• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupling simulation of fluid structure interaction in the stirred vessel with a pitched blade turbine☆

    2018-06-29 09:15:36YangyangLiangZhengmingGaoDaienShiWanliZhaoZiqiCai
    關(guān)鍵詞:交流平臺無趣感興趣

    Yangyang Liang ,Zhengming Gao ,Dai'en Shi,Wanli Zhao ,Ziqi Cai,*

    1 State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    2 Mechanical Engineering School,Yancheng Institute of Technology,Yancheng 224051,China

    1.Introduction

    Stirred vessel is extensively used in chemical engineering for reaction process with various physical properties and operating conditions.The motor drives the impeller to forms an appropriate flow field and thus to achieve the desired effects,such as miscible mixing,gas dispersion,particle suspension,and chemical reaction.

    The interaction between fluid and structure,called fluid structure interaction(FSI),is a common phenomenon during the operation of stirring system.The impeller obtains energy from the motor and transfers it to fluid,and then a specified flow field is formed.However,the flow field is not symmetric due to the macro-instabilities with low frequency[1,2],pseudo-turbulence with blade passing frequency[3,4]and turbulent motions with high frequency[5].Such flow field exerts unstable reactive loads on the structures like stirring shaft,impeller and baffles,leading to the structure deformation,and further disturbing the surrounding fluid thus shows complex FSI behaviors.

    The FSI in stirred vessel is embodied not only in the flow field and pressurefield,but also in the loads on structure and their deflection,such as the loads on impeller,the reactive force and bending moment on the support point of shaft.All of these loads result from fluid and structure,such as the unsteady fluid motion and the structure rotary motion,especially the centrifugal force due to the manufacture tolerance[6].

    FSI behaviors in stirred vessel have been researched experimentally in recent decades,such as the shaft deflection orbits[7],the shaft bending moment[6,8]and the pressure distribution on blade surface[9].However,much detailed information is still hardly obtained in experiment,such as various loads on the impeller and the proportion of fluid and structure on these loads.The numerical simulation of FSI in stirred vessel makes it possible in recent years.One common method is the coupling simulation of Computational Fluid Dynamic(CFD)based on Finite Volume Method(FVM)and Computational Structural Dynamic(CSD)based on Finite Element Method(FEM).Bergeret al.[10,11]embedded the dynamic model based on Newmark's integration scheme in a commercial CFD code to simulate the critical rotational speed and shaft deflection in stirred vessel and showed good agreement with the experimental results.Mohamedet al.[12]established the structural dynamics model based on a 2-DOF damped spring-mass oscillator system and applied it to CFD model to simulate fluid force acting on impeller,further,the fluid force was extracted to added mass,damping,and stiffness coefficients.Cud moreet al.[13]took the large eddy simulation to capture the three kinds of coefficient same as Mohamedet al.[12].Shiet al.[14]used the coupling CFD and CSD codes to simulate the FSI in stirred tank equipped with a Rushton Turbine.Karrayet al.[15,16]used the similar method to solve FSI in stirred vessel with flexible blades.Young[17]took the CFD based on boundary element method(BEM)and FEM to simulate the FSI of flexible composite marine propellers.

    In this paper,a coupling simulation comprised of CFD and CSD is used to simulate the FSI in the stirred vessel agitated by a downpumping pitched blade turbine(PBTD).First of all,the simulation is verified by the agreement of toque and shaft bending moment with experimental data.Then the shaft bending moment,and the lateral force,axial force and bending moment acting on impeller are discussed in detail.The fluid and structural components from those loads are separated and extracted to have a deep insight into the characteristics of the components.Finally,the relationship among these loads is presented.This work provides information for the mechanical design of mixing equipment.

    2.Model and Method

    2.1.Physical model

    The experiments were carried out in a cylindrical tank with flatbottom and four equispaced baffles,and a PBTD was mounted at the end of the shaft,as shown in Fig.1.The shaft was designed to be slim(length/diameter=50)to enhance FSI behaviors in stirred vessel.The geometrical details are listed in Table 1,and the sketch and physical map of the PBTD are shown in Fig.2.The mass imbalance of impeller was achieved by the additional weight on one blade.The mass imbalance of impeller is defined as

    Fig.1.Schematic diagram of the stirred vessel.

    wheremuandruare the mass of additional weight,the distance between the centers of additional weight and impeller geometry respectively.The distance between centers of gravity and geometry of impeller is defined as

    wheremimpis the mass of impeller.The liquid level was high enough to eliminate the surface effect on FSI.The fluid flow was in the completely turbulent regime since the Reynolds number exceeds 120000,which is defined as

    where ρ is the fluid density,kg·m-3;Nis the rotation speed,s-1;Dis the impeller diameter,m;and μ is the dynamic viscosity of fluid,Pa·s.

    The physical model of shaft and impeller is shown in Fig.3.The mass of the shaft and impeller are equivalent to a point mass at the geometric centerO.The loads acting on impeller are integrated to the lumped mass pointO,and the reactive loads on shaft and impeller are exerted on the overhung pointO0.The equilibrium equations and the loads correlations are defined as

    whereFOi(i=x,y,z)andMOi(i=x,y)are the force and bending momentacting on impeller respectively,FO0i(i=x,y,z)andMO0i(i=x,y)are the reactive force and reactive bending moment acting on the overhung pointO0respectively,ri(i=x,y)is the lateral displacement of impeller.

    2.2.Computational method and model

    The coupling simulation in solving FSI behaviors refers to not only the CSD and CFD,but also the communication and control between them.Here,the commercial software ABAQUS,FLUENT and MPCCI(Mesh based Parallel Code Coupling Interface)are used in the coupling and the MPCCI is responsible for data communication and control.Such simulation method is widely used and proved in the study of FSI[14,18-20].

    2.2.1.Computational structural dynamics

    In CSD,some simplifications are listed as follows:

    1)The structure internal damping is ignored.

    2)The impeller is regarded as a rigid body since the impeller is rigid enough and the deformation could be neglected.

    Table 1 Main information of the stirred vessel

    Fig.2.Sketch(a)and physical map(b)of the PBTD.

    Fig.3.Physical model of shaft and impeller.

    3)The slender shaft(L/D=50)is simplified as a 3D cantilever beam with five fixed degrees of freedom at the overhung point,and the only allowable is the spinning about rotating axis.

    In ABAQUS the solid element C3D8R and beam element B32 are respectively selected for impeller and shaft,and the element size are about 2 mm and 8 mm,respectively.The dynamic equation to solve CSD model is given by

    where q is a response vector and M,G,K are the mass matrix,gyroscopic matrix and shaft stiffness matrix,respectively.Qeis the loads vector on the shaft end,including structure excitation and fluid loads.More information about Qeand the boundary condition about Eq.(7)can be referred to Shiet al.[14].The implicit time integration algorithm is used to solve the dynamic equation.

    2.2.2.Computationalfluid dynamics

    The shaft diameter is so small that the effect of shaft on fluid is neglected in CFD.The fluid zone is divided into two parts,the steady zone and dynamic zone.The government equations of the two zones are solved in Euler coordinate and Arbitrary Lagrangian-Eulerian coordinate,respectively.The continuity equations for the two zones are same and are given by Eq.(8),while the momentum equations are given by Eqs.(9)and(10)for the steady and dynamic zone,respectively.

    In Eq.(10),uGis the mesh moving velocity in dynamic zone.As for CFD simulation without coupling,the mesh moving velocityuGis determined by the given angular velocity in FLUENT.However,for the coupling simulation of fluid structure interaction comprised of CFD and CSD,the motion of structure boundary is derived from the results of CSD,and will lead to the motion of dynamic mesh on the coupling surface(the surface of the PBTD)in FLUENT.Then theuGon the coupling surface is the resultant velocity of this dynamic mesh velocity in FLUENT and the given angular velocity in FLUENT.The computational grids in dynamic and steady zone are defined by approximately 500000 tetrahedral cells and 1300000 hexahedral cells,respectively.The cell size in the impeller discharge region is about 2 mm,and the sizes in the rest of the domain are about 4-5 mm.The ReNormalization Group(RNG)k-ε two-equation is selected as the turbulence model and the enhanced wall function is selected as the boundary layer model.The transient simulation is modeled using the sliding mesh model and the initial flow filed is obtained by a steady-state MRF method.The total impeller revolution is up to 120,and 360 time steps is defined in each impeller revolution,which means that a single step is corresponding to 1 spinning degree.The second order upwind scheme is used for the spatial discretization of the momentum equations,and the first order accurate implicit scheme is selected for time discretization.The coupling between the continuity and momentum equations is realized by the Coupled algorithm.

    2.2.3.Coupling dynamics

    Because the current solutions could reach a quasi-steady after about 20 revolutions,the data obtained by the subsequent100 revolutions are used in this work.More detailed information on coupling dynamics,especially the control and communication between the CFD code and CSD code,can be referred to Shiet al.[14].

    2.3.Experimental method

    The reactive bending moment and torque acting on the overhung point of shaft in experiment were measured by a three-component moment sensor with high response and high precision,and will be used to check the validity of simulation in the following section.More information about the experiment setup can be referred to Shiet al.[6,8].

    The natural frequencies of shaft-impeller derived from experiment and simulation are 8.6 Hz and 9.2 Hz,respectively.In simulation,the lateral constraint condition at the overhung point is completely fixed.However,the bearing constraint in experiment could not be completely fixed due to the bearing clearance.Therefore,the stiffness and the corresponding natural frequency of shaft-impeller in experiment are lower than those in simulation.

    3.Results and Discussion

    3.1.Verification of simulation

    3.1.1.Impeller torque

    The torque(Mt) reflects the magnitude of circumferential fluid forces on the impeller.The consumed power of impeller could be calculated by impeller torque and the impeller angular velocity,and could be characterized by a dimensionless power numberNp,given by

    TheNpobtained by experiment and simulation as a function ofReare shown in Fig.4,and approach to 1.25 and 1.33,respectively.The relative errors ofNpby simulation to those by experiment are about6%,indicating that the circumferential fluid forces on the impeller could be well predicted by such coupling simulation.

    Fig.4.Np from experiment and simulation.

    3.1.2.Shaft bending moment

    The dimensionless coefficient α is the characterization of shaft bending moment amplitude(Mb) ,which could be used in the strength check of stirring shaft and is crucial in the design of stirring shaft and even the whole stirring equipment.It is defined as the ratio of mean lateral force to mean circumferential force as given by Eq.(12).

    Another dimensionless coefficientRSD(relative standard deviation)represents the intensity of the amplitude fluctuation of shaft bending moment,and is defined as the ratio of the standard deviation to the mean shaft bending moment as given by Eq.(13).

    The dimensionless coefficient α andRSDobtained by experiment and simulation are respectively shown in Figs.5 and 6.Both of them decrease with the rise of speed.The average relative errors of α andRSDby simulation to those by experiment are about 15%and 4%respectively.Compared to completely fixed lateral constraint in simulation,the incompletely fixed lateral constraint due to the bearing clearance in experiment not only reduces the natural frequency but also increases the lateral deflection of shaft and impeller,and thus increases the shaft bending moment on the overhung shaft.Therefore,the dimensionless coefficient α obtained by simulation is smaller than that by experiment.Furthermore,the decline trend of α andRSDwith speed is resulted from the FSI resonance in stirred vessel when blade passing frequency approaches the natural frequency of shaft-impeller(FSI resonance takes place at 129 r·min-1).

    Fig.5.α from experiment and simulation.

    Fig.6.RSD from experiment and simulation.

    3.2.Simulation results

    Since the validity of simulation has been verifed by the good agreement of the power number,dimensionless shaft bending moment and its relative standard deviation compared to the experiment,the following analyses focus on the coupling simulation results,including shaft bending momentMb, and loads acting on impeller(including impeller lateral forceFr, impeller axial forceFz,and bending moment on impellerMb,imp).The relations between the four kinds of loads are given by Eqs.(5)and(6)and all of these loads can be divided into fluid and structural components,which could not be distinguished in experiment,and are presented by subscript f and s respectively in Eqs.(14)-(17).

    The fluid components of the impeller force in three direction vectors are given by Eqs.(18)-(20),respectively.Thex-andy-are the two components of impeller lateral force defined by Eq.(21)and thez-is the impeller axial force(the gravity of shaft and impeller is ignored in axial force).Besides of the dimensionless shaft bending moment defined by Eq.(12),the corresponding dimensionless coefficients of the rest three loads are given by Eqs.(22)-(24),respectively.

    3.2.1.Shaft bending moment

    Fig.7 shows the contour of the dimensionless coefficient α of shaft bending moment as a function of rotation speed and angle phase relative to baffle.The angle phase of0°,90°,180°and 270°mean that the center of a fixed blade coincides with the centers of four baffles,and forUb=1800 mm·g-1the fixed blade is the unbalanced.The overall downtrend of α with rotation speed is obvious just as shown in Fig.5.The α is higher at some particular phases and the phase intervals are about90°,especially forUb=0,which means the four times of speed frequency(4N)is a dominant frequency,named as blade passing frequency.However,some higher frequencies are still not clear in Fig.7.The periodic characteristic of αresults from its periodic fluid and structural components and will be discussed in detail in the following Sections 3.2.2 and 3.2.3.

    The dimensionless coefficient α with rotation speed is shown in Fig.8.The resulting moment and the structural component forUb=1800 mm?g are larger than those forUb=0 because the centrifugal force is much smaller for the perfectly balanced case.However,the fluid component changes slightly with rotation speed for two cases and both approximate 0.024.This is because the fluid motion is completely turbulent and the dimensionless fluid component is hardly related to the rotation speed.Besides,the fluid moment is hardly affected by the impeller mass imbalance,and thus the similar trend with rotation speed between resulting moment and its structural component.For low rotation speed,the structural component is larger than fluid component which means the structural component is dominant,but the difference is getting smaller with the rise of speed.However,if rotation speed continues increasing,the difference would get larger because the centrifugal force will be increasing and the structural component will increase since the speed frequency is getting close to the natural frequency of shaft impeller,and the self-excited resonance will take place.

    Fig.8.Dimensionless coefficient of shaft bending moment.

    3.2.2.Impeller lateral force

    It is found that the dimensionless coefficientCrof impeller lateral force and its components shown in Fig.9 are similar to the dimensionless coefficient α of shaft bending moment in Fig.8.The resultingCrand its structural component decrease with the rise of rotation speed,while the fluid component remains constant.Such similar trend will be explained in the following Section 3.2.5.

    Fig.9.Dimensionless coefficient of impeller lateral force.

    Fig.7.Contour of dimensionless coefficient of shaft bending moment.

    The frequency analysis is helpful to understand the fluctuating characteristics of impeller loads.There are mainly three groups of frequencies contributing to the fluctuation of impeller loads,which are the impeller speed frequency caused by the imbalance of stirred structure,the frequencies below impeller speed caused by macro-instabilities in the bulk flow and the frequencies higher than impeller speed which mainly consist of the blade passing frequency due to the pseudoturbulence originating from the trailing vortex behind impeller blades and the interaction between the blade and baffle.Furthermore,the multiple natural frequencies of stirring shaft could be stimulated.The behaviors of these frequencies depend on the operating conditions,the properties of fluid and the structure.The Yule-Walker autoregressive model is used to get the Power Spectral Density(PSD)of impeller loads in this paper.

    The PSD of X-component of the impeller lateral structure and fluid force are shown in Figs.10 and 11,respectively.As shown in Fig.10 there are two evident peaks at each speed forUb=1800 mm·g-1and are marked by letter A and B respectively.The first peak marked by letter A is the impeller speed frequency caused by the impeller mass imbalance.The second peak marked by letter B locates around blade passing frequency,which is resulted from the unstable blade passing frequency of fluid motion near impeller.The blade passing frequency could transfer to the stirring structure via FSI and induce the vibration of stirring structure at this frequency.However,for the perfectly balanced impeller,the speed frequency disappears,and the blade passing frequency is the unique dominant frequency.

    Compared to the PSD of lateral structure force,another two peaks are found in the PSD of lateral fluid force shown in Fig.11.The first peak marked by letter C locates at low frequencies,which is resulted from low-frequency macro-instability in the bulk flow in stirred vessel.The second peak marked by letter D locates around 0.51-0.52N,which could be related to the dynamic vortex shedding behind the blade.Similar to the PSD of structure force,the speed frequency disappears in perfectly balanced impeller as well,which indicates that dominant speed frequency is induced by the rotation of the unbalanced impeller and transfer to the fluid motion via the FSI.As a result,fluid pressure vibrates at speed frequency and therefore such dominant speed frequency will not be found,if impeller is perfectly balanced.

    3.2.3.Impeller axial force

    The dimensionless coefficientCzof impeller axial force is shown in Fig.12.The structural component of the axial force on impeller are nearly zero,the resultingCzand its fluid component are almost the same and remain a constant about 0.48,which indicates that the axial force on impeller almost comes from the fluid axial impact.In addition,the resultingCzand its two components are almost the same forUb=1800 mm·g-1andUb=0,indicating that theCzmatters little to the impeller mass imbalance.

    The PSD of X-component of the impeller axial structure and fluid force are shown in Figs.13 and 14,respectively.In the PSD of axial structure force in Fig.13,the unique dominant frequency is blade passing frequency.Similar to the PSD of lateral fluid force in Fig.11,another dominant frequency locates at low frequencies marked by letter C is found in the PSD of axial fluid force in Fig.14.However,the speed frequency is not found in the PSD of both axial structure and fluid forces,even in the case of unbalanced impeller.This may be because that the impeller axial forces are much less sensitive to impeller mass imbalance than impeller lateral force,and the effect of impeller mass imbalance on the PSD of axial forces is too slight to be observed.Besides,we can see that the fluctuating intensity of impeller axial force around blade passing frequency is stronger than that of impeller lateral force,which demonstrates that compared to lateral force,the axial forces are more sensitive to the pseudo-turbulence originating from the trailing vortex behind blade.

    Fig.11.PSD of X-component of the impeller lateral fluid force.

    Fig.12.Dimensionless coefficient of impeller axial force.

    3.2.4.Bending moment on impeller

    The dimensionless coefficientCbof bending moment on impeller is shown in Fig.15.Similar to the dimensionless impeller lateral forceCrin Fig.9,the resultingCband its structural component decrease with the rise of rotation speed,while the fluid component remains constant about 0.0017 at each speed.Besides,t he effects of impeller mass imbalance on the resulting moment and its two components are negligible.Furthermore,the impeller is so rigid that the impeller axial vibration is much weaker and thus the lateral bending moment on impeller is much smaller.

    3.2.5.Loads comparison

    Fig.15.Dimensionless coefficient of bending moment on impeller.

    As defined in Eqs.(5)and(6),the reactive shaft bending momentMbon the overhung point is a comprehensive effect of impeller lateral forceFr,impeller axial forceFzand bending moment on impellerMb,imp.The corresponding resulting dimensionless coefficient α,Cr,CzandCbare shown in Fig.16 to see the relative magnitude clearly.

    It is clear that theCzis much larger thanCrsince the PBTD is an axial impeller rather than radial impeller in some extent,so the axial flow and the corresponding axial force on impeller are much larger than those of the lateral.However,the α is more closes toCrwhich indicating that the impeller lateral force is the key factor to shaft bending moment.This is because the bending moment on impeller is rather small and the effect of impeller axial force on shaft bending moment is rather weak since the force arm of impeller axial force to the overhung shaft is much smaller than that of impeller lateral force.Therefore,the dimensionless coefficientCrof impeller lateral force in Fig.9 is similar to the dimensionless coefficient α of shaft bending moment in Fig.8.

    Fig.13.PSD of X-component of the impeller axial structure force.

    Fig.14.PSD of X-component of the impeller axial fluid force.

    Fig.16.Dimensionless coefficient of four loads.

    4.Conclusions

    This paper reports a coupling simulation of the FSI in the stirred vessel agitated by a pitched blade turbine.The shaft bending moment,and the lateral forces,axial force and bending moment acting on impeller are discussed in detail.Particularly,the fluid and structural components from these loads are separated and extracted.

    高?;鶎有姓藛T的職業(yè)生涯基本都是單調(diào)無趣的。這就要求高校在工作之余,為他們搭建其他興趣交流平臺,讓他們在工作的同時學習到自身感興趣的知識和能力,只有這種氛圍持續(xù)存在,員工才會自我要求進步,只有進步才能推動工作的動力,提高工作效率。

    Compared to the case of perfectly balanced impeller,the mass imbalance increases the shaft bending moment and lateral force on impeller,but the effects of it on the axial force and bending moment on impeller are negligible.The dimensionless coefficients of the fluid component of these four loads change slightly with rotation speed and hardly affected by the impeller mass imbalance.The shaft bending moment is a reactive load of other three loads acting on impeller,and mainly results from the impeller lateral force though the impeller axial force is much larger.

    The fluctuating characteristics of impeller forces are induced by several dominant frequencies.The fluid component of impeller lateral force at the speed frequency is induced by the rotation of the unbalanced impeller via the FSI.However,the fluid component of impeller axial force at speed frequency disappears.The structural component of impeller lateral and axial force around blade passing frequency is induced by the trailing vortex behind blade via the FSI.The fluctuating intensity of impeller axial force around blade passing frequency is stronger than that of impeller lateral force.

    Nomenclature

    Cclearance of impeller off bottom of vessel,mm

    Cbcoefficient of bending moment on impeller

    Crcoefficient of impeller lateral force

    Czcoefficient of impeller axial force

    ddiameter of shaft,mm

    Frimpeller lateral force,N

    Fzimpeller axial force,N

    fnthe first order laterally natural frequency,Hz

    Hheight of liquid free surface,mm

    Loverhung length of shaft,mm

    Mbbending moment acting on shaft,N·m-1

    Mb,impbending moment acting on impeller,N·m-1

    Mtimpeller torque,N·m-1

    mimpmass of impeller,kg

    mshaftmass of shaft,kg

    muunbalanced mass of impeller,g

    Nrotation speed frequency,s-1

    Nppower number

    PSD power spectral density,N-2·m-2·s-1

    ReReynolds number

    RSD relative standard deviation

    ruthe distance between the centers of additional weight and impeller geometry,mm

    Tdiameter of stirred vessel,mm

    Ubmass imbalance of impeller,mm?g-1

    Wbwidth of baffle,mm

    α coefficient of shaft bending moment

    δ distance between centers of gravity and geometry,mm

    μ dynamic viscosity of fluid,Pa·s

    ρ density of fluid,kg·m-3

    σ standard deviation of shaft bending moment,N·m-1

    Subscripts

    f fluid

    s structure

    xxdirection

    yydirection

    zzdirection

    Superscript

    —time-averaged

    [1]S.Roy,S.Acharya,M.D.Cloeter,Flow structure and the effect of macro-instabilities in a pitched blade stirred tank,Chem.Eng.Sci.65(2010)3009-3024.

    [2]P.Hasal,I.Fort,J.Kratena,Force effects of the macro-instability of flow pattern on radial baffles in a stirred vessel with pitched-blade and Rushton turbine impellers,Chem.Eng.Res.Des.82(2004)1268-1281.

    [3]K.V.Riet,W.Bruijn,J.M.Smith,Real and pseudo-turbulence in the discharge stream from a Rushton turbine,Chem.Eng.Sci.31(1976)407-112.

    [4]R.Escudie,A.Line,Experimental analysis of hydrodynamics in a radially agitated tank,AICHE J.49(2003)585-603.

    [5]X.H.Liu,Y.H.Bao,Z.P.Li,Z.M.Gao,J.M.Smith,Particle image velocimetry study of turbulence characteristics in a vessel agitated by a dual Rushton impeller,Chin.J.Chem.Eng.16(2008)700-708.

    [6]D.E.Shi,Y.Y.Liang,A.Eaglesham,Z.M.Gao,Effect of the impeller imbalance on the bending moment acting on an overhung shaft in a stirred vessel,Chem.Eng.Res.Des.92(2014)2191-2200.

    [7]N.R.Kippers,A.G.L.Holloway,Experiments on the whirling of pitched blade impellers in baffled mixing vessels,J.Fluid Struct.49(2014)29-52.

    [8]D.E.Shi,T.Lu,A.Eaglesham,Z.M.Gao,Characteristics of the bending moment acting on an overhung shaft in a stirred vessel,Int.J.Chem.React.Eng.12(2014)135-150.

    [9]G.L.Lane,G.D.Rigby,G.M.Evans,Pressure distribution on the surface of Rushton turbine blades-experimental measurement and prediction by CFD,J.Chem.Eng.Jpn34(2001)613-620.

    [10]T.Berger,M.Fischer,K.Strohmeier,Fluid-structure interaction of stirrers in mixing vessels,Trans.ASME125(2003)440-445.

    [11]T.Berger,K.Strohmeier,Numerical simulation of stirrer oscillations in consideration of fluid-structure-interaction and flexible restraint systems,Proceedings of the ASME Pressure Vessels and Piping Division Conference,AICHE J,Cleveland Ohio,2003 pp.

    [12]K.M.Mohamed,A.G.Gerber,G.A.L.Holloway,Modelling of hydrodynamic forces on a whirling mixing vessel stirrer including fluid-structure interaction,Proceedings of the ASME Pressure Vessels and Piping Division Conference,J.Chem.Eng.Jpn,Prague,Czech Republic,2009 pp.

    [13]G.C.Cudmore,A.G.L.Holloway,A.G.Gerber,Whirlinstability of a rotating impeller in a baffled mixing vessel,Proceedings of the ASME Pressure Vessels and Piping Division Conference,J.Chem.Eng.Jpn,Paris,France,2013(pp.).

    [14]D.E.Shi,Z.Q.Cai,A.Eaglesham,Z.M.Gao,Coupling simulation of lateral fluid structure interaction in a stirred vessel with a Rushton turbine,J.Chem.Eng.Jpn48(2015)147-157.

    [15]S.Karray,Z.Driss,A.Kaffel,H.Kchaou,M.S.Abid,Fluid-structure interaction in a stirred vessel equipped with a Rushton turbine,Int.J.Mech.Appl.2(2012)129-139.

    [16]S.Karray,Z.Driss,A.Kaffel,H.Kchaou,M.S.Abid,Numerical simulation of fluidstructure interaction in a stirred vessel equipped with an anchor impeller,J.Mech.Sci.Technol.25(2011)1749-1760.

    [17]Y.L.Young,Fluid-structure interaction analysis of flexible composite marine propellers,J.Fluids Struct.24(2008)799-818.

    [18]C.Y.Khor,M.Z.Abdullah,F.C.Ani,Study on the fluid/structure interaction at different inlet pressures in molded packaging,Microelectron.Eng.88(2011)3182-3194.

    [19]B.Landvogt,L.Osiecki,P.Patrosz,T.Zawistowski,B.Zylinski,Numerical simulation of fluid-structure interaction in the design process for a new axial hydraulic pump,Prog.Comput.Fluid Dyn.14(2014)31-37.

    [20]C.H.Lim,M.Z.Abdullah,I.A.Azid,M.S.A.Aziz,Experimental and numerical investigation of flow and thermal effects on flexible printed circuit board,Microelectron.Reliab.72(2017)5-17.

    猜你喜歡
    交流平臺無趣感興趣
    生活趣味
    皮質(zhì)褶皺
    更 正
    含能材料(2021年1期)2021-01-10 08:34:34
    交流平臺
    中華奇石(2017年7期)2017-09-18 21:38:25
    交流平臺
    中華奇石(2017年4期)2017-06-23 20:29:56
    交流平臺
    中華奇石(2016年11期)2017-03-16 23:42:34
    你有趣,世界才有趣
    女友·家園(2016年9期)2016-10-11 11:20:01
    這樣的智能廚房臺面,你會感興趣嗎?
    交流平臺
    中華奇石(2015年3期)2015-07-09 18:30:40
    決不做一個無趣的年輕人
    国产精品一区二区三区四区免费观看 | 精品不卡国产一区二区三区| 国产一区二区三区视频了| 3wmmmm亚洲av在线观看| 欧美性猛交黑人性爽| 99在线视频只有这里精品首页| 免费黄网站久久成人精品| 国产精品99久久久久久久久| 此物有八面人人有两片| 舔av片在线| 乱系列少妇在线播放| 精品一区二区三区av网在线观看| 三级国产精品欧美在线观看| 深夜精品福利| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 免费电影在线观看免费观看| 午夜免费激情av| 亚洲第一电影网av| 在线天堂最新版资源| 少妇丰满av| 搡老妇女老女人老熟妇| 精品久久久久久成人av| av福利片在线观看| 国产精品国产三级国产av玫瑰| 色精品久久人妻99蜜桃| av在线老鸭窝| 亚洲第一区二区三区不卡| 他把我摸到了高潮在线观看| 高清毛片免费观看视频网站| 国产色婷婷99| 国产乱人视频| 美女xxoo啪啪120秒动态图| 国产中年淑女户外野战色| 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 国产精品久久久久久av不卡| 国产 一区 欧美 日韩| 亚洲精品一卡2卡三卡4卡5卡| 国产不卡一卡二| av视频在线观看入口| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 精品人妻1区二区| 露出奶头的视频| 午夜激情福利司机影院| 中文资源天堂在线| 欧美bdsm另类| 国产精品久久视频播放| 亚洲在线观看片| 国产极品精品免费视频能看的| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 国产高清视频在线观看网站| 在线免费观看不下载黄p国产 | 亚洲av熟女| 人妻久久中文字幕网| 国内精品一区二区在线观看| 香蕉av资源在线| 久久久久国内视频| 日本一本二区三区精品| 97碰自拍视频| 老司机午夜福利在线观看视频| 18+在线观看网站| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 简卡轻食公司| 91狼人影院| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看| 五月伊人婷婷丁香| 亚洲va在线va天堂va国产| 国产综合懂色| 日本免费一区二区三区高清不卡| 免费观看人在逋| 可以在线观看的亚洲视频| 精品99又大又爽又粗少妇毛片 | 成人无遮挡网站| 亚洲国产精品成人综合色| 少妇人妻精品综合一区二区 | 中文字幕人妻熟人妻熟丝袜美| 久久久精品大字幕| 国产午夜精品论理片| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 亚洲狠狠婷婷综合久久图片| 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 成年女人毛片免费观看观看9| 联通29元200g的流量卡| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| .国产精品久久| 看黄色毛片网站| 亚洲,欧美,日韩| 日本黄大片高清| 国产真实伦视频高清在线观看 | 精品99又大又爽又粗少妇毛片 | 波多野结衣高清作品| 俄罗斯特黄特色一大片| 美女cb高潮喷水在线观看| 亚洲一区高清亚洲精品| 又黄又爽又刺激的免费视频.| 又黄又爽又免费观看的视频| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区在线观看日韩| 欧美精品国产亚洲| 天美传媒精品一区二区| 精品午夜福利在线看| 三级国产精品欧美在线观看| 日本色播在线视频| 女生性感内裤真人,穿戴方法视频| 嫩草影院入口| 在线免费十八禁| 日韩欧美在线二视频| 看黄色毛片网站| 全区人妻精品视频| 搡老岳熟女国产| 精品久久久久久久久av| 久久久久久久精品吃奶| 国产欧美日韩一区二区精品| 97超级碰碰碰精品色视频在线观看| av黄色大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 久久精品91蜜桃| 亚洲欧美日韩无卡精品| 国产一区二区在线av高清观看| www.www免费av| 久久精品国产鲁丝片午夜精品 | 精品乱码久久久久久99久播| xxxwww97欧美| 精品不卡国产一区二区三区| 舔av片在线| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 国产精品自产拍在线观看55亚洲| 女的被弄到高潮叫床怎么办 | 一进一出抽搐动态| 老熟妇乱子伦视频在线观看| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 亚洲自偷自拍三级| 如何舔出高潮| 一区二区三区高清视频在线| 少妇猛男粗大的猛烈进出视频 | 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 日本黄色片子视频| 一级黄色大片毛片| 18禁在线播放成人免费| 观看免费一级毛片| 午夜影院日韩av| 性插视频无遮挡在线免费观看| 天堂网av新在线| 午夜福利在线在线| 俺也久久电影网| 亚洲中文日韩欧美视频| 他把我摸到了高潮在线观看| 麻豆av噜噜一区二区三区| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 亚洲狠狠婷婷综合久久图片| 国产高清三级在线| 婷婷色综合大香蕉| 国产真实乱freesex| 亚洲,欧美,日韩| 一进一出好大好爽视频| 免费看av在线观看网站| 1000部很黄的大片| av视频在线观看入口| 淫妇啪啪啪对白视频| 日本与韩国留学比较| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看| 亚洲av免费在线观看| 很黄的视频免费| 看十八女毛片水多多多| 露出奶头的视频| 国产久久久一区二区三区| 少妇人妻一区二区三区视频| 成人午夜高清在线视频| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 亚洲精品456在线播放app | 免费在线观看成人毛片| 不卡一级毛片| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 免费看a级黄色片| 欧美成人一区二区免费高清观看| 亚洲成av人片在线播放无| 日韩欧美一区二区三区在线观看| 成人鲁丝片一二三区免费| 久久香蕉精品热| 最近视频中文字幕2019在线8| 国产av一区在线观看免费| 国产亚洲精品久久久久久毛片| or卡值多少钱| av黄色大香蕉| 欧美bdsm另类| 桃色一区二区三区在线观看| 悠悠久久av| 一区二区三区四区激情视频 | 在线观看午夜福利视频| xxxwww97欧美| 亚洲av电影不卡..在线观看| 天堂av国产一区二区熟女人妻| 国产一区二区三区视频了| 丰满的人妻完整版| 精品久久久久久久末码| 成熟少妇高潮喷水视频| 久久久久久久久中文| 成人毛片a级毛片在线播放| 国产精品人妻久久久影院| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av天美| 欧美日本视频| 国产三级在线视频| 国国产精品蜜臀av免费| 能在线免费观看的黄片| 在线国产一区二区在线| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 禁无遮挡网站| 老司机深夜福利视频在线观看| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 亚洲专区中文字幕在线| 久久久色成人| 国产老妇女一区| 美女xxoo啪啪120秒动态图| 精品一区二区三区av网在线观看| 日韩中字成人| 色视频www国产| 国产一区二区三区视频了| 91在线精品国自产拍蜜月| 成人欧美大片| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 亚洲自拍偷在线| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 露出奶头的视频| 国产高清三级在线| 国产精品久久久久久精品电影| 久久99热6这里只有精品| 成人特级黄色片久久久久久久| 日本爱情动作片www.在线观看 | 十八禁国产超污无遮挡网站| 免费在线观看日本一区| 亚洲第一区二区三区不卡| 综合色av麻豆| 午夜福利成人在线免费观看| av福利片在线观看| 欧美一区二区国产精品久久精品| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 国国产精品蜜臀av免费| 老司机午夜福利在线观看视频| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| www.色视频.com| 简卡轻食公司| 窝窝影院91人妻| av中文乱码字幕在线| a在线观看视频网站| 看免费成人av毛片| 日本免费a在线| 国产在线男女| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 久久久久久久久大av| 老司机午夜福利在线观看视频| 男女啪啪激烈高潮av片| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 午夜福利在线观看吧| 欧美绝顶高潮抽搐喷水| 免费大片18禁| 搡老熟女国产l中国老女人| 精品久久久久久久久av| 老女人水多毛片| 男人舔女人下体高潮全视频| 色av中文字幕| 欧美日韩精品成人综合77777| 三级毛片av免费| 身体一侧抽搐| 久久午夜亚洲精品久久| 欧美日韩黄片免| 一区二区三区免费毛片| 亚洲最大成人中文| 一夜夜www| 中文字幕av在线有码专区| 精品午夜福利在线看| 又爽又黄a免费视频| avwww免费| 免费看日本二区| 日日啪夜夜撸| 国产视频内射| 人人妻人人澡欧美一区二区| xxxwww97欧美| 亚洲美女黄片视频| 国产69精品久久久久777片| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 在线天堂最新版资源| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 国产成年人精品一区二区| 黄色丝袜av网址大全| 最新中文字幕久久久久| 亚洲人成网站在线播| 深夜a级毛片| 久久精品国产亚洲网站| av中文乱码字幕在线| 三级毛片av免费| ponron亚洲| 在现免费观看毛片| 1000部很黄的大片| 乱系列少妇在线播放| 色哟哟哟哟哟哟| 日韩欧美精品免费久久| 久久香蕉精品热| videossex国产| 国产精品一区二区三区四区免费观看 | 亚洲aⅴ乱码一区二区在线播放| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| av在线亚洲专区| 噜噜噜噜噜久久久久久91| av中文乱码字幕在线| 国产真实乱freesex| 麻豆久久精品国产亚洲av| 亚洲最大成人手机在线| av.在线天堂| www.www免费av| 国产高清不卡午夜福利| 男人的好看免费观看在线视频| 在线观看66精品国产| 欧美黑人巨大hd| 精品福利观看| 97热精品久久久久久| 在线观看66精品国产| 日本 欧美在线| 国产精品国产高清国产av| 久久6这里有精品| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看电影| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 最近中文字幕高清免费大全6 | 国产成人福利小说| 久久久久久久久中文| 男女边吃奶边做爰视频| 黄色丝袜av网址大全| av在线观看视频网站免费| 国内精品久久久久久久电影| 亚洲成人久久性| 两个人视频免费观看高清| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看| 午夜a级毛片| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 中文资源天堂在线| 我的女老师完整版在线观看| 欧美3d第一页| 亚洲成人久久性| videossex国产| 国产精品亚洲美女久久久| 欧美精品国产亚洲| 亚洲av电影不卡..在线观看| 在线观看av片永久免费下载| 久久午夜福利片| 91狼人影院| 国产av不卡久久| 精品人妻一区二区三区麻豆 | 日日摸夜夜添夜夜添av毛片 | 久久久精品大字幕| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 国产高潮美女av| 一进一出抽搐动态| 国产精品无大码| 特大巨黑吊av在线直播| 成人国产麻豆网| 色尼玛亚洲综合影院| 高清日韩中文字幕在线| 啦啦啦观看免费观看视频高清| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 在线观看舔阴道视频| 一夜夜www| 精品福利观看| 亚洲av免费高清在线观看| 欧美一区二区精品小视频在线| 国产成人av教育| 午夜免费成人在线视频| 人妻久久中文字幕网| 黄色女人牲交| 成人综合一区亚洲| 哪里可以看免费的av片| 99热这里只有是精品50| 日本 av在线| 日韩强制内射视频| 久99久视频精品免费| 搞女人的毛片| 国产精品免费一区二区三区在线| 99久国产av精品| 久久精品人妻少妇| 国产人妻一区二区三区在| av天堂中文字幕网| 综合色av麻豆| 亚洲精品456在线播放app | 日本免费a在线| 国产精品野战在线观看| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| av在线观看视频网站免费| 能在线免费观看的黄片| 成人特级黄色片久久久久久久| 丝袜美腿在线中文| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 联通29元200g的流量卡| 色吧在线观看| 日本三级黄在线观看| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 老熟妇仑乱视频hdxx| 美女cb高潮喷水在线观看| 看十八女毛片水多多多| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 九色成人免费人妻av| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| a级一级毛片免费在线观看| 免费大片18禁| 欧美日韩综合久久久久久 | 麻豆成人av在线观看| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av天美| 国产精品一区二区三区四区久久| 欧美日本视频| 午夜福利在线观看吧| 悠悠久久av| 最新在线观看一区二区三区| 久久婷婷人人爽人人干人人爱| 久久久精品大字幕| 免费大片18禁| 日韩中字成人| 内地一区二区视频在线| 天堂动漫精品| 伦精品一区二区三区| 欧美在线一区亚洲| 亚洲中文字幕一区二区三区有码在线看| 51国产日韩欧美| 欧美日韩精品成人综合77777| 国产aⅴ精品一区二区三区波| 国产一区二区亚洲精品在线观看| 天天一区二区日本电影三级| 国产亚洲av嫩草精品影院| 波多野结衣高清无吗| 校园春色视频在线观看| 国产男人的电影天堂91| 欧美+日韩+精品| 久久久久国内视频| 波多野结衣高清无吗| 亚洲久久久久久中文字幕| 国产男人的电影天堂91| 内射极品少妇av片p| 国产成人影院久久av| 成人国产一区最新在线观看| 亚洲男人的天堂狠狠| 国产男人的电影天堂91| 国产免费男女视频| 国产亚洲精品久久久com| av天堂在线播放| 日本在线视频免费播放| 国产一区二区激情短视频| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久com| av中文乱码字幕在线| 别揉我奶头 嗯啊视频| 女生性感内裤真人,穿戴方法视频| 日本熟妇午夜| 最近在线观看免费完整版| 亚洲自拍偷在线| 老师上课跳d突然被开到最大视频| 亚洲无线在线观看| h日本视频在线播放| 简卡轻食公司| avwww免费| 可以在线观看毛片的网站| а√天堂www在线а√下载| 国产一级毛片七仙女欲春2| 色视频www国产| 99久久中文字幕三级久久日本| 免费av观看视频| 亚洲精品影视一区二区三区av| 一进一出抽搐gif免费好疼| 欧美成人免费av一区二区三区| 波多野结衣高清作品| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 三级国产精品欧美在线观看| 91麻豆av在线| 九色成人免费人妻av| 黄色配什么色好看| 精品人妻熟女av久视频| 国内揄拍国产精品人妻在线| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 精品久久久噜噜| 日本a在线网址| 欧美日韩黄片免| 国产v大片淫在线免费观看| 波多野结衣高清作品| 少妇熟女aⅴ在线视频| 久9热在线精品视频| 午夜福利欧美成人| 看片在线看免费视频| 最近最新免费中文字幕在线| 男人舔奶头视频| 级片在线观看| 亚洲av一区综合| 精品一区二区三区视频在线观看免费| 成年女人毛片免费观看观看9| 欧美精品国产亚洲| 国产毛片a区久久久久| 一进一出抽搐动态| 他把我摸到了高潮在线观看| 色5月婷婷丁香| 午夜福利视频1000在线观看| 97人妻精品一区二区三区麻豆| 联通29元200g的流量卡| 男女视频在线观看网站免费| 欧美日韩黄片免| 国内精品久久久久久久电影| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 亚洲精华国产精华精| 又黄又爽又免费观看的视频| or卡值多少钱| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 日韩精品中文字幕看吧| 欧美黑人巨大hd| 中文亚洲av片在线观看爽| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 色av中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 尤物成人国产欧美一区二区三区| 99热只有精品国产| 99精品在免费线老司机午夜| 露出奶头的视频| 天天一区二区日本电影三级| 国产精品久久视频播放| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 亚洲中文字幕一区二区三区有码在线看| 国产成人aa在线观看| 国产一区二区三区av在线 | 国产精品国产三级国产av玫瑰| 天堂av国产一区二区熟女人妻| 欧美zozozo另类| 1000部很黄的大片| 国产单亲对白刺激| 国产免费av片在线观看野外av| 午夜精品一区二区三区免费看| 啪啪无遮挡十八禁网站| 国产av在哪里看| 啦啦啦观看免费观看视频高清| 亚洲精品影视一区二区三区av| 村上凉子中文字幕在线| 联通29元200g的流量卡| videossex国产| 日本色播在线视频| 中文字幕av在线有码专区| 国产亚洲精品久久久com| 一区福利在线观看| 欧美日韩国产亚洲二区| 人妻少妇偷人精品九色| 国产精品免费一区二区三区在线| 欧美激情久久久久久爽电影|