• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation of pyrolysis effects on heat transfer characteristics and flow resistance of n-decane under supercritical pressure

    2018-06-28 11:04:52ZhiTAOXizhuoHUJinqinZHUHongweiWU
    CHINESE JOURNAL OF AERONAUTICS 2018年6期

    Zhi TAO,Xizhuo HU,Jinqin ZHU,*,Hongwei WU

    aNational Key Laboratory of Science and Technology on Aero-thermodynamics,School of Energy and Power Engineering,Beihang University,Beijing 100083,China

    bSchool of Engineering and Technology,University of Hertfordshire,Hat field AL10 9AB,United Kingdom

    1.Introduction

    Scramjet engines suffer from extremely harsh thermal circumstances,and thus thermal protection to the scramjet engine is becoming a major consideration for hypersonic aircraft.Regenerative cooling has been considered as the most effective and practical method.1,2The successful implementation of thisapplication can lead to greatly improved coolant quality on one hand,and the desired atomization for further efficient combustion on the other hand.3

    Hydrocarbon fuel is normally injected into the cooling channel under supercritical pressure.During the regenerative cooling process,the hydrocarbon fuel transfers from subcritical to supercritical state as being continuously heated.As a result,the thermal properties would undergo drastic changes when the fuel temperature approaches its pseudo-critical value.Pyrolysis can make the hydrocarbon fuel absorb an extra amount of heat.Meanwhile,the proportions of the fuel components are changed during pyrolysis.All these factors make the flow and heat transfer phenomenon,particularly the heat transfer characteristics,become extremely complicated.4,5

    Many studies have been devoted to the flow and heat transfer of hydrocarbon fuel under supercritical pressure over the past decades.Hua et al.6numerically studied the effects of inlet pressure,inlet velocity,wall heat flux,and the inlet fluid temperature on the supercritical n-heptane heat transfer processes.It was stated that conventional empirical Gnielinski expression could only be used for supercritical heat transfer predictions of n-heptane under very limited operating conditions.Zhou et al.7experimentally investigated the mechanism of the heat transfer deterioration of RP-3 at supercritical pressure flowing through vertically downward miniature tubes and a reliable RP-3 heat transfer correlation was developed accordingly.Deng et al.8,9conducted an experimental study on RP-3 kerosene in a vertical tube at supercritical pressure.It was found that both the heat flux and flow direction influence the heat transfer characteristics due to buoyancy effect.Urbano and Nasuti10carried out a parametric numerical analysis on heat transfer deterioration of supercritical methane,ethane and propane.The correlations for estimating the conditions for the onset of heat transfer deterioration were achieved.We11numerically investigated the characteristics of flow resistance and heat transfer of RP-3 at supercritical pressure and it was stated that pressure drop characteristics become diverse under different pressures with a supercritical temperature.Liu et al.12performed an experimental study of the convection heat transfer of n-decane at supercritical pressure in vertical tubes.Their results indicated that the buoyancy strongly reduces the heat transfer coefficient in upward flow cases at low inlet Reynolds numbers.

    In recent years,researches on pyrolysis of hydrocarbon fuel under supercritical pressure have attracted wide attention.Yu and Eser13,14measured the product distributions of C10–C14 normal alkanes thermal decomposition under near-critical and supercritical conditions as well as developed a reaction mechanism.Herbinet et al.15improved a previous detailed kinetic model of the thermal decomposition of n-dodecane by measuring the products.Ward et al.16,17experimentally investigated the mild-cracking reactions of n-decane and n-dodecane.A Proportional Product Distribution(PPD)model was developed and validated,which is effective for describing the thermal cracking of hydrocarbon fuel.Zhu et al.18investigated the flow and heat transfer behavior of the thermal cracking n-decane using a combined experimental and numerical method.The results showed that the second-order reactions increase the proportion of the light products,while decrease the proportion of the heavy products.Zhou et al.19measured the heat sinks of ndecane under different pressures andit was found thatthe effect of the pressure on the endothermicity of n-decane shows different behavior with various temperature ranges.Zhao et al.20conducted a numerical simulation for pressure effect on thermal cracking of RP-3.It was observed that increasing pressure would weaken heat transfer when the fuel temperature is above 830 K.Xu and Meng21numerically studied the turbulent heat transfer of RP-3 in a micro cooling tube at a supercritical pressure of 5 MPa.Their results indicated that the variation of both the fluid thermophysical properties and the endothermic fuel pyrolysis has significant impact on the heat transfer process for the high fluid temperature region.

    The n-decane is one of the main components in many kinds of hydrocarbon fuel.16Therefore,a large number of investigations have been carried out on n-decane under supercritical pressure.However,it appears from the previous investigations that rare researches numerically study the flow and heat transfer process of n-decane with the consideration of pyrolysis to obtain a fundamental understanding of the coupled physicochemical processes in the regenerative cooling tube.As such,the present research is aimed to develop a numerical investigation of the pyrolysis effects on the heat transfer and flow resistance characteristics of n-decane under supercritical pressure.The one-step global pyrolytic reaction mechanism consisting of 19 species is adopted to simulate the pyrolysis process of n-decane.The thermophysical and transport properties of the fluid mixture are calculated and incorporated in the numerical simulation.The pyrolysis process,convective heat transfer and flow resistance under different conditions,as well as the interaction among them,are analyzed in detail.

    2.Numerical methods

    2.1.Governing equations and solution method

    The cylindrical coordinate form of the governing equations for species continuum,momentum,energy and the k-ε turbulence equation can be written as

    Continuity equation:

    where ρ is the density,Yiis the mass fraction of species i,Jiis the diffusion flux of species i,and Riis the mass generation rate of species i due to chemical reaction.u and v are the velocities in axial and radial direction,respectively.x and r are the axial and radial coordinate,respectively.

    Momentum equation in the axial and radial directions:where p is the pressure,μ is the viscosity,and g is the acceleration of gravity.

    Energy equation:

    where H is the specific enthalpy,T is the temperature,λ is the thermal conductivity,and S is the energy source term due to chemical reaction.

    k-ε turbulence equation:

    where k is the turbulent kinetic energy,ε is the dissipation rate of k,μtis the eddy viscosity,and Gkis the turbulent production due to buoyancy and shear stress.C1,C2,σkand σεare constants.The governing equations were solved by the Computational Fluid Dynamics(CFD)software FLUENT.The SIMPLEC algorithm was utilized for the pressure field,and the second-order upwind scheme was used to discretize convection terms.The k-ε two-equation model was adopted to simulate the turbulent flow and the ‘enhanced wall treatment” was employed to determine the near wall velocity,which could well predict the convective heat transfer in the tube.18,21,22

    2.2.Chemical kinetics model

    A one-step PPD chemical model was proposed by Ward et al.16based on their experimental measurements.The measured mass fractions of the major decomposed products at different pressures were averaged to obtain a generalreaction mechanism.16

    The pyrolytic reaction rate of n-decane can be calculated as

    Fig.1 Validation of calculated thermophysical properties of n-decane.

    where the rate constant kcis computed using the Arrhenius expression

    The pre-exponential factor Ac=1.6×1015/s,and the activation energy E=263.7 kJ/mol,the universal gas constant R=8.314 J/(mol·K).

    2.3.Thermophysical property calculations

    The calculation of the density ρ,viscosity μ and thermal conductivity λ for n-decane and each pyrolytic product are based on the extended corresponding states principle.Propane is selected as the reference material,whose state equation adopts 32 parameters Modified Benedict-Webb-Rubin(MBWR)equation.23For each species and the mixture,the density is achieved according to the corresponding relation between the species and the reference propane,and the viscosity and the thermal conductivity are derived from the TRAnsport Property Prediction(TRAPP)method,24and the thermal capability cpis calculated by means of deviation function method.

    Fig.1 shows the density,specific thermal capacity,thermal conductivity and viscosity of n-decane under different supercritical pressures calculated by the methods above and the data of National Institute of Standard and Technology(NIST).Good agreement has been reached between the calculated results and the data of NIST.

    2.4.Computational model and mesh

    Fig.2 shows the schematic of the physical model of the flow in a circular tube with the length of L=900 mm and the diameter of d=2 mm.From Fig.2,it demonstrates a 600 mm heated section enforced with a constant and uniform surface heat flux.At the inlet,a adiabatic section with 150 mm in length is included to ensure a fully developed flow,while at the outlet a adiabatic section with 150 mm in length is adopted to avoid the out flow boundary effects.The computational model is modeled in a 2D axial-symmetric domain.The pyrolysis behavior of n-decane is influenced by the pressure and wall heat flux.The operating pressure ranged from 3 to 5 MPa,with different wall heat fluxes from 1.0 to 1.2 MW/m2.The inlet temperature was 400 K,and mass flow rate remained constant at 2 g/s.All these geometric parameters and the boundary conditions are relevant to the practical regenerative cooling applications in the scramjet.Meanwhile,special heat transfer characteristics,such as heat transfer deterioration and enhancement,could be well observed under these parameters.

    Fig.2 Schematic of physical model.

    A mesh independence study was conducted to identify an appropriate mesh density for the aimed calculations.In the current work,a set of computational mesh of 900×40 in the axial and radial directions has been proved to be sufficient,and the radial mesh is exponentially fined in the near-wall region.Under the current computational conditions,y+of the first near-wall node is kept at approximately 1.0,which is required by the ‘enhanced wall treatment”.

    3.Results and discussion

    3.1.Validation of chemical kinetics model and numerical method

    In the current study,the openly published experimental and computational data of Ward et al.16were used to validate the developed chemical kinetics model and numerical method.In accordance with the experimental conditions,the tube length and diameter are 0.375 and 0.5 mm respectively.The inlet temperature Tinis 473 K,and the outlet pressure p is 3.45 MPa.The mass flow rate ranges from 0.25 to 0.75 mL/min,with different maximum wall temperatures 823 and 873 K.The results of the outlet mass fraction of n-decane with maximum wall temperature Tw=873 K and Tw=823 K are shown in Fig.3(a).The variations of the bulk fluid temperature and axial velocity along the tube are shown in Fig.3(b)under the condition of mass flow rate G=0.5 mL/min and Tw=873 K.The outlet mass fraction of n-decane,bulk fluid temperature and axial velocity are defined by Eqs.(10)–(12)respectively.

    where A is the cross-section area of the tube.

    As shown in Fig.3,it can be seen clearly that the comparison between the numerical results and the existing data has a good agreement.It should be pointed out that the secondorder pyrolysis will take place in the actual situation when the n-decane conversion becomes larger.As a result,the ndecane conversion is overestimated by the computation with one global reaction model.16In order to reduce the error that is caused by considering the second-order pyrolysis,the ndecane mass fractions of all the cases in this study are above0.6.

    3.2.Influence factors to pyrolysis behavior

    Fig.4 show the distribution of n-decane conversion along the heated section of the tube under the pressure of 5 and 3 MPa respectively.The heated section is under three different wall heat fluxes of q=1.0,1.1 and 1.2 MW/m2.In the current work,the n-decane conversion is defined as

    Fig.3 Comparison between calculated data and data in Ref.16(Tin=473 K,p=3.45 MPa).

    Fig.4 Distribution of conversion of n-decane under different heat fluxes.

    The location at x/d=0 starts from the beginning of the heated section in the following discussion.As illustrated in Fig.4(a),the n-decane conversion under 5 MPa maintains close to zero before x/d=150,since pyrolysis does not normally occur.After x/d=150,the n-decane conversion starts to increase and increasing rate rises drastically.Fig.4(b)reveals that n-decane conversion begins to increase at x/d=45 under 3 MPa.The increasing rate of n-decane conversion tends to slow down from x/d=100,which is followed by a second rise after x/d=200,as shown in Fig.4(b).The n-decane conversion increase at the beginning of the heated section under 3 MPa becomes more obvious when the wall heat flux goes up.

    Fig.5 shows the detailed distribution of temperature and logarithm reaction kinetic rate in the symmetry plane of the heated section under the heat flux of 1.2 MW/m2.The variation of the temperature near the wall indicates that heat transfer deterioration appears before x/d=100,and it could be due to the drastic variation of the physical properties.10,25As can be seen in Fig.5(b),the wall temperature reaches about 1100 K before x/d=100.As the reaction rate is highly sensitive to the temperature,it is the extremely high pyrolysis rate near the wall,which gives rise to n-decane conversion increase at the beginning of the heated section,as shown in Fig.5(d).As illustrated in Fig.5,heat transfer deterioration disappears and turns to heat transfer enhancement in the segment of 100<x/d<200.The decreased wall temperature reduces the pyrolysis rate near the wall.In addition,pyrolysis would not normally occur with the main stream temperature that is below 750 K.Therefore,the n-decane conversion increases slowly in heat transfer enhanced segment.After x/d=200,the main stream temperature and pyrolysis rate continuously go up,and accordingly,bring about a sharp rise of the ndecane conversion.

    Heat transfer deterioration would be less evident or even disappear with the increasing pressure,as the physical property changes become smaller under a higher pressure.10,25Fig.6 demonstrates the distribution of bulk fluid temperature Tfand wall temperature Twunder 5 and 3 MPa.With a much smaller degree of heat transfer deterioration,the wall temperature under 5 MPa is much lower than that under 3 MPa before x/d=100.This explains the late increase of n-decane conversion under 5 MPa,in contrast with that under 3 MPa.

    It can be also seen from Figs.4(a)and(b)that the n-decane conversion at x/d=100 is about 0.5%under 5 MPa and is about 4%under 3 MPa.After x/d=100,the conversion under 5 MPa increases by 37%and reaches about 37.5%at the end of the heated section,while that under 3 MPa increases by 34.5%and eventually reaches about 38.5%.The fluid temperature reaches 600 K at x/d=100,as illustrated in Fig.6.The density decreases slower under 5 MPa than that under 3 MPa when the temperature is above 600 K,as shown in Fig.1(a).As the smaller density gives rise to the larger acceleration,the residence time of the fluid flowing from x/d=100 to the end of the heated section is shorter under 3 MPa.This accounts for the larger increase of conversion after x/d=100 under 5 MPa.

    Fig.5 Distribution of temperature and logarithm reaction kinetic rate(p=3 MPa,q=1.2 MW/m2).

    3.3.Pyrolysis effects on heat transfer characteristics

    Fig.7 shows the heat transfer performance along the heated section of the tube under the condition of p=3 MPa,q=1.2 MW/m2,and two sets of result,with and without consideration of pyrolysis,are compared.The n-decane conversion results in this case can be referred to from Fig.4(b).Fig.7(a)shows the distribution of the bulk fluid temperature and the wall temperature,and Fig.7(b)shows the distribution of the heat transfer coefficient which is defined as

    As illustrated in Fig.7,at the beginning of the heated section,the increase of the heat transfer coefficient with pyrolysis occurs much earlier than that without pyrolysis.Accordingly,pyrolysis shortens the heat transfer deteriorated segment and lowers the maximum value of the wall temperature.After x/d=150,the results with pyrolysis deviate from the results without pyrolysis,due to the increasing amount of reacted n-decane.The higher heat transfer coefficient and the lower fluid bulk temperature with pyrolysis make the wall temperature much lower than that without pyrolysis.As shown in Fig.7(a),the fluid temperature and wall temperature are reduced by 90 and 110 K at the end of the heated section respectively.

    Fig.6 Distribution of bulk fluid temperature and wall temperature under 5 and 3 MPa(q=1.2 MW/m2).

    Figs.8 and 9 show the detailed distribution of the physical properties and velocity in the symmetry plane of the heated section with and without pyrolysis respectively,under the same condition of Fig.7.As the tube flow is heated up,the temperature near the wall quickly exceeds the pseudo-critical temperature.Because of the descending density and specific thermal capacity,the heat capacity near the wall decreases,which would lower the heat transfer capability and lead to extremely high temperature near the wall.10,25,26After the flow is further heated up,the increasing bulk temperature leads to the growth of velocity.The increased flow velocity causes the recovery of the coolant capability,and consequently enhances the heat transfer process.10,25As revealed by the comparison between Figs.8 and 9,pyrolysis brings about little change in thermal conductivity,and makes the fluid heat capacity lower due to the increasing proportions of the small molecule productions.However,the heat transfer process with pyrolysis is less deteriorated before x/d=150 and much more enhanced after x/d=150,as shown in Fig.7.This indicates that the further fluid acceleration caused by pyrolysis plays the dominant role in convective heat transfer.Figs.8(c)and 9(c)demonstrate the larger velocity with pyrolysis.At the end of the heated section,the flow velocity without pyrolysis is about 13 m/s,while that with pyrolysis reaches 20 m/s.It is the larger velocity with pyrolysis that leads to the higher heat transfer coefficient.

    As revealed from the results under heat fluxes of q=1.0,1.1 MW/m2in Fig.10 and q=1.2 MW/m2in Fig.7,pyrolysis shortens the heat transfer deteriorated segment and lowers the temperature maximum to a larger extent,as the heat flux becomes greater.The temperature maximum without pyrolysis rises from 1051 to 1167 K,while that with pyrolysis rises from 1030 to 1126 K when the heat flux increases from 1.0 to 1.2 MW/m2.After x/d=150,the wall temperature tends to be constant at the end of the heated section as the heat flux becomes greater.It can be explained by the fact that the greater heat flux could lead to larger conversion which restrains the fluid temperature from going up and enhances the convective heat transfer.The temperature reached at the end of the heated section without pyrolysis rises from 1118 to 1230 K,whereas that with pyrolysis rises from 1081 to 1109 K when the heat flux increases from 1.0 to 1.2 MW/m2.From the above analysis,it can be concluded that pyrolysis is conducive for the cooling structure to withstand a higher heat flux under a certain temperature allowed by solid material.

    Fig.7 Heat transfer characteristics with/without pyrolysis(p=3 MPa,q=1.2 MW/m2).

    Fig.8 Distribution of physical properties and velocity with pyrolysis(p=3 MPa,q=1.2 MW/m2).

    3.4.Pyrolysis effects on flow resistance

    It is well known that friction on the tube wall causes pressure drop along the axial direction.The axial pressure gradient can be used to indicate the flow resistance,seen in Eq.(14):

    where f is the resistance coefficient.

    Fig.9 Distribution of physical properties and velocity without pyrolysis(p=3 MPa,q=1.2 MW/m2).

    Fig.11(a)shows the distribution of axial pressure gradient under the condition of p=5 MPa,q=1.2 MW/m2with and without pyrolysis.The pressure gradient without pyrolysis has little variation after x/d=150,while that with pyrolysis begins to increase abruptly.As discussed in detail in the previous study11,the dramatic variation of supercritical fluid density plays the dominant role in pressure drop.As can be clearly seen from Fig.11(b),the further reduced density caused by pyrolysis leads to larger acceleration.The greater radial velocity gradient near the wall enlarges the shear stress and friction at the wall.That explains why pressure gradient increases abruptly and becomes different from that without pyrolysis.

    Fig.11 Distribution of axial pressure gradient,velocity and density with and without pyrolysis(p=5 MPa,q=1.2 MW/m2).

    Fig.12 Distribution of axial pressure gradient,velocity and density with and without pyrolysis(p=3 MPa,q=1.2 MW/m2).

    Fig.12(a)shows the distribution of axial pressure gradient under the condition of p=3 MPa,q=1.2 MW/m2with and without pyrolysis.In contrast with the case under 5 MPa,the differences caused by pyrolysis begin to appear at x/d=45,and pressure gradient with pyrolysis is little greater in the section from x/d=45 to 105.This results from the earlier occurrence of pyrolysis,which leads to a more rapid acceleration in this section,as shown in Fig.12(b).Moreover,the value of pressure gradient under 3 MPa is much greater than that under 5 MPa,attributing to the lower density and higher velocity under 3 MPa.

    4.Conclusions

    In this paper,a numerical investigation of n-decane flow and heat transfer coupled with pyrolysis is conducted.The heat transfer and the pyrolysis process under supercritical pressure,as well as the mechanism of pyrolysis effects on heat transfer characteristics and flow resistance,are discussed and analyzed in detail.Based on the results of the current research,the following specific conclusions may be made:

    (1)The pyrolytic reaction rate is highly sensitive to the temperature,and therefore,the n-decane conversion arises rapidly as the fluid temperature becomes high enough after x/d=150.The n-decane conversion before x/d=150 remains nearly to be 0 under 5 MPa,but has an increment under 3 MPa.This contrast is caused by the heat transfer deterioration under 3 MPa.

    (2)Pyrolysis gives rise to a further decrease in fluid density,which leads to a further acceleration.The enhanced heat transfer and the lower fluid temperature jointly slow the rise of wall temperature,and the value of the wall temperature is much lower than that without pyrolysis.

    (3)Fluid acceleration plays the dominant role in heat transfer enhancement.Pyrolysis in the heat transfer deteriorated segment makes the fluid velocity higher,which results in an earlier rise of the heat transfer coefficient.As a consequence of this,pyrolysis shortens the heat transfer deteriorated segment and lowers the temperature maximum.

    (4)The further acceleration of fluid caused by pyrolysis plays an important role in bringing about much greater flow resistance.Attributing to the higher velocity,pressure gradient increases abruptly as pyrolysis takes place after x/d=150.

    Acknowledgement

    The authors gratefully acknowledge the funding support from Program for National Natural Science Foundation of China(No.51406005).

    1.Edwards T.Liquid fuels and propellants for aerospace propulsion:1903–2003.J Propul Power 2003;19(6):1089–107.

    2.Sobel DR,Spadaccini LJ.Hydrocarbon fuel cooling technologies for advanced propulsion.J Eng Gas Turbines Power 1997;119(2):344–51.

    3.Gascoin N,Abraham G,Gillard P.Synthetic and jet fuels pyrolysis for cooling and combustion applications.J Anal Appl Pyrolysis 2010;89(2):294–306.

    4.Dewitt MJ,Edwards T,Shafer L,Brooks D,Striebich R,Bagley SP.Effect of aviation fuel type on pyrolytic reactivity and deposition propensity under supercritical conditions.Ind Eng Chem Res 2011;50(18):10434–51.

    5.Edwards T.Cracking and deposition behavior of supercritical hydrocarbon aviation fuels.Combust Sci Technol 2006;178(1–3):307–34.

    6.Hua YX,Wang YZ,Meng H.A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube.J Supercrit Fluids 2010;52(1):36–46.

    7.Zhou WX,Bao W,Qin J.Deterioration in heat transfer of endothermal hydrocarbon fuel.J Therm Sci 2011;20(2):173–80.

    8.Deng HW,Zhu K,Xu GQ,Tao Z,Sun JN.Heat transfer characteristics of hydrocarbon fuel at supercritical pressure in vertical circular tubes.J Enhance Heat Transf 2012;27(3):595–603.

    9.Zhang CB,Xu GQ,Gao L,Tao Z,Deng HW,Zhu K.Experimental investigation on heat transfer of a specific fuel(RP-3) flows through downward tubes at supercritical pressure.J Supercrit Fluids 2012;72(9):90–9.

    10.Urbano A,Nasuti F.Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows.Int J Heat Mass Transf 2013;65(5):599–609.

    11.Zhu JQ,Tao Z,Deng HW,Wang K,Yu X.Numerical investigation of heat transfer characteristics and flow resistance of kerosene RP-3 under supercritical pressure.Int J Heat Mass Transf 2015;91:330–41.

    12.Liu B,Zhu YH,Yan JJ,Lei YT,Zhang B,Jiang PX.Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes.Int J Heat Mass Transf 2015;91:734–46.

    13.Yu J,Eser S.Thermal decomposition of C10–C14 normal alkanes in nearcritical and supercritical regions:product distributions and reaction mechanisms.Ind Eng Chem Res 1997;36(3):574–85.

    14.Yu J,Eser S.Kinetics of supercritical-phase thermal decomposition of C10–C14 normal alkanes and their mixtures.Ind Eng Chem Res 1997;36(3):585–91.

    15.Herbinet O,Marquaire PM,Battin-Leclerc F,Fournet R.Thermal decomposition of n-dodecane:experiments and kinetic modeling.J Anal Appl Pyrolsis 2007;78(2):419–29.

    16.Ward TA,Ervin JS,Striebich RC,Zabarnick S.Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions.J Propul Power 2004;20(3):394–402.

    17.Ward TA,Ervin JS,Zabarnick S,Shafer L.Pressure effects on flowing mildly-cracked n-decane.J Propul Power 2005;21(2):344–55.

    18.Zhu YH,Liu B,Jiang PX.Experimental and numerical investigation on n-decane thermal cracking at supercritical pressures in a vertical tube.Energy Fuels 2013;28(1):466–74.

    19.Zhou WX,Jia ZJ,Qin J,Bao W,Yu B.Experimental study on effect of pressure on heat sink of n-decane.Chem Eng J 2014;243(4):127–36.

    20.Zhao GZ,Song WY,Zhang RL.Effect of pressure on thermal cracking of china RP-3 aviation kerosene under supercritical conditions.Int J Heat Mass Transf 2015;84:625–32.

    21.Xu KK,Meng H.Modeling and simulation of supercritical pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions.Energy Fuels 2015;29(7):4137–49.

    22.Ruan B,Meng H,Yang V.Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures.Int J Heat Mass Transf 2014;69(2):455–63.

    23.Younglove BA,Ely JF.Thermophysical properties of fluids.II.Methane,ethane,propane,isobutane,and normal butane.J Phys Chem Ref Data 1987;16(4):577–798.

    24.Huber ML.Transport properties of fluids,the correlation,prediction and estimation.Cambridge:Cambridge University Press;1996.p.497–501.

    25.Urbano A,Nasuti F.Onset of heat transfer deterioration in supercritical methane flow channels.J Thermophys Heat Transf 2013;27(27):298–308.

    26.Wang YZ,Hua YX,Meng H.Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane.J Thermophys Heat Transf 2010;24(3):490–500.

    久久这里只有精品中国| 一级毛片 在线播放| 欧美日韩在线观看h| 天天躁夜夜躁狠狠久久av| 欧美区成人在线视频| 免费无遮挡裸体视频| 中文资源天堂在线| 亚洲在久久综合| 国产成人freesex在线| 亚洲av中文av极速乱| 久久99热这里只有精品18| 久久6这里有精品| 最近的中文字幕免费完整| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| 美女国产视频在线观看| 亚洲va在线va天堂va国产| 又爽又黄无遮挡网站| 久久久久久久亚洲中文字幕| 日本三级黄在线观看| 内地一区二区视频在线| 秋霞在线观看毛片| 丝袜喷水一区| 成人亚洲精品一区在线观看 | 激情 狠狠 欧美| 欧美精品国产亚洲| 性插视频无遮挡在线免费观看| 乱系列少妇在线播放| 国产精品伦人一区二区| 如何舔出高潮| 亚洲成人久久爱视频| 好男人在线观看高清免费视频| 久久6这里有精品| 男人和女人高潮做爰伦理| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜爱| 久久精品久久精品一区二区三区| 免费大片18禁| 久久99热6这里只有精品| 国产日韩欧美在线精品| 最近中文字幕2019免费版| 亚洲真实伦在线观看| 亚洲国产欧美人成| 99热全是精品| kizo精华| 久久久午夜欧美精品| xxx大片免费视频| 精品一区在线观看国产| 一级毛片电影观看| av一本久久久久| 久久久色成人| 夜夜爽夜夜爽视频| 麻豆久久精品国产亚洲av| 97超视频在线观看视频| 久久久久精品性色| 男女那种视频在线观看| 日本免费在线观看一区| 国产黄色免费在线视频| 国产黄频视频在线观看| 亚洲国产欧美在线一区| 最近手机中文字幕大全| av线在线观看网站| 国产亚洲av片在线观看秒播厂 | 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 午夜精品在线福利| 国产色婷婷99| 肉色欧美久久久久久久蜜桃 | 免费观看的影片在线观看| 在线观看人妻少妇| 在线天堂最新版资源| 99热网站在线观看| 春色校园在线视频观看| 国产在线男女| 免费看a级黄色片| 深爱激情五月婷婷| 国产一级毛片在线| 国产成人精品福利久久| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 国产 一区精品| 超碰av人人做人人爽久久| 成人av在线播放网站| 久久久精品免费免费高清| 免费观看av网站的网址| xxx大片免费视频| 五月天丁香电影| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| eeuss影院久久| 六月丁香七月| 国产综合懂色| 日本黄大片高清| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 精品国内亚洲2022精品成人| 只有这里有精品99| 两个人视频免费观看高清| 久久久久久久大尺度免费视频| 大又大粗又爽又黄少妇毛片口| 成人毛片60女人毛片免费| 免费在线观看成人毛片| 精品久久久精品久久久| 在线 av 中文字幕| 三级国产精品片| 成人亚洲精品av一区二区| 国产综合懂色| 欧美97在线视频| 日韩成人伦理影院| 插逼视频在线观看| 26uuu在线亚洲综合色| 成人午夜高清在线视频| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| xxx大片免费视频| 日韩亚洲欧美综合| 91精品一卡2卡3卡4卡| 日韩av在线免费看完整版不卡| 一级毛片电影观看| 成年免费大片在线观看| 亚洲色图av天堂| 亚洲精品乱久久久久久| 人妻系列 视频| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 卡戴珊不雅视频在线播放| 成人二区视频| 国产成人freesex在线| 精品久久久久久久久亚洲| 亚洲aⅴ乱码一区二区在线播放| 欧美成人午夜免费资源| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 亚洲电影在线观看av| 久久久国产一区二区| av女优亚洲男人天堂| 国产在线男女| 黄片wwwwww| 一区二区三区乱码不卡18| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 久久这里有精品视频免费| 国产三级在线视频| 亚洲四区av| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| 卡戴珊不雅视频在线播放| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 一区二区三区乱码不卡18| 秋霞伦理黄片| 国产精品av视频在线免费观看| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久av不卡| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕 | 一级爰片在线观看| 中文字幕av成人在线电影| 嫩草影院精品99| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 久久久久久国产a免费观看| 国产精品伦人一区二区| 国产精品99久久久久久久久| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜 | av线在线观看网站| 亚洲精品,欧美精品| av卡一久久| 午夜久久久久精精品| 国产乱人视频| 亚洲国产最新在线播放| 伦精品一区二区三区| 国产精品一及| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 天美传媒精品一区二区| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 黑人高潮一二区| 综合色丁香网| 国产久久久一区二区三区| 国产精品一区二区性色av| 久久综合国产亚洲精品| 欧美潮喷喷水| 久久久成人免费电影| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 青青草视频在线视频观看| 国产91av在线免费观看| av网站免费在线观看视频 | 亚洲欧美成人精品一区二区| 婷婷六月久久综合丁香| 国产精品一区www在线观看| 看免费成人av毛片| 久久久久久久午夜电影| 国产精品麻豆人妻色哟哟久久 | 直男gayav资源| 亚洲精品乱码久久久久久按摩| 毛片一级片免费看久久久久| 午夜视频国产福利| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 成人综合一区亚洲| 国产不卡一卡二| 久久久久网色| 免费看光身美女| 亚洲精品成人久久久久久| 一级毛片电影观看| 男插女下体视频免费在线播放| 午夜精品国产一区二区电影 | 熟妇人妻不卡中文字幕| 九草在线视频观看| 日本wwww免费看| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 亚洲在线自拍视频| 又大又黄又爽视频免费| 久久久久性生活片| 纵有疾风起免费观看全集完整版 | 久久久精品免费免费高清| 精品酒店卫生间| 久久6这里有精品| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 色播亚洲综合网| 国产精品一区二区在线观看99 | 欧美变态另类bdsm刘玥| 国产成人freesex在线| 午夜福利高清视频| 亚洲av.av天堂| 搡老妇女老女人老熟妇| 免费黄色在线免费观看| 国产亚洲av片在线观看秒播厂 | 久久精品夜夜夜夜夜久久蜜豆| 男女视频在线观看网站免费| videos熟女内射| 国产精品久久久久久久电影| 久久这里只有精品中国| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版 | 特级一级黄色大片| or卡值多少钱| 国产大屁股一区二区在线视频| 免费看a级黄色片| 好男人在线观看高清免费视频| 亚洲色图av天堂| 青春草亚洲视频在线观看| 丝袜喷水一区| 亚洲国产精品专区欧美| 亚洲久久久久久中文字幕| 国产黄色免费在线视频| 亚洲欧美中文字幕日韩二区| 寂寞人妻少妇视频99o| 一二三四中文在线观看免费高清| 日韩国内少妇激情av| 国产黄a三级三级三级人| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 国产精品蜜桃在线观看| 久久99蜜桃精品久久| 亚洲欧美中文字幕日韩二区| 精品一区二区三区人妻视频| 97热精品久久久久久| 国产午夜精品论理片| 有码 亚洲区| 精品久久久久久久久久久久久| 欧美日韩在线观看h| 国产美女午夜福利| 欧美精品一区二区大全| 六月丁香七月| 成人亚洲精品一区在线观看 | 少妇被粗大猛烈的视频| 久久草成人影院| 国产黄色免费在线视频| 午夜激情欧美在线| 国产午夜福利久久久久久| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| av一本久久久久| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 午夜精品国产一区二区电影 | 日韩大片免费观看网站| 天堂影院成人在线观看| 久久久久久伊人网av| 欧美日韩亚洲高清精品| 日韩欧美精品v在线| 国产精品一区www在线观看| 欧美三级亚洲精品| 一本久久精品| 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| 国产伦一二天堂av在线观看| 一级二级三级毛片免费看| 成人一区二区视频在线观看| 九色成人免费人妻av| 日本一本二区三区精品| 美女黄网站色视频| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 网址你懂的国产日韩在线| 一夜夜www| 亚洲无线观看免费| 青春草亚洲视频在线观看| 国产激情偷乱视频一区二区| 色综合站精品国产| 人人妻人人看人人澡| 高清av免费在线| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 亚洲av在线观看美女高潮| 久久精品国产自在天天线| 国产单亲对白刺激| 国产三级在线视频| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 少妇人妻精品综合一区二区| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| av福利片在线观看| 成人无遮挡网站| 岛国毛片在线播放| 毛片一级片免费看久久久久| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费| 在线a可以看的网站| 91精品伊人久久大香线蕉| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| 99re6热这里在线精品视频| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 久久99热这里只频精品6学生| 色5月婷婷丁香| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 精品久久久久久久久久久久久| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 亚洲欧美成人综合另类久久久| 99热这里只有精品一区| 免费av毛片视频| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 天堂网av新在线| 国产精品一区二区三区四区久久| 午夜免费观看性视频| 亚洲欧洲日产国产| 波多野结衣巨乳人妻| av一本久久久久| 国产成人午夜福利电影在线观看| 免费看美女性在线毛片视频| 免费大片黄手机在线观看| 成人午夜高清在线视频| av天堂中文字幕网| 99久久精品国产国产毛片| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 国产免费一级a男人的天堂| 午夜精品在线福利| 国产爱豆传媒在线观看| 午夜激情欧美在线| 国产一区二区三区av在线| 国产一级毛片在线| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 美女黄网站色视频| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| 深爱激情五月婷婷| 国产毛片a区久久久久| 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| 中文欧美无线码| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 99热这里只有精品一区| 国产精品国产三级国产av玫瑰| 国产成人a区在线观看| 国产亚洲91精品色在线| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 极品少妇高潮喷水抽搐| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品 | 免费少妇av软件| 777米奇影视久久| 精品国内亚洲2022精品成人| 最近视频中文字幕2019在线8| 欧美+日韩+精品| 亚洲av一区综合| 日韩欧美一区视频在线观看 | 国产精品一区二区在线观看99 | 三级经典国产精品| 婷婷色综合www| 1000部很黄的大片| 国产视频内射| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久 | 久久鲁丝午夜福利片| 国精品久久久久久国模美| 看十八女毛片水多多多| 亚洲四区av| 久久久亚洲精品成人影院| 久久久久性生活片| 在线观看一区二区三区| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 午夜免费男女啪啪视频观看| 国产综合精华液| 伦理电影大哥的女人| 日韩欧美精品免费久久| 国产永久视频网站| 亚洲精品中文字幕在线视频 | 国产单亲对白刺激| 亚洲国产精品专区欧美| 成年女人在线观看亚洲视频 | 成人二区视频| 国产成人91sexporn| 精品久久久噜噜| 男女边吃奶边做爰视频| 高清视频免费观看一区二区 | 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 免费观看a级毛片全部| 伊人久久国产一区二区| 有码 亚洲区| 国产午夜精品论理片| 国产免费视频播放在线视频 | 成年免费大片在线观看| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 一个人免费在线观看电影| 成年版毛片免费区| 久久久久网色| 国产一区二区三区av在线| 直男gayav资源| 亚洲熟妇中文字幕五十中出| 亚洲性久久影院| 嫩草影院入口| ponron亚洲| 一级av片app| 精品一区二区免费观看| 日韩欧美一区视频在线观看 | a级毛色黄片| 1000部很黄的大片| 啦啦啦啦在线视频资源| 亚洲av男天堂| 国产激情偷乱视频一区二区| 免费观看性生交大片5| 大陆偷拍与自拍| 五月天丁香电影| 2021天堂中文幕一二区在线观| 国产91av在线免费观看| 又粗又硬又长又爽又黄的视频| 中文字幕av在线有码专区| 搡老妇女老女人老熟妇| av.在线天堂| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 中文字幕人妻熟人妻熟丝袜美| 久久久久久国产a免费观看| 欧美人与善性xxx| 日韩欧美精品免费久久| 亚洲av中文av极速乱| 国产91av在线免费观看| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看 | 亚洲国产精品成人综合色| 亚洲欧美一区二区三区黑人 | 国产精品国产三级国产av玫瑰| 成人午夜精彩视频在线观看| 69av精品久久久久久| 国产一级毛片七仙女欲春2| 久久99热6这里只有精品| 久久久成人免费电影| a级一级毛片免费在线观看| av在线播放精品| 国产免费福利视频在线观看| 婷婷色av中文字幕| 日韩三级伦理在线观看| 特级一级黄色大片| 国产亚洲精品久久久com| 日日啪夜夜撸| 精品人妻一区二区三区麻豆| 成人特级av手机在线观看| 久久久久久久久久久免费av| 久久久久精品性色| 欧美日韩精品成人综合77777| 观看免费一级毛片| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三| 亚洲精品第二区| 在线观看一区二区三区| 国产欧美日韩精品一区二区| 欧美激情在线99| 日韩欧美 国产精品| 欧美日韩亚洲高清精品| 一边亲一边摸免费视频| 天天一区二区日本电影三级| 国产老妇伦熟女老妇高清| 亚洲熟女精品中文字幕| 欧美一级a爱片免费观看看| 少妇裸体淫交视频免费看高清| 国产老妇女一区| 久久精品国产亚洲网站| 我的女老师完整版在线观看| 日韩在线高清观看一区二区三区| 最后的刺客免费高清国语| 免费高清在线观看视频在线观看| 亚洲天堂国产精品一区在线| 偷拍熟女少妇极品色| 肉色欧美久久久久久久蜜桃 | 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 欧美日韩在线观看h| 亚洲精品国产av蜜桃| 一级a做视频免费观看| 伦理电影大哥的女人| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆| 欧美潮喷喷水| 亚洲精品影视一区二区三区av| 男女啪啪激烈高潮av片| 国产久久久一区二区三区| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 韩国av在线不卡| 亚洲伊人久久精品综合| 亚洲无线观看免费| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 欧美成人a在线观看| 午夜福利在线在线| 丝袜喷水一区| 91在线精品国自产拍蜜月| 欧美精品一区二区大全| av线在线观看网站| 青春草亚洲视频在线观看| 欧美三级亚洲精品| 亚洲成人一二三区av| 又粗又硬又长又爽又黄的视频| 九草在线视频观看| 久久精品夜色国产| 免费电影在线观看免费观看| 国产探花极品一区二区| 久久久久网色| 搡女人真爽免费视频火全软件| 久久久久久久久中文| 日日撸夜夜添| 国产精品熟女久久久久浪| 欧美区成人在线视频| 日韩亚洲欧美综合| 九草在线视频观看| 最后的刺客免费高清国语| ponron亚洲| 成年免费大片在线观看| 91av网一区二区| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 亚洲内射少妇av| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 日韩制服骚丝袜av| 超碰av人人做人人爽久久| 少妇熟女aⅴ在线视频| 69av精品久久久久久| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 亚洲精品久久久久久婷婷小说| 亚洲美女搞黄在线观看| 一级片'在线观看视频| 可以在线观看毛片的网站| 一边亲一边摸免费视频| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 免费观看无遮挡的男女| 日本免费在线观看一区| 成人av在线播放网站| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 国产精品一及| 看黄色毛片网站| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆 | 亚洲国产成人一精品久久久| 在线免费观看的www视频| 波多野结衣巨乳人妻| 欧美激情在线99|