• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the chelating agents on bio-sorption of hexavalent chromium using Agave sisalana fibers

    2018-06-29 09:15:46BendjeffalDjebliMamineMetidjiDahakRebbaniBouhedja

    H.Bendjeffal*,A.Djebli,H.Mamine ,T.Metidji,M.Dahak ,N.Rebbani,Y.Bouhedja

    1 Higher School of Technological Education,ENSET-Skikda,21000,Algeria

    2 Laboratory of Water Treatment and Valorization of Industrial Wastes,Badji-Mokhtar University,P.O.Box 12,Annaba 23000,Algeria

    3 Centre de Recherche Scientifique,et Technique en Analyses Physico-Chimiques,BP 384,Siège ex-Pasna Zone Industrielle,Bou-Ismail CP 42004,Tipaza,Algeria

    1.Introduction

    The elimination of chemical hazards(radioactive elements,textile dyes,heavy metals,and their derivatives)from aquatic environment became an essential environmental process to protect our life.The large diffusion of these pollutants is due essentially to the great development of the main human industrial activities[1-3].Many industrial processes(manufacture of steel,leather,textiles…)throw liquid and solid wastes contaminated by a lot of heavy metals,such as mercury,chromium,and cadmium[4-5].These metals became one of the mosttoxically compounds due to their detrimental effect on the environment and ecosystems,causing damage to the gills of aquatic organisms and disrupting their spawning sites and refuges.The toxicity of these compounds is enhanced through bioaccumulation and they can be transported and released elsewhere,in water sources,sediments,and foods[6-8].

    The hexavalent chromium is one of the most toxic metals;people can be exposed to this element by breathing,eating,drinking or by direct contact with chrome compounds[9].This element is hazardous to health,especially for those working in steel and textile industries.Smokers also have a greater risk of exposure to chromium.It is known that chromium(VI)has various health consequences.In leather factories,it can cause allergic reactions,such as rashes[10]and inhaling it can cause nasal irritation and nosebleeds.Chromium(VI)may have other consequences(rashes,stomach upset and ulcers,respiratory problems,immune system weakness liver and kidney damage,alteration of genetic material,lung cancer,death)[9-10].Considering the hexavalent chromium carcinogenic nature,the contamination level limit for Cr(VI)in domestic water supplies is 0.05 mg·L-1.Its concentration in industrial wastewaters ranges from 0.5 to 270 mg·L-1.The tolerance limit for Cr(VI)for discharge into inland surface waters is 0.1 mg·L-1and in potable water is 0.05 mg·L-1[11,12].

    Several practical physicochemical techniques have been developed to remove hexavalent chromium from wastewater,including solid phase extraction[13],adsorption[5,14],photocatalyzed reduction[15],chemical precipitation[16],ion exchange[17],reverse osmosis[18],and electrokinetic technique[19].However,many of these procedures are too costly,especially when used for treating large waste streams.However,the bio-sorption using natural adsorbents such as activated carbon,natural clays,marine algae,and plant fibers is among the most practical,green,and economical techniques used for the removal of chromium and their derivatives from aqua mediums[5].

    In the past 20 years,natural fibers such as Jute,Hemp,Kapok,andAgave sisalanabecame among the most and low-cost bio-adsorbents,due to their interesting properties,such as surface morphology,good surface area,wide-range porosity,high gas permeability,good diameters,and smallinter- fibrous pore size[20].However,few studies related to the removal of heavy metals using these materials make reference to the bio-sorption of Cr(IV)usingA.sisalanafibers(Fig.1.).

    Recently,great efforts have been devoted to improving the adsorptive properties of these fibers by essential physicochemical modifications of their surface.E.Padminiet al.[21]treated the sisal using sodium carbonate for the removal of nickel from aqueous solutions;whereas,T.Hajeethet al.[22]modified the surface of sisal fibers using acrylic acid to remove Cr(VI)from aqueous solution.The main objective of the present study is the removal of chromium(IV)from aqueous solution using sisal fibers as a bioadsorbent.Hence,in order to obtain a suitable removal of this toxic metal,we treated the natural fibers with various chelating agents such as urea(UR),thiocarbamide(TC),diphenyl carbazide(DCZ),and ethylenediaminetetraacetic acid(EDTA);the high chelating properties of these ligands,can improve the adsorptive capacity of the treated sisal fibers for the removal of this toxic element from aqueous medium.

    The bio-sorption mechanism was studied under the effects of some physicochemical factors such as the nature of the chelating agents(F@UR,F@TC,F@EDTA,and F@DCZ), fiber amount,contact time,solution pH,Cr(VI)initial concentration,and medium temperature.The bio-sorption thermodynamic parameters such as free energy(ΔG?),enthalpy(ΔH?),and entropy(ΔS?),have been determined at a different temperature.

    2.Experimental

    The usedA.sisalananatural fibers were perched from local farms.All solutions were prepared from analytical grade reagent(sodium dichromate,urea,thiocarbamide,ethylenediaminetetraacetic,and diphenyl carbazide).A stock standard solution of chromium(VI)was prepared by dissolving 500 mg of sodium dichromate Na2Cr2O7(Merck)in 1 L of double distilled water.The medium pH was adjusted using hydrochloric acid and sodium hydroxide solution(0.1 mol·L-1).

    2.1.Preparation of adsorbents

    The sisal natural fibers were chopped in small pieces of size approximately 10 mm and sieved using the appropriate mesh sieve.The collected fiber samples were cleaned at room temperature using nitric acid solution(0.1 mol·L-1),and with hydrogen peroxide(10%)for 1 h then,oven dried at 80°C for 24 h.The cleaned sisal fibers were treated using the various chelating agents,under stirring at room temperature for 48 h as shown in Fig.2.The treated fibers were then washed several times with double distilled water,centrifuged at 3000 r·min-1,and oven dried again for 24 h at 80 °C.The treated fibers have been characterized by infrared spectroscopy.

    2.2.Batch adsorption studies

    Fig.1.(a)Agave sisalana,(b)chopped sisal fibers,and(c)SEM image of their surface.

    Fig.2.Bio-sorption mechanism of Cr(VI)on treated sisal fibers with chelating agents;(F@N)natural fibers,(F@DCZ) fibers charged with diphenyl carbazide,and F@DCZ@Cr(VI) fibers charged with chromium(VI).

    The bio-sorption experiments were made in batch method under the effect of some physicochemical factors.All sorption experiments were realized in 100 ml flasks by mixing 50 ml of Cr(VI)aqueous solution with the corresponding amount of fibers(2-10 g·L-1),under stirring in a thermostatic bath.After the appropriate interaction time(0-120 min),the mixture was centrifuged at 3000 r·min-1.

    The concentration of unadsorbed Cr(VI)was determined by UV-Vis spectrophotometry at λmax=540 nm using diphenyl carbazide as a complexing agent in an acidic medium(pH 2).Therefore,the adsorbed amount of chromium(VI)on used bio-adsorbents was calculated using the following equation[5]:

    where,qeis the adsorbed amount(mg·g-1),C0andCeare respectively the initial and the equilibrium concentrations of Cr(VI)(mg·L-1),Vis the volume of the solution(L),andmis the amount of the used bioadsorbent(g)[5].

    3.Results and Discussion

    3.1.Characterization of the adsorbents

    The naturalsisal fibers were constituted essentially of cellulose(74%),lignin(12%),hemicellulose(11%),and pectin(2%).The surface area of this adsorbentwas measured using the BET method.The obtained results show that the sisal fibers have a good specific surface area of 0.0301 m2·g-1.Therefore,the treatment of the used fibers by different chelating agents has been investigated using infrared spectroscopy(Shimadzu 8700 FTIR spectrometer)in the range 400 cm-1-4000 cm-1.Fig.3 shows typical FTIR spectra of the different fiber samples.FTIR spectrum of untreated fibers shows a large peak between 3000 cm-1and 3600 cm-1corresponding to the hydroxyl vibration(υ—OH).The peak at 1500-1750 cm-1was attributed to the stretching of carboxylic function(υ--C=O).However,spectra of treated fibers show the presence of new peaks due to the appearance of functional groups of the used chelator agent(--NH2,--C=O,--C=S,--C--NH…).In this case,the bands observed at 900-1125 cm-1were assigned to vibration bands of amino functions(υ--NH2and υ--C--NH--)and the ones observed at 1250-1500 cm-1can be assigned to the--C=S group.However,the F@UR spectra show a vibration band between 2000 and 2300 cm-1corresponding to the isocyanate function(υ--N=C=O)generated by the reaction between urea and the sisal surface.In addition,the frequency change observed for functional groups of the sisal fibers may be due to the interaction between the chelator agent and fiber surface.

    Fig.3.The infrared spectrum of untreated and treated sisal fibers with various chelating agents,(a)F@N,(b)F@UR,(c)F@TC,(d)F@DCZ,and(e)F@EDTA.

    The Scanning electron microscope is known to be the most important instrument in studying the surface morphology of adsorbent materials such as zeolites,clays,and fibers by direct two dimensional surface imaging.Fig.4 displays typical SEM images of the surface morphology of natural and treated sisal fibers.Fig.4(b)and(c)shows that the treatment with urea and thiocarbamide generates a small grain of the immobilized chelating agent on the surface of the treated fibers,with grain sizes in the range 1 μm-3 μm.However,the treatment with DCZ and EDTA generates a thin layer on all the surface of the treated fibers as shown in Fig.4(d)and(e).

    3.2.Effect of the chelating agent on bio-sorption kinetic

    Fig.4.The Scanning electron microscope images of untreated and treated sisal fibers with various chelating agents,(a)F@N,(b)F@UR,(c)F@TC,(d)F@DCZ,and(e)F@EDTA.

    Fig.5.Bio-sorption kinetics of Cr(VI)on sisal fibers treated with various chelating agent([Cr(VI)]0=200 mg·L-1,adsorbent amount=5 g·L-1,T=20 °C).

    The bio-sorption kinetics was studied at various contact times ranging from 0 to 120 min,using a Cr(VI)aqueous solution of 200 mg·L-1and an amount of adsorbents(F@N,F@UR,F@TC,F@DCZ,and F@EDTA)of 5 g·L-1.The mixture was stirred in a thermostatic bath at 20 °C.The obtained results are shown in Fig.5.It can be seen that the Cr(VI)interacted rapidly with the bio-adsorbents and the maximum adsorption was observed after 50 min of contact.The equilibrium is reached in about 60 min of interaction.The untreated fibers(F@N)showed a modest removal capacity of the hexavalent chromium of 4.9 mg·g-1.However,the used chelating agents have a good effect on the adsorptive capacity of the treated fibers(F@N,F@UR,F@TU,F@DCZ,and F@EDTA)with an adsorption capacity up to 16.43 mg·g-1,17.12 mg·g-1,27.3 mg·g-1,and 36.2 mg·g-1respectively.Therefore,the used adsorbents show a different adsorption capacity in the removal of Cr(VI),this phenomenon can be explicated by the difference in the chelating properties between them,due essentially to the number of coordination atoms(N and/or O)in each ligand,for example urea and thiocarbamide contained two coordination sites.However,diphenyl carbazide has four sites and EDTA contained six coordination sites,as shown in Fig.6.

    3.3.Optimization of bio-sorption factors

    3.3.1.Effect of adsorbent dose

    Fig.6.Electrostatic interactions between chromium(VI)anions and protonated amino groups of the used chelating agents(a)urea,(b)thiocarbamide,(c)ethylenediaminetetraacetic acid,and(d)the reaction between Cr(VI)and the pre-adsorbed diphenyl carbazide,on the surface of sisal fibers.

    The effect of adsorbent dose on the removal of Cr(VI)from aqueous solution(200 mg·L-1)was carried out using an adsorbent dose in the range of 1-10 g·L-1while the other parameters such as contact time,medium pH,and temperature were kept constant.The mixture was stirred for 120 min at 20°C and then centrifuged for 10 min at 3000 r·min-1.The obtained results are shown in Fig.7;we notice an increase of the adsorbed quantity of Cr(VI)with an increase of fiber amount,caused by the availability of more active sorption sites.However,beyond a dose of 5 g·L-1,there is no considerable change in the adsorption amount.Such a phenomenon caused by a large amount of adsorbent may reduce the instauration of the adsorption sites and/or creates particle aggregation,leading to a reduction in the total surface area and an increase in diffusion path length both of which contribute to a decrease in the adsorbed amount per mass unit[22].

    Fig.7.Effect of adsorbent dose on bio-sorption of Cr(VI)onto natural and treated sisal fibers([Cr(VI)]0=200 mg·L-1,contact time=120 min,T=20 °C).

    3.3.2.Effect of medium pH

    The medium pH has an essential effect on the adsorption phenomena of chromium.It can change in adsorbent surface charge as well as lead to the protonation of functional groups on the surface of the adsorbent.Effect of the pH on adsorption was realized by varying the solution pH in the range of 1-6,at room temperature,with an initial Cr(VI)concentration of 200 mg·L-1using 5 g·L-1as adsorbent dose.Fig.7 shows that the pH solution has a remarkable effect on the adsorption of Cr(VI).The optimal adsorption has been observed at low pHs(1-2)for all samples,with a chromium adsorption amount varied between 5 and 42.3 mg·g-1(Fig.8);this phenomenon can be explained by the straight interaction between fiber surface and various chromium anions such as Cr2O7-,,and HCrO4-.Hence,at low pHs the adsorbent surface acquired positive charge that is necessary for the adsorption process,this can be explained by the formation of quaternary ammonium cations(,>…)on the surface of the treated fibers resulting from the protonation of amino groups of the used chelating agents which assisted the electrostatic attraction toward the different chromium anions(,,and HCrO4-)as shown in Fig.6[5-23].On the other hand,the interaction between Cr(VI)and the pre-adsorbed diphenyl carbazide(DCZ)formed a reddish purple complex on the surface of the treated sisal fibers(Fig.2),the formation of this complex is favored in low pHs at room temperature,the mechanism of this reaction can be illustrated by Fig.6.

    Fig.8.Effect of pH on bio-sorption of Cr(VI)onto natural and treated sisal fibers using various chelating agents([Cr(VI)]0=200 mg·L-1,contact time=120 min,T=20 °C,and adsorbent amount=5 g·L-1).

    3.3.3.Effect of chromium initial concentration

    To investigate the effect of the chromium initial concentration on the adsorptive capacity of the used adsorbents,the experiments were realized by varying Cr(VI)concentrations from 100 mg·L-1to 500 mg·L-1,while keeping the other parameters constant(pH 2,temperature 20°C,contact time 120 min,and adsorbent amount of 5 g·L-1).The results,shown in Fig.9,indicate that the Cr(VI)adsorbed amount initially increases by the increase of Cr(VI)initial concentration,and attained a maximum of 300 mg·L-1for all cases(F@UR,F@TC,F@DCZ,and F@EDTA)with a respective optimal adsorbed amount of chromium(VI),of 6.29 mg·g-1,24.3 mg·g-1,26.15 mg·g-1,42.3 mg·g-1,and 55.96 mg·g-1.However,at a concentration higher than 300 mg·L-1the Cr(VI)adsorbed amount of Cr(VI)was stabilized,this is due to the saturation in adsorptive sites and fiber surface area by the presence of height number of chromium molecules in the solutions[5,14,23].

    Fig.9.Effect of initial concentration on bio-sorption of Cr(VI)onto natural and treated sisal fibers using chelating agents(pH 2,adsorbent amount=5 g·L-1,contact time=120 min,and T=20°C).

    3.3.4.Effect of medium temperature

    The effect of temperature on sorption of hexavalent chromium on untreated and treated sisal fibers was investigated at temperatures in the range of(20-50°C)using Cr(VI)solutions with the initial concentration of300 mg·L-1at pH 2,using 5 g·L-1of fiber amount.The obtained results indicate that the temperature has a negative effect on the adsorption of chromium by the different adsorbents as shown in Fig.10.This means that the interaction between chromium species(Cr2O7-2,CrO42-,and HCrO4-)and fiber surface is exothermic.The trends demonstrate a tendency of the adsorbate to escape from the adsorbent to the liquid phase with the increase in the temperature due to the excess energy promoting desorption of Cr(VI)species from the surface of adsorbents.The best result was obtained with the F@EDTA at 20°C giving a maximum adsorption amount of 56.96 mg·g-1.

    3.4.Bio-sorption kinetic modeling

    Several studies related to the sorption of Cr(VI)used kinetic models in order to highlight the indispensable factors of adsorption kinetics.The sorption of Cr(VI)on the natural and treated sisal fibers was modeled using the equation of the pseudo- first-order(Eq.(2))[24]and pseudo-second-order model(Eq.(3))[25-28].

    Fig.10.Effect of temperature on the bio-sorption of Cr(VI)onto natural and treated sisal fibers([Cr(VI)]=300 mg·L-1,adsorbent amount=5 g·L-1,pH 2,and contact time=120 min).

    wherek1is the rate constant of the pseudo- first-order(min-1);k2is the pseudo-second-order adsorption rate constant(g·mg-1·min-1),tis the contact time,andqtandqeare adsorption amounts(mg·g-1),respectively,atttime and at equilibrium(min)[23-28].The results of the pseudo- first-order and pseudo-second-order models are represented by Fig.11 and gathered in Table 1.They show that the adsorption of hexavalent chromium using natural and treated sisal fibers follows the pseudo-second-order model with a correlation coefficient,R2up to(0.99).They also show that the theoretical values ofqetheoare better estimated by the pseudo-second-order model than by that the pseudo- first-order one which suggests that the bio-adsorption of chromium on the sisal fibers is dominated by a chemical process.

    Fig.11.Plot of the pseudo- first-order(a)and pseudo-second-order,(b)of the bio-sorption of Cr(VI)onto natural and treated fibers([Cr(VI)]=300 mg·L-1,adsorbent amount=5 g·L-1,pH 2,contact time=120 min).

    Table 1 Parameters of pseudo- first-order and pseudo-second-order models of Cr(VI)bio-sorption on natural and treated sisal fibers.

    3.5.Adsorption isotherm

    Adsorption isotherm study is indispensable to describe the adsorption mechanism.It also permits the determination of the maximum adsorbed amount on the used adsorbents and the identification of the adsorption type.According to the Gileset al.classification[29],the obtained results illustrate that the obtained isotherms are of type S as shown in Fig.12.

    The adsorbed amount of Cr(VI)increases gradually with an increase of chromium initial concentration in the adsorbate solution(Fig.12).However,at low concentration,the ratio of the number of chromium ions to the number of available adsorption sites is small and consequently,adsorption is independent of initial concentration,but as the concentration of the Cr(VI)increases,the situation changes and the competition for adsorption sites becomes intense.Adsorption alters the distribution of a solute in the constituent phases and the interface between them[30].

    Fig.12.Bio-sorption isotherms of Cr(VI)on naturaland treated sisal fibers:(a)F@N,(b)F@UR,(c)F@TC,(d)F@DCZ,and(E)F@EDTA(adsorbentamount=5 g·L-1,pH 2,contacttime=120 min).

    The adsorption process is usually described by the following two widely used isotherms:[31]

    where,qeis the constant indicative of the relative adsorption capacity of the adsorbent(mg·g-1),Ceis the equilibrium concentration of chromium(VI)(mg·g-1),KLis the Langmuir coefficient(L·mg-1),andqmis the maximum adsorption capacity(mg·g-1),Kfandnare Freundlich coefficients,and 1/nis the constant indicative of the intensity of the sorption.The modeling of the adsorption isotherm results using the model of Freundlich and Langmuir is given in Table 2.As we have observed,according to the values of the correlation coefficient(R2)of the linear regression,its hows that the adsorption isotherms obey the Langmuir model rather than the Freundlich one.Cr(VI)solution temperature has an important effect on the adsorption mechanism,and the values of Langmuir maximum adsorption capacity(qm)show that the higher chromium adsorption amount on natural and treated sisal fibers is obtained at 20°C.The obtained results from the Langmuir isotherm show that the adsorption processes of Cr(VI)on all adsorbents are favorable at low temperature with a maximum adsorption capacity(qm)up to 61.45 mg·g-1in the case of F@EDTA.

    Table 2 Freundlich and Langmuir parameters of Cr(VI)bio-sorption on natural and treated fibers.

    3.6.Thermodynamic parameters

    The adsorption thermodynamic parameters such as enthalpy(ΔH?,kJ·mol-1),Gibbs energy(ΔG?,kJ·mol-1),and entropy(ΔS?,J·mol-1·K-1),were calculated using the following equations:

    Eq.(8)is obtained by combining Eqs.(6)and(7).

    whereTis the absolute temperature(Kelvin),Ris the gas constant with a value of 8.314 J·mol-1·K-1,andKis the equilibrium adsorption constants of the isotherm fits(Kequilibrium constant,which must be converted to SI units,by using the chromium(VI)molecular mass)[32,33].Thermodynamic parameters of the chromium(VI)biosorption by sisal fibers can be determined from the plot of lnKto 1/Tusing the data presented in Table 3[32-36].The results of the thermodynamic study show that the Gibbs energy decreases with increasing temperature as shown in Table 3.All ΔG?have negative values which indicates that the interactions(Cr(VI)@@Fibers)are spontaneous.Enthalpy(ΔH?)negative values are in accordance with the exothermic nature of the interactions of Cr(VI)with the used adsorbents.The decrease of the entropy(ΔS)values indicates the bio-sorption process and has a stable configuration.

    Table 3 Thermodynamic parameters for bio-sorption of Cr(VI)on natural and treated fibers.

    4.Conclusions

    In this study,it has been showed that treatment of sisal fibers with various the chelating agents presents a better uptake capacity in the removal of Cr(VI)from aqueous solutions than natural sisal fibers,with a maximum adsorption capacity up to 61.45 mg·g-1.It has also been shown that the best results for bio-sorption of Cr(VI)on natural and treated sisal fibers were obtained using an adsorbent dose of 5 g·L-1and after a contact time of 120 min.The adsorbed quantities of Cr(VI)decreased with increasing temperature.The suitable biosorption was obtained at pH 2 for a solution temperature of 20°C.The modeling study showed that the adsorption kinetics obey the pseudosecond-order.The adsorption isotherm of Cr(VI)on all adsorbents follows the linear Langmuir model with anR2in the range of 0.991-0.998.The results of the thermodynamic study showed that the chromium adsorption on the natural and treated sisal fibers is exothermic and spontaneous,and has a stable configuration.It is anticipated that this investigation may open the way for another study about the removal of other heavy metals using the natural and/or treated fibers with chelating agents.

    [1]A.Han,H.Zhang,J.Sun,G.-K.Chuah,S.Jaenicke,Investigation into bulk liquid membranes for removal of chromium(VI)from simulated wastewater,J.Water Process Eng.17(2017)63-69.

    [2]H.Bendjeffal,H.Mamine,A.Djebli,N.Rebbani,Y.Bouhedja,Removal of 4-(2-pyridylazo)-resorcinol from aqueous solution using natural and activated Algerian kaolin,Sens.Lett.15(2017)668-675.

    [3]W.N.L.dos Santos,D.D.Cavalcante,E.G.Paranhos da Silva,C.Francisco das Virgens,Biosorption of Pb(II)and Cd(II)ions byAgave sisalana(sisal fiber),Microchem.J.97(2011)269-273.

    [4]R.Khalid,Z.Aslam,A.Abbas,W.Ahmad,N.Ramzan,R.Shawabkeh,Adsorptive potential ofAcacia niloticabased adsorbent for Chromium(VI)from an aqueous phase,Chin.J.Chem.Eng.26(3)(2018)614-622.

    [5]S.Guendouz,N.Rebbani,K.Guer fi,Y.Bouhedja,Removal of Cr(VI)from an aqueous solution using natural kaolin of Tamazert-east of Algeria,Sens.Lett.14(2016)417-424.

    [6]N.Puvaneswari,J.Muthukrishna,P.Gunasekar,Toxicity assessmentand microbialdegradation of azo dyes,Indian J.Exp.Biol.44(2006)618-626.

    [7]H.Bendjeffal,K.Guerfi,Y.Bouhedja,N.Rebbani,Phys.Procedia2(2009)889-897.

    [8]H.Bendjeffal,Adsorption des complexes organométalliques sur des supports solides,Editions universitaires europeennes,Paris,2017.

    [9]L.Assem,H.Zhu,Chromium GeneralInformation,Health Protection Agency,Institute of Environment and Health Cran field University,2007 01-05.

    [10]L.S.Zhang,The Advanced Water Treatment and Reuse Technology,Chemical Industry Press,Beijing,2009.

    [11]A.K.Bhattacharya,T.K.Naiya,S.N.Mandal,S.K.Das,Adsorption,kinetics and equilibrium studies on removal of Cr(VI)from aqueous solutions using different low-cost adsorbents,Chem.Eng.J.137(2008)529-541.

    [12]S.Sugashini,K.M.M.Sheriff Begum,Performance of ozone treated rice husk carbon(OTRHC)for continuous adsorption of Cr(VI)ions from synthetic effluent,J.Environ.Chem.Eng.1(2013)79-85.

    [13]N.Rajesh,B.G.Mishra,P.K.Pareek,Preparation,UV-vis,IR,EPR and resonance Raman study of Fe,Ni,Co and Zn dioxolene complexes,Spectrochim.Acta A69(2007)612-618.

    [14]Ashraf Ali,Khalid Saeed,Fazal Mabood,Removal of chromium(VI)from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent,Alex.Eng.J.55(2016)2933-2942.

    [15]Y.Gong,Q.Hu,Y.Guo,L.Yu,Photocatalyzed reduction of chromium(VI)and thermal-driven heterogeneous separation,ACS Sustain.Chem.Eng.5(6)(2017)4511-4516.

    [16]C.E.Barrera-Draza,V.Lugo-Lugo,B.Bilyeu,A review of chemical,electrochemical and biological methods for aqueous Cr(VI)reduction,J.Hazard.Mater.223(2012)1-12.

    [17]B.Galan,D.Castaneda,I.Ortiz,Water Res.39(2005)4317-4324.

    [18]A.?imen,Removal of chromium from wastewater by reverse osmosis,Russ.J.Phys.Chem.89(2015)1238-1243.

    [19]N.DalhatMu'azu,A.Usman,N.Jarrah,Pulsed electrokinetic removal of chromium,mercury and cadmium from contaminated mixed clay soils,Soil Sediment Contam.Int.J.25(2016)757-775.

    [20]M.X.Loukidou,A.I.Zouboulis,T.D.Karapantsios,K.A.Matis,Equilibrium and kinetic modeling of chromium(VI)biosorption byAeromonas caviae,Colloids Surf.A Physicochem.Eng.Asp.242(2004)93-104.

    [21]E.Padmini,M.Helen Kalavathy,M.Lima Rose,Surface modifiedAgave sisalanaas an adsorbent for the removal of nickel from aqueous solutions—Kinetic and Equilibrium studies,Carbon Lett.9(2008)97-104.

    [22]T.Hajeeth,P.N.Sudha,K.Vijayalakshmi,Removal of Cr(Vi)from aqueous solution using graft copolymer of cellulose extracted from sisal fibre with acrylic acid monomer,Cellul.Chem.Technol.49(2015)891-900.

    [23]D.Kumar Singh,V.Kumar,S.Mohan,Polylysine functionalized graphene aerogel for the enhanced removal of Cr(VI)through adsorption:Kinetic,isotherm,and thermodynamic modeling of the process,J.Chem.Eng.Data62(2017)1732-1742.

    [24]Y.S.Ho,J.C.Y.Ng,G.McKay,Kinetics of pollutant sorption by biosorbents:Review,Sep.Purif.Methods29(2000)189-232.

    [25]Z.Hattab,N.Filali,R.Mazouz,K.Guerfi,N.Rebbani,Adsorption of cyanide ions in aqueous solution using raw and oxidized coke,Desalin.Water Treat.57(2016)3522-3531.

    [26]A.Shukla,Y.H.Zhang,P.Dubey,The role of sawdust in the removal of unwanted materials from water,J.Hazard.Mater.95(2002)137-152.

    [27]J.Ma,Y.Jia,Y.Jing,Y.Yao,Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite,Dyes Pigments93(2012)1441-1446.

    [28]G.Absalan,M.Asadi,S.Kamran,L.Sheikhian,Removal of reactive red-120 and 4-(2-pyridylazo)resorcinol from aqueous samples by Fe3O4magnetic nanoparticles using ionic liquid as modifier,J.Hazard.Mater.192(2011)476-481.

    [29]C.H.Giles,T.H.MacEwan,S.N.Nakhwa,D.Smith,Studies in adsorption.Part XI.A system of classification of solution adsorption isotherms,and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids,J.Chem.Soc.0(1960)3973-3993.

    [30]B.K.G.Theng,Formation and Properties of Clay-Polymer Complexes,Elsevier Amsterdam,2012.

    [31]E.Eren,Adsorption performance and mechanism in binding of azo dye by raw bentonite,Clean Soil Air Water38(8)(2010)758-763.

    [32]Liu Yu,Is the free energy change ofadsorption correctly calculated,J.Chem.Eng.Data54(2009)1981-1985.

    [33]D.Castro dos Santos,et al.,New carbon composite adsorbents for the removal of textile dyes from aqueous solutions:Kinetic,equilibrium,and thermodynamic studies,Korean J.Chem.Eng.31(8)(2014)1470-1479.

    [34]C.P.Bergmann,F.M.Machado,Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications,Springer,Porto Alegre,2015.

    [35]Y.Liu,H.Xu,Equilibrium,thermodynamics and mechanisms of Ni2+biosorption by aerobic granules,Biochem.Eng.J.35(2007)174-182.

    [36]Y.Liu,Y.-J.Liu,Biosorption isotherms,kinetics and thermodynamics,Sep.Purif.Technol.61(2008)229-242.

    国产成人一区二区在线| 黄色欧美视频在线观看| 亚洲人成网站在线观看播放| a级一级毛片免费在线观看| 欧美日韩国产亚洲二区| 一区二区三区高清视频在线| www.色视频.com| 丰满人妻一区二区三区视频av| 亚洲激情五月婷婷啪啪| 国内精品一区二区在线观看| 最近手机中文字幕大全| 亚洲最大成人手机在线| 校园春色视频在线观看| 日韩一区二区视频免费看| 特级一级黄色大片| 久久精品人妻少妇| 深夜精品福利| 亚洲高清免费不卡视频| 久久精品国产99精品国产亚洲性色| 精品人妻一区二区三区麻豆 | 精品一区二区三区av网在线观看| 天天一区二区日本电影三级| 日韩一本色道免费dvd| 一区福利在线观看| 日韩欧美免费精品| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久久久免| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩高清在线视频| 国产伦在线观看视频一区| 一级毛片aaaaaa免费看小| 美女高潮的动态| 嫩草影院入口| 亚州av有码| 亚洲美女黄片视频| 国产精品一区二区三区四区免费观看 | 精华霜和精华液先用哪个| 成人欧美大片| 久久午夜亚洲精品久久| 免费高清视频大片| 免费看光身美女| 亚洲最大成人手机在线| 日本a在线网址| 精品午夜福利在线看| 中文字幕熟女人妻在线| 久99久视频精品免费| 别揉我奶头 嗯啊视频| 日韩欧美在线乱码| 老熟妇仑乱视频hdxx| 九九久久精品国产亚洲av麻豆| 欧美一区二区亚洲| 精品无人区乱码1区二区| 丝袜喷水一区| 成人高潮视频无遮挡免费网站| 悠悠久久av| 亚洲精品成人久久久久久| 国产av不卡久久| 天天躁日日操中文字幕| 校园春色视频在线观看| 久久久久久久久久成人| 亚洲美女黄片视频| 免费观看人在逋| 国产人妻一区二区三区在| 午夜久久久久精精品| 亚洲国产精品合色在线| 美女大奶头视频| 少妇的逼好多水| 久久天躁狠狠躁夜夜2o2o| 色视频www国产| 国产精品电影一区二区三区| 两个人的视频大全免费| 久久久久久伊人网av| 岛国在线免费视频观看| 女的被弄到高潮叫床怎么办| 日本熟妇午夜| www日本黄色视频网| 狂野欧美激情性xxxx在线观看| 高清毛片免费观看视频网站| 亚洲国产精品国产精品| 日韩欧美 国产精品| 久久精品国产清高在天天线| 性色avwww在线观看| 丝袜喷水一区| 久久精品人妻少妇| 欧美zozozo另类| 97超级碰碰碰精品色视频在线观看| 免费av观看视频| av在线蜜桃| 国产精品,欧美在线| 91久久精品国产一区二区成人| 免费看av在线观看网站| 久久精品国产亚洲av涩爱 | 日本色播在线视频| 国产黄色小视频在线观看| 一级a爱片免费观看的视频| 精品久久国产蜜桃| 国产亚洲欧美98| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 久久这里只有精品中国| 亚洲婷婷狠狠爱综合网| 99久久成人亚洲精品观看| 大香蕉久久网| 日韩精品有码人妻一区| 偷拍熟女少妇极品色| 久99久视频精品免费| 免费观看精品视频网站| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 白带黄色成豆腐渣| 看免费成人av毛片| 欧洲精品卡2卡3卡4卡5卡区| 91久久精品国产一区二区三区| 日日撸夜夜添| 国产精品久久久久久亚洲av鲁大| 国产成人精品久久久久久| 18+在线观看网站| 一区二区三区免费毛片| 免费看a级黄色片| 中文字幕av在线有码专区| 成人亚洲精品av一区二区| 亚洲最大成人手机在线| а√天堂www在线а√下载| 欧美成人a在线观看| 欧美成人精品欧美一级黄| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 男女视频在线观看网站免费| 午夜久久久久精精品| 在线观看免费视频日本深夜| 高清日韩中文字幕在线| 老司机影院成人| 啦啦啦观看免费观看视频高清| 国产高清不卡午夜福利| 精品午夜福利在线看| 一本一本综合久久| 真人做人爱边吃奶动态| 大型黄色视频在线免费观看| 亚洲18禁久久av| 美女cb高潮喷水在线观看| 免费黄网站久久成人精品| 国产探花极品一区二区| 国产精品久久久久久亚洲av鲁大| 日本爱情动作片www.在线观看 | 18禁黄网站禁片免费观看直播| 成人漫画全彩无遮挡| 国产视频内射| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 久久6这里有精品| 免费看日本二区| 一个人看视频在线观看www免费| 午夜福利在线在线| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 又爽又黄a免费视频| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 一本久久中文字幕| 看片在线看免费视频| 日本五十路高清| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 国产高清不卡午夜福利| 免费高清视频大片| 啦啦啦啦在线视频资源| 婷婷精品国产亚洲av| 久久精品国产清高在天天线| 一进一出抽搐动态| 国产免费男女视频| 婷婷六月久久综合丁香| 国产成人a∨麻豆精品| 日本在线视频免费播放| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 简卡轻食公司| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久 | 久久久久久久久久黄片| 国产美女午夜福利| 国产免费男女视频| 免费不卡的大黄色大毛片视频在线观看 | 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 两个人的视频大全免费| 欧美一区二区亚洲| 成熟少妇高潮喷水视频| 日韩,欧美,国产一区二区三区 | 亚洲人成网站在线观看播放| 寂寞人妻少妇视频99o| 麻豆国产97在线/欧美| 99热全是精品| 少妇高潮的动态图| 日韩三级伦理在线观看| 日本欧美国产在线视频| 尾随美女入室| 日韩精品有码人妻一区| 毛片女人毛片| 麻豆一二三区av精品| 亚洲精品日韩在线中文字幕 | 国产男人的电影天堂91| 校园春色视频在线观看| av天堂在线播放| 亚洲婷婷狠狠爱综合网| 波多野结衣巨乳人妻| 一区福利在线观看| 欧美丝袜亚洲另类| 精品熟女少妇av免费看| 亚洲av第一区精品v没综合| 亚洲成人久久性| 亚洲激情五月婷婷啪啪| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 国产精品1区2区在线观看.| 久久亚洲精品不卡| 我要搜黄色片| 一级毛片我不卡| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 精品熟女少妇av免费看| 99久久久亚洲精品蜜臀av| 在线a可以看的网站| 麻豆一二三区av精品| 国产精品一区二区免费欧美| 国产视频内射| 干丝袜人妻中文字幕| 久久久精品大字幕| 搞女人的毛片| 精品福利观看| 日日啪夜夜撸| 日本五十路高清| 婷婷六月久久综合丁香| 免费大片18禁| 日本一本二区三区精品| 亚洲激情五月婷婷啪啪| 久久久久久久午夜电影| 麻豆国产av国片精品| 久久人妻av系列| 婷婷亚洲欧美| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 精品欧美国产一区二区三| 国产精品永久免费网站| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 18禁在线播放成人免费| 在现免费观看毛片| 亚洲国产色片| 精品人妻一区二区三区麻豆 | 午夜福利在线观看吧| 欧美激情在线99| 女人被狂操c到高潮| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久久久免| 中出人妻视频一区二区| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 六月丁香七月| 中文资源天堂在线| 亚洲18禁久久av| 性欧美人与动物交配| 国产老妇女一区| 久久久精品94久久精品| 亚洲精品乱码久久久v下载方式| 成人特级黄色片久久久久久久| 97在线视频观看| 亚洲国产精品成人久久小说 | 亚洲国产高清在线一区二区三| 国国产精品蜜臀av免费| 99热全是精品| 国产成人精品久久久久久| 综合色丁香网| 欧美最黄视频在线播放免费| 日本 av在线| 精品欧美国产一区二区三| 欧美激情国产日韩精品一区| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 亚洲成人av在线免费| 国产欧美日韩精品亚洲av| 免费看av在线观看网站| 寂寞人妻少妇视频99o| 91麻豆精品激情在线观看国产| 三级毛片av免费| 99久久精品一区二区三区| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 欧美在线一区亚洲| 日韩,欧美,国产一区二区三区 | 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 亚洲高清免费不卡视频| 在线国产一区二区在线| 亚洲国产精品成人综合色| 亚洲av不卡在线观看| 久久鲁丝午夜福利片| 国产精品一区二区三区四区久久| 真实男女啪啪啪动态图| 国产精品一及| 国产大屁股一区二区在线视频| 日韩中字成人| 一级av片app| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 欧美+日韩+精品| 国产成人91sexporn| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| 性欧美人与动物交配| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| eeuss影院久久| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 久久精品久久久久久噜噜老黄 | 综合色av麻豆| 久久久久精品国产欧美久久久| 色在线成人网| 亚洲精品久久国产高清桃花| 不卡视频在线观看欧美| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 色综合站精品国产| 天堂av国产一区二区熟女人妻| 亚洲国产欧洲综合997久久,| 一a级毛片在线观看| 日韩欧美 国产精品| 嫩草影院新地址| 国产精品一二三区在线看| 亚洲三级黄色毛片| 夜夜看夜夜爽夜夜摸| 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添小说| 国产精品一区www在线观看| 俄罗斯特黄特色一大片| 成熟少妇高潮喷水视频| 你懂的网址亚洲精品在线观看 | 久久精品久久久久久噜噜老黄 | 在线看三级毛片| 又粗又爽又猛毛片免费看| 能在线免费观看的黄片| 97碰自拍视频| 一级黄片播放器| 亚洲精品日韩在线中文字幕 | 国产精品不卡视频一区二区| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 岛国在线免费视频观看| 波野结衣二区三区在线| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 99在线视频只有这里精品首页| 国产精品一区二区性色av| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 亚洲电影在线观看av| 性色avwww在线观看| 全区人妻精品视频| 国内精品宾馆在线| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 国产av在哪里看| 国产亚洲欧美98| 深夜a级毛片| 中出人妻视频一区二区| 热99在线观看视频| 观看免费一级毛片| 国产精品一区二区三区四区久久| 免费一级毛片在线播放高清视频| 我要看日韩黄色一级片| 免费看光身美女| av视频在线观看入口| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 久久久国产成人免费| ponron亚洲| 三级毛片av免费| av天堂在线播放| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 免费看av在线观看网站| 午夜a级毛片| 亚洲国产精品国产精品| 亚洲国产欧洲综合997久久,| 久久久久久久久中文| 淫秽高清视频在线观看| 久久久久久久久久成人| av卡一久久| 亚洲专区国产一区二区| 亚洲最大成人手机在线| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 国产一区二区在线观看日韩| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品合色在线| 欧美成人a在线观看| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| 亚洲中文字幕一区二区三区有码在线看| 日韩亚洲欧美综合| 中文字幕av成人在线电影| 久久久久性生活片| 在线观看一区二区三区| 真实男女啪啪啪动态图| 久久精品综合一区二区三区| 特级一级黄色大片| 卡戴珊不雅视频在线播放| av福利片在线观看| 麻豆国产av国片精品| 又粗又爽又猛毛片免费看| 久久99热6这里只有精品| 亚洲美女黄片视频| 亚洲国产精品久久男人天堂| 国产男人的电影天堂91| 亚洲欧美成人精品一区二区| 69人妻影院| 欧美最新免费一区二区三区| 99在线视频只有这里精品首页| 亚洲精品亚洲一区二区| 日本黄色片子视频| 国产精品av视频在线免费观看| 国产高清三级在线| 亚洲精品国产成人久久av| 欧美+日韩+精品| 亚洲av熟女| .国产精品久久| 久久久久九九精品影院| 男人舔奶头视频| aaaaa片日本免费| 3wmmmm亚洲av在线观看| av黄色大香蕉| 国产成人福利小说| 国产免费男女视频| 亚洲va在线va天堂va国产| 国产女主播在线喷水免费视频网站 | 欧美日本视频| 卡戴珊不雅视频在线播放| av.在线天堂| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 精品国内亚洲2022精品成人| 一级毛片久久久久久久久女| 变态另类成人亚洲欧美熟女| 国产人妻一区二区三区在| 2021天堂中文幕一二区在线观| 校园春色视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲国产日韩欧美精品在线观看| 别揉我奶头 嗯啊视频| 丰满人妻一区二区三区视频av| 国产欧美日韩精品一区二区| 国产黄色小视频在线观看| 欧美最新免费一区二区三区| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 少妇的逼好多水| 可以在线观看毛片的网站| 男人舔女人下体高潮全视频| 又黄又爽又刺激的免费视频.| 成年女人永久免费观看视频| 又黄又爽又免费观看的视频| 禁无遮挡网站| 婷婷精品国产亚洲av在线| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出| 伦精品一区二区三区| 欧美zozozo另类| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 搡女人真爽免费视频火全软件 | 精品国产三级普通话版| 精品国内亚洲2022精品成人| 国产极品精品免费视频能看的| 少妇熟女欧美另类| www日本黄色视频网| 乱码一卡2卡4卡精品| 久久精品影院6| 伦精品一区二区三区| 日韩高清综合在线| 午夜福利在线在线| 精品人妻一区二区三区麻豆 | 亚洲在线观看片| 深爱激情五月婷婷| 中文亚洲av片在线观看爽| 韩国av在线不卡| 草草在线视频免费看| 联通29元200g的流量卡| 69人妻影院| 精品一区二区三区视频在线观看免费| 97超级碰碰碰精品色视频在线观看| 九九久久精品国产亚洲av麻豆| 免费一级毛片在线播放高清视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区性色av| 欧美中文日本在线观看视频| 深夜精品福利| 欧美绝顶高潮抽搐喷水| 亚洲av免费高清在线观看| 欧美日韩在线观看h| 真实男女啪啪啪动态图| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 麻豆av噜噜一区二区三区| www.色视频.com| 在线国产一区二区在线| 性插视频无遮挡在线免费观看| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 国产精品三级大全| 国产精品国产高清国产av| 国产淫片久久久久久久久| 日韩中字成人| 欧美最黄视频在线播放免费| 久久6这里有精品| 成人毛片a级毛片在线播放| 如何舔出高潮| 有码 亚洲区| 看十八女毛片水多多多| 最近2019中文字幕mv第一页| 国产伦精品一区二区三区视频9| 亚洲丝袜综合中文字幕| 男女视频在线观看网站免费| 午夜福利高清视频| 别揉我奶头 嗯啊视频| 丰满乱子伦码专区| 国产老妇女一区| 国产精品一二三区在线看| 丰满人妻一区二区三区视频av| 国产伦在线观看视频一区| 给我免费播放毛片高清在线观看| 91av网一区二区| 啦啦啦观看免费观看视频高清| 观看美女的网站| 国产午夜福利久久久久久| 蜜桃亚洲精品一区二区三区| 免费高清视频大片| 国产精品国产高清国产av| 国产成人aa在线观看| 久久久成人免费电影| 午夜免费男女啪啪视频观看 | 亚洲精品亚洲一区二区| 久久久久久久久久久丰满| 国产精品精品国产色婷婷| 国产视频一区二区在线看| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 日韩,欧美,国产一区二区三区 | 亚洲精品久久国产高清桃花| 日日啪夜夜撸| 国产高清三级在线| 女人十人毛片免费观看3o分钟| 老熟妇仑乱视频hdxx| 色尼玛亚洲综合影院| 激情 狠狠 欧美| av.在线天堂| 精品日产1卡2卡| 麻豆国产97在线/欧美| av天堂中文字幕网| 美女高潮的动态| 免费高清视频大片| 一个人看的www免费观看视频| 久久久久性生活片| 国产一区亚洲一区在线观看| 色综合色国产| 麻豆精品久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 天天一区二区日本电影三级| 可以在线观看的亚洲视频| 99热网站在线观看| 国产探花极品一区二区| 日韩 亚洲 欧美在线| 我的女老师完整版在线观看| 天天一区二区日本电影三级| 国产黄色视频一区二区在线观看 | 深夜a级毛片| 可以在线观看毛片的网站| 成人无遮挡网站| 无遮挡黄片免费观看| 免费人成在线观看视频色| 日日摸夜夜添夜夜爱| 人妻夜夜爽99麻豆av| 国产精品永久免费网站| 黄色视频,在线免费观看| 国产精品1区2区在线观看.| 狂野欧美白嫩少妇大欣赏| 色吧在线观看| 亚洲国产色片| 成人三级黄色视频| 一级毛片aaaaaa免费看小| 一夜夜www| 全区人妻精品视频| 成人性生交大片免费视频hd| 国产成人91sexporn| 日韩,欧美,国产一区二区三区 |