页| 熟女人妻精品中文字幕| 草草在线视频免费看| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 1000部很黄的大片| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣高清作品| 亚洲欧美日韩东京热| 麻豆成人午夜福利视频| 午夜a级毛片| 免费一级毛片在线播放高清视频| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区| 亚洲国产中文字幕在线视频| 久久久国产精品麻豆| 在线观看66精品国产| 久久久久性生活片| 午夜免费观看网址| 国产成+人综合+亚洲专区| 亚洲成av人片免费观看| 亚洲精品成人久久久久久| 成人一区二区视频在线观看| 母亲3免费完整高清在线观看| 日韩精品青青久久久久久| 国产高清videossex| 欧美性感艳星| 日本黄大片高清| 欧美极品一区二区三区四区| 变态另类丝袜制服| 国产精品1区2区在线观看.| 中文字幕精品亚洲无线码一区| 香蕉av资源在线| 无限看片的www在线观看| 亚洲欧美日韩高清专用| 国内揄拍国产精品人妻在线| 日韩欧美在线乱码| 国产精华一区二区三区| 日本免费一区二区三区高清不卡| 成年免费大片在线观看| 一区福利在线观看| 亚洲午夜理论影院| 午夜福利视频1000在线观看| 嫩草影视91久久| 成年女人毛片免费观看观看9| 久久久久久久久大av| 91九色精品人成在线观看| 欧美乱妇无乱码| avwww免费| 午夜日韩欧美国产| 青草久久国产| 五月伊人婷婷丁香| 中文字幕高清在线视频| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 99久久精品一区二区三区| 亚洲精品久久国产高清桃花| 亚洲乱码一区二区免费版| 日韩大尺度精品在线看网址| 天天躁日日操中文字幕| 日本与韩国留学比较| 国产探花在线观看一区二区| 最近最新免费中文字幕在线| 午夜福利18| 国产激情欧美一区二区| 国模一区二区三区四区视频| 国产成人系列免费观看| 真人做人爱边吃奶动态| 黄片大片在线免费观看| 男人舔女人下体高潮全视频| 亚洲成av人片在线播放无| 真人一进一出gif抽搐免费| 婷婷六月久久综合丁香| 无限看片的www在线观看| 久99久视频精品免费| 国产精品,欧美在线| 日韩精品中文字幕看吧| 欧美色欧美亚洲另类二区| 国产欧美日韩精品亚洲av|