• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces

    2018-06-28 11:05:34XunLIChunmingGUANPengZHAO
    CHINESE JOURNAL OF AERONAUTICS 2018年6期

    Xun LI,Chunming GUAN,Peng ZHAO

    School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China

    1.Introduction

    Different machining processes and conditions have direct influences on machined surface integrity,which lead to a significantly different fatigue performance of a workpiece.It is very important for load-bearing structures in the field of aviation because fatigue fracture,accounting for over 80%of loadbearing failures,is significantly influenced by the final surface integrity of parts.1,2Therefore,scholars have focused on this research field and obtained many positive achievements.Ulutan and Ozel3provided a comprehensive overview of machining-induced surface integrity in titanium and nickel alloys,which gave a theoretical reference for further research on the influences of processing technologies and parameters on surface integrity.CIRP’s collaborative working group on surface integrity has studied machined surface integrity utilizing five different machining processes with dozens of machining conditions.4The research achievements indicate that different machining processes will lead to a great difference in surface integrity indicators,such as surface roughness,surface micro topography,surface hardening,and residual stress,because of different processing mechanisms.Therefore,for a given material,how to select the machining process and parameters properly is extremely important to improve the fatigue properties of workpieces.

    Surface roughness is an important index to describe machined surface micro topography.Compared with other surface integrity indices,it also has a crucial influence on the fatigue life of a workpiece.5Many scholars conducted positive research on the influence of surface roughness on fatigue life according to fracture mechanics,surface local micro-stress concentration,and some other theories.Suraratchai et al.6studied the effect of surface roughness on the fatigue life of aluminum alloy specimens.Itoga et al.7analyzed the influence of different surface roughness on the rotary bending fatigue life of high strength steel.Yao et al.8presented the effects of high-speed milling parameters on the surface topography and fatigue behavior of Ti1023 workpieces.The results have shown that predicting the fatigue life of specimens based on the surface stress concentration factor is more accurate than that based on machined surface roughness.

    From the previous research achievements utilizing the same machining process,it can be concluded that the higher the surface roughness values are,the deeper the micro notches on the machined surface are,and the more serious the local microstress concentration is.It will lead to a negative influence on the fatigue performance of a workpiece.

    GH4169,as one of the most commonly used nickel-based superalloys,is widely used in manufacturing aero-engine blisks,blades,drive shafts,and other load-bearing structures.3,9GH4169 is machined mainly by numerical control(NC)milling process at present.However,excellent mechanical and thermal properties also lead to poor machinability,which limits further improvement on machining precision and surface integrity because of fast tool wear,cutting chatter,and high cutting force.10

    It has been indicated that high-speed grinding utilizing super abrasive wheels is an effective process on machining GH4169 to improve precision,surface quality,and machining efficiency.11,12At the same time,the fatigue strengths of workpieces can be increased by cubic boron nitride(CBN)grinding process because the finish surface integrity is improved.13,14Therefore,many scholars have conducted positive research on high-speed grinding because of its high flexibility and machined surface quality,especially in manufacturing the key parts of aero-engines,such as blisks and blades.15,16

    However,the influence law and action mechanism of surface roughness on the fatigue behavior of a workpiece with different machining processes have not been studied systematically and deeply.According to the experimental results of milling and grinding,surface roughness and micro topography generated by different machining parameters are comprehensively developed.

    Then,based on the action mechanism of the surface microstress concentration factor on the fatigue performance of a specimen,the influences of different machining processes on the fatigue behavior of the specimen are comparatively analyzed.From the results of fatigue life tests,it can be obtained that the fatigue behavior decreases with an increase ofmonotonically utilizing different machining processes instead of Raor Rz.

    2.Comparative analysis of machined surface roughness between milling and grinding

    The surface roughness and micro topography of side milling are studied and compared with those of high-speed grinding utilizing super abrasive wheels in the following experimental conditions.

    Material:Nickel-based superalloy GH4169(solution treatment and aging),hardness is about HV423,and the dimensions of the workpiece are 12 mm×20 mm×50 mm.

    Cutter:?10 mm AlTiN coated carbide cutters with four teeth are utilized in all side milling experiments,as shown in Fig.1.

    Grinding wheel:The structure of a barrel wheel is shown in Fig.2(a),where D is the maximum diameter of the wheel,Reis the radius of the circular arc generatrix,Leis the height of the barrel,and d is the diameter of the wheel shaft.A 300#CBN electroplated wheel(EP wheel)and a 300#CBN resin-bonded wheel(RB wheel)are shown in Fig.2(b)and(c),respectively,the structure parameters of which are D=34 mm,Re=3 mm,Le=4 mm, d=8 mm and D=42 mm, Re=3 mm,Le=3.5 mm,d=8 mm,respectively.The plunge grinding process is utilized,as shown in Fig.3.

    Utilizing grinding and milling respectively,test workpieces are machined by different machining parameters.According to previous research achievements,the machined surface roughness parallel to the maximum principal stress direction has a much greater influence on the fatigue property than that perpendicular to the maximum principal stress direction.8,17Therefore,the influence mechanism of the surface roughness parallel to the maximum principal stress direction on the fatigue property of a workpiece should be focused and developed.From Figs.1 and 3,the feed direction of the milling cutter and wheel is parallel to the load direction,which is parallel to the maximum principal stress under uniaxial tensile load.Therefore,the surface roughness along the feed direction is measured.Meanwhile,the micro-hardness rate NHVand residual stress σHof the machined surface are also obtained.The results are shown in Table 1 and Fig.4.The x-axis of the curve is the measure length L and the y-axis is the machined surface roughness.Parameters including cutting speed vs,cutting depth ae,feed rate per tooth fz,feed speed vf,and grinding width w are also listed below.

    Fig.1 Schematic diagram of side milling.

    Fig.2 Structure and grinding wheels.

    Fig.3 Schematic diagram of plunge grinding.

    Fig.4 Surface roughness curves of milling and grinding.

    From the above experiment results,it can be known that the surface roughness after milling is about 0.8 μm while that after grinding is about 0.3 μm under the experimental conditions.Just analyzing the value of Ra,the surface roughness machined by milling is two times or more than that machined by grinding.Meanwhile,the value of Rzmachined by milling is one to three times than that machined by grinding.

    Based on the research results of Neuber18and Arola and Williams,19the micro-stress concentration factor Kthas asignificant influence on the fatigue property of a specimen,which can be expressed as:

    Table 1 Machining parameters of milling&grinding and machined surface integrity.

    where ρ is the effective pro file valley radius of the surface texture,n represents the stress state(n=1 for shear and n=2 for tension),and λ refers to the ratio between the spacing and depth of the asperities.

    Actually,it is very difficult to obtain an effective value of ρ.In order to simplify this question,the difference of ρ is usually ignored when analyzing the influence of machined surface roughness on the fatigue behavior of a specimen,even utilizing different machining processes.19,20Taking Fig.4 as an example,the curves of surface roughness machined by milling and grinding are significantly different.Although Rzof surface roughness machined by milling is slightly higher than that by grinding,the corresponding ρ of milling surface is much higher than that of grinding surface,which has a great influence on Ktand cannot be ignored,especially for comparative analysis of different processes.

    Based on the formation mechanism and characteristics of surface roughness measurement curves,a surface roughness curve can be decoupled into two parts.One part is the kinematic surface roughness curve influenced by the machining process,parameters,and geometry of the cutting tool or wheel.By subtracting the kinematic part from the measurement curve,the other part,the stochastic surface roughness curve,is achieved,which is influenced by the defects of the cutting tool edge or abrasive grains,built-up edges(BUE),cracks,high-frequency vibration,and so on.The decoupling analysis steps are listed as follows.

    Table 2 Decoupled results of surface roughness values after milling.

    (1)Transform the measure length axis of the surface roughness measurement curve from ‘L/mm” to ‘t/s” through the velocity of 1 mm/s.

    (2)According to the machining process,parameters,and geometry of the cutting tool or grinding wheel,the period T of the kinematic surface roughness curve can be obtained.Therefore,the corresponding frequency F influenced by machining conditions can be expressed as 1/T.Taking Fig.1 as an example,T=fz/v and F=v/fz,where fzis the feed per tooth of side milling,and v=1 mm/s.

    (3)Utilizing the calculated frequency F,the kinematic surface roughness curve can be obtained by low-pass filtering the transformed time-domain curve of surface roughness.Then,by subtracting the kinematic part from the measurement curve,the stochastic surface roughness curve and its maximum heightcan be obtained.Taking Fig.4(c)and(d)as examples,the kinematic surface roughness curve in the feed direction is a horizontal straight line,and its maximum heightis zero;therefore,the maximum height of the stochastic surface roughness curveis equal to Rz.

    Utilizing the above decoupling method,the decoupling curves of surface roughness curves after milling or grinding and their maximum heights are shown in Tables 2,3,and Fig.5.

    According to the experimental results above,it can be obtained that when the milling parameter fzincreases from 0.08 mm/z to 0.12 mm/z,Raand Rzwill increase by 41.8%and 41.2%,respectively.increases by 32.4%,butdecreases by 26.5%with an increase of fzfrom 0.08 mm/z to 0.12 mm/z.It shows thatis influenced by the wear of the cutter edge and so on instead of cutting parameters.Meanwhile,it can be found that+>Rz.When the measured surface roughness curve is decoupled into a kinematic curve and a stochastic curve,the highest and lowest points of each curve are usually at different positions,so the maximum height of the measured curve is lower than the summation of the maximum heights of the kinematic and stochastic curves.

    A surface machined by grinding is formed by small and irregularly distributed abrasive grains.From Fig.3,it can be obtained that the geometry of the grinding wheel and grinding parameters have no effect on the kinematic surface roughness curve and its maximum height=0,because the kinematic surface roughness curve in the feed direction is a straight line in theory.

    Therefore,the maximum height of the stochastic surface roughness curveis equal to Rzunder the grindingexperimental conditions,which will lead to a more serious micro-stress concentration and has a more negative influence on the fatigue property of a specimen even the values of Rzformed by grinding and milling are substantially equal.The decoupled results of surface roughness curves after grinding are shown in Table 3.

    Table 3 Decoupled results of surface roughness values after grinding.

    Fig.5 Decoupled results of surface roughness curves after milling.

    Combined with the current research results,it can be known that the formation mechanism and characteristics of surface roughness utilizing different machining processes and parameters should be taken under consideration when studying the influence mechanism of machined surface roughness on the fatigue life of a specimen.The simple conclusion that the higher the surface roughness value is,the more serious the micro-stress concentration is,and the worse the fatigue property is,is not comprehensive.

    3.Influence of machined surface roughness on the fatigue life of a specimen

    In order to verify the analysis above,machining experiments on the GH4169 material are carried out.Specimens with an approximately circular cross-section are machined utilizing milling or grinding,and fatigue tests are also conducted.

    The machining parameters are shown in Table 1.The specimen rotates 6°during the interval of every two feed paths shown in Figs.6 and 7.

    Fig.6 Schematic diagram of the side milling process.

    Fig.7 Schematic diagram of the grinding process.

    The cross-section of the specimen is a regular 60-sided polygon of which the side length is approximate 0.26 mm(the effect of the axial cutting depth on surface integrity can be ignored when utilizing side milling).The acute angle of every two adjacent sides is 6°and the local stress concentration is negligible,so the effect of sharp corners on the fatigue life of the specimen can be ignored.

    All fatigue experiments are carried out on a GPS100 highfrequency digital tension-compression fatigue testing machine as shown in Fig.8.

    The maximum tensile load σmaxis set to 1055 MPa and the cyclic stress ratio R is 0.1 based on the ultimate strength of GH4169 material.The clamping of fatigue specimens and their failure mode are shown in Fig.9,and the experimental results are shown in Table 4.

    Fig.8 Fatigue life testing machine.

    Fig.9 Clamping and failure mode of the fatigue specimens.

    According to Table 4 above,the relationship between the surface roughness Rzand the specimen’s fatigue life is not obvious.Utilizing milling,the fatigue life of a specimen increases with an increase of Rz.In contrast,utilizing grinding,the fatigue life of a specimen decreases with an increase of Rz.Meanwhile,the comparison results between grinding and milling also show that the fatigue life of a specimen machined by milling is two to three times longer than that of grinding,despite of the fact that Rzof the former is one to three times higher than that of the latter.

    Combining the results of fatigue life tests and decoupling analysis of surface roughness curves,it can be obtained that the maximum height of the stochastic surface roughness curvehas a significant influence on the fatigue life.The fatigue life of a specimen decreases with an increase ofmonotonically,as shown in Fig.10.

    According to the results of GH4169 surface integrity tests,the amplitude of the residual compressive stress utilizing grinding is much higher than that utilizing milling.At the same time,the micro-hardness utilizing grinding is also slightly higher.Both of them have a positive influence on improving the fatigue property of a specimen.These results show clearly that the maximum height of the stochastic surface roughness curve is the main factor that influences the fatigue life of a GH4169 specimen,even utilizing different machining processes.The conclusion that the fatigue performance reduces with an increase of surface roughness is not suitable when utilizing different machining processes.In order to get essential reasons of surface roughness affecting the fatigue performance of a specimen,it is necessary to analyze the machined surface based on the formation mechanisms and characteristics of different processes.

    Fig.10 Fatigue life test results of GH4169 and the maximum height of the stochastic surface roughness

    4.Conclusions

    (1)Under the same experimental conditions,the fatigue behaviors of GH4169 specimens machined by milling and grinding do not reduce or increase with an increase of the surface roughness value Raor Rz.The characteristics of surface roughness curves and the formation mechanism of surface micro topography utilizing different processes play a very important role in the fatigue property of a workpiece.

    (2)Based on frequency spectrum analysis, amachined surface

    roughness curve can be decoupled into a kinematic surface roughness curve and a stochastic surface roughness curve,the maximum heights of which are expressed asandrespectively.The fatigue behavior of GH4169 specimens decreases with an increase ofmonotonically,evenutilizing different machining processes.

    (3)Surface residual stress and surface hardening have a positive effect on the fatigue behavior of GH4169 specimens,but the maximum height of the stochastic surface roughness curve is the most sensitive to the fatigue life of specimens.

    Table 4 Results of fatigue life tests of GH4169 specimens.

    Acknowledgements

    The authors would like to thank the anonymous reviewers for their critical and constructive review of the manuscript.This study was supported by the Aeronautical Science Foundation of China(No.2016ZE51039).

    1.Mu ZT,Zeng BY,Jin P,Hong J,Zhang DF.Fatigue of helicopter structures.Beijing:National Defense Industry Press;2009.p.14–5[Chinese].

    2.Tao CH,Zhong PD,Wang ZR,Nie JX.Failure analysis and prevention for rotor in aero-engine.Beijing:National Defense Industry Press;2008.p.6–7[Chinese].

    3.Ulutan D,Ozel T.Machining induced surface integrity in titanium and nickel alloys:a review.Int J Mach Tools Manuf 2011;51(3):250–80.

    4.Jawahir IS,Brinksmeier E,M’Saoubi R,Aspinwal DK,OUteiro D,Meyer D,et al.Surface integrity in material removal processes:recent advances.CIRP Ann – Manuf Technol 2011;60(2):603–26.

    5.Maiya PS,Busch DE.Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel.Metall Mater Trans A 1975;6(9):1761–6.

    6.Suraratchai M,Limido J,Mabru C,Chieragatti R.Determination of a local stress concentration induced by machining and its effect on fatigue life of an aluminum alloy.J Am Oil Chem Soc 2008;77(10):1087–93.

    7.Nakajima M,Tokaji K,Itoga H,Shimizu T.Effect of loading condition on very high cycle fatigue behavior in a high strength steel.Int J Fatigue 2010;32(2):475–80.

    8.Yao CF,Wu DX,Jin QC,Huang XC,Ren JX,Zhang DH.Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy.Trans Nonferrous Met Soc China 2013;23(3):650–60.

    9.Li W,Guo YB,Barkey ME,Jordon JB.Effect tool wear during end milling on the surface integrity and fatigue life of inconel 718.Procedia CIRP 2014;14:546–51.

    10.Choudhury IA,El-Baradie MA.Machinability of nickel-base super alloys:a general review.J Mater Process Technol 1998;77(1–3):278–84.

    11.Klocke F,Soo SL,Karpuschewski B,Webster JA,Novovic D,El fizy A,et al.Abrasive machining of advanced aerospace alloys and composites.CIRP Ann – Manuf Technol 2015;64(2):581–604.

    12.Wilk M,Tota J.Modern technology of the turbine blades removal machining.8th international conference on advanced manufacturing operations;2007.p.347–55.

    13.Kawagoishi N,Chen Q,Kondo E,Goto M,Nisitani H.Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy.J Mater Eng Perform 1999;8(2):152–8.

    14.Li X,Ma S,Meng F.Surface integrity of GH4169 affected by cantilever finish grinding and the application in aero-engine blades.Chin J Aeronaut 2015;28(5):1539–45.

    15.M’Saoubi R,Axinte D,Soo SL,Nobel C,Attia H,Kappmeyer G,et al.High performance cutting of advanced aerospace alloys and composite materials.CIRP Ann–Manuf Technolgy 2015;64(2):557–80.

    16.Li X,Meng F,Cui W,Ma S.The CNC grinding of integrated impeller with electroplated CBN wheel.Int J Adv Manuf Technol 2015;79(5):1353–61.

    17.Itoga H,Tokaji K,Nakajima M,Ko HN.Effect of surface roughness on step-wise–characteristics in high strength steel.Int J Fatigue 2003;25(5):379–85.

    18.Neuber H.Theory of notch stresses.Berlin:Springer Verlag;1958.

    19.Arola D,Williams CL.Estimating the fatigue stress concentration factor of machined surfaces.Int J Fatigue 2002;24(9):923–30.

    20.Suraratchai M,Limido J,Mabru C,Chieragatti R.Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy.Int J Fatigue 2008;30(12):2119–26.

    91久久精品国产一区二区三区| av视频在线观看入口| 久久99热这里只有精品18| 日本免费一区二区三区高清不卡| 亚洲精华国产精华液的使用体验| 一级毛片aaaaaa免费看小| 精品国内亚洲2022精品成人| 亚洲人与动物交配视频| 在线观看美女被高潮喷水网站| 黄片wwwwww| av在线蜜桃| 岛国毛片在线播放| 国产淫语在线视频| 国产精品一区二区三区四区免费观看| 国产精品一区二区三区四区免费观看| 夜夜看夜夜爽夜夜摸| av.在线天堂| 国产熟女欧美一区二区| 成人亚洲欧美一区二区av| 99久久九九国产精品国产免费| 午夜久久久久精精品| 高清毛片免费看| 成人鲁丝片一二三区免费| 97热精品久久久久久| 日韩大片免费观看网站 | 日本wwww免费看| 边亲边吃奶的免费视频| 欧美人与善性xxx| av黄色大香蕉| 国产麻豆成人av免费视频| 日韩成人av中文字幕在线观看| 久久这里只有精品中国| 一区二区三区高清视频在线| 麻豆成人av视频| 亚洲天堂国产精品一区在线| 亚洲人与动物交配视频| 成人午夜高清在线视频| 亚洲18禁久久av| 中文欧美无线码| 国产熟女欧美一区二区| 国产又色又爽无遮挡免| 晚上一个人看的免费电影| 国产av不卡久久| 免费观看在线日韩| 免费av观看视频| 国产精品永久免费网站| 国产人妻一区二区三区在| 一夜夜www| av又黄又爽大尺度在线免费看 | 亚洲国产精品专区欧美| 中文字幕av成人在线电影| 少妇高潮的动态图| 欧美一级a爱片免费观看看| 最近2019中文字幕mv第一页| 一二三四中文在线观看免费高清| 长腿黑丝高跟| 日本色播在线视频| 永久网站在线| 伊人久久精品亚洲午夜| 成人美女网站在线观看视频| 婷婷色av中文字幕| 午夜精品在线福利| 国产高清国产精品国产三级 | 天天一区二区日本电影三级| 黄色欧美视频在线观看| 成年免费大片在线观看| 日本一二三区视频观看| 简卡轻食公司| 久热久热在线精品观看| 国产亚洲av片在线观看秒播厂 | 日韩三级伦理在线观看| 国产精品国产三级专区第一集| 精品不卡国产一区二区三区| 久久久精品大字幕| 精品久久久久久成人av| a级毛色黄片| 午夜爱爱视频在线播放| 好男人视频免费观看在线| 国产高清国产精品国产三级 | 一级毛片电影观看 | 国产精品嫩草影院av在线观看| 卡戴珊不雅视频在线播放| 日韩强制内射视频| АⅤ资源中文在线天堂| 美女国产视频在线观看| 五月伊人婷婷丁香| 日本五十路高清| 中文天堂在线官网| 亚洲中文字幕一区二区三区有码在线看| 国产精品.久久久| 人人妻人人看人人澡| 久久久久久久亚洲中文字幕| 精品久久久久久成人av| 久久精品国产亚洲网站| 2021少妇久久久久久久久久久| 国产中年淑女户外野战色| 观看美女的网站| 男女国产视频网站| 国产精品国产三级国产av玫瑰| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| 99久久无色码亚洲精品果冻| 久久精品综合一区二区三区| 色吧在线观看| 婷婷色综合大香蕉| 国产亚洲5aaaaa淫片| 欧美日韩一区二区视频在线观看视频在线 | 日本欧美国产在线视频| 激情 狠狠 欧美| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕人妻熟人妻熟丝袜美| 亚洲一区高清亚洲精品| 久久久色成人| 一级毛片久久久久久久久女| 精品久久久久久久久av| 桃色一区二区三区在线观看| videossex国产| 青青草视频在线视频观看| 亚洲内射少妇av| 最新中文字幕久久久久| 日韩欧美精品v在线| 神马国产精品三级电影在线观看| 波野结衣二区三区在线| 久久久午夜欧美精品| 久久精品久久久久久噜噜老黄 | 九九爱精品视频在线观看| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 黄色一级大片看看| 久久鲁丝午夜福利片| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 日本黄色视频三级网站网址| 精品熟女少妇av免费看| 久久久久久九九精品二区国产| 国产精品国产三级专区第一集| 亚洲精品久久久久久婷婷小说 | 亚洲高清免费不卡视频| 男人狂女人下面高潮的视频| 啦啦啦观看免费观看视频高清| 高清视频免费观看一区二区 | 插逼视频在线观看| 三级经典国产精品| www.av在线官网国产| 男人舔奶头视频| 亚洲一级一片aⅴ在线观看| av在线天堂中文字幕| av国产久精品久网站免费入址| 国产黄色视频一区二区在线观看 | 精品熟女少妇av免费看| 天堂中文最新版在线下载 | 亚洲精品国产成人久久av| 男女国产视频网站| 激情 狠狠 欧美| 久久综合国产亚洲精品| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 亚洲国产精品成人久久小说| 久久草成人影院| 99热这里只有是精品50| 国产午夜精品论理片| 三级国产精品欧美在线观看| 色综合亚洲欧美另类图片| 性色avwww在线观看| 免费电影在线观看免费观看| 淫秽高清视频在线观看| 视频中文字幕在线观看| 视频中文字幕在线观看| 1024手机看黄色片| 女的被弄到高潮叫床怎么办| 一级av片app| 一本一本综合久久| 一级毛片久久久久久久久女| 九色成人免费人妻av| av视频在线观看入口| 毛片一级片免费看久久久久| 国产成人a∨麻豆精品| 中文字幕熟女人妻在线| 国产成人福利小说| 国产欧美另类精品又又久久亚洲欧美| 亚洲怡红院男人天堂| 男人舔奶头视频| 你懂的网址亚洲精品在线观看 | 六月丁香七月| av卡一久久| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 一区二区三区免费毛片| 亚洲成人久久爱视频| 成人亚洲精品av一区二区| 久久久久久久久久成人| 不卡视频在线观看欧美| 天堂网av新在线| 精品无人区乱码1区二区| 国产精品一区www在线观看| 一级黄片播放器| 尤物成人国产欧美一区二区三区| 国产日韩欧美在线精品| 国产综合懂色| 欧美成人午夜免费资源| 免费无遮挡裸体视频| 日韩成人伦理影院| 国产大屁股一区二区在线视频| 少妇人妻精品综合一区二区| 99久久精品国产国产毛片| 91在线精品国自产拍蜜月| 国产免费视频播放在线视频 | 中文字幕人妻熟人妻熟丝袜美| 国产av码专区亚洲av| av免费在线看不卡| 青春草视频在线免费观看| 日本免费在线观看一区| 精品久久久久久久久av| 午夜激情福利司机影院| 国产伦精品一区二区三区四那| 91aial.com中文字幕在线观看| 欧美激情在线99| 国产av一区在线观看免费| 亚洲第一区二区三区不卡| 国产黄a三级三级三级人| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 22中文网久久字幕| 国产高清国产精品国产三级 | 高清在线视频一区二区三区 | www日本黄色视频网| 久久精品综合一区二区三区| 热99re8久久精品国产| 99久久人妻综合| 国产伦精品一区二区三区四那| 亚洲经典国产精华液单| 久久99精品国语久久久| 中国国产av一级| 色视频www国产| 亚洲,欧美,日韩| 日本-黄色视频高清免费观看| 亚洲精品日韩av片在线观看| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 老师上课跳d突然被开到最大视频| 一级爰片在线观看| 在线天堂最新版资源| 九九在线视频观看精品| 久久精品91蜜桃| 亚洲电影在线观看av| 免费观看在线日韩| 日本黄大片高清| 纵有疾风起免费观看全集完整版 | 中文字幕免费在线视频6| 男人狂女人下面高潮的视频| 又爽又黄无遮挡网站| 国产片特级美女逼逼视频| 最近手机中文字幕大全| 校园人妻丝袜中文字幕| 亚洲av一区综合| 久久综合国产亚洲精品| 免费看日本二区| 九九在线视频观看精品| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 国产成人一区二区在线| 永久免费av网站大全| 国产精品无大码| 九色成人免费人妻av| 18禁裸乳无遮挡免费网站照片| 国产精品久久视频播放| 精品久久久久久久末码| 免费观看的影片在线观看| 久久人人爽人人片av| 亚洲国产色片| 午夜精品国产一区二区电影 | 欧美日本视频| 色尼玛亚洲综合影院| 直男gayav资源| 直男gayav资源| 麻豆av噜噜一区二区三区| 国产中年淑女户外野战色| 国产中年淑女户外野战色| 桃色一区二区三区在线观看| 成人午夜精彩视频在线观看| 精品久久久久久久久亚洲| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| 久久精品夜夜夜夜夜久久蜜豆| 超碰av人人做人人爽久久| 亚洲人与动物交配视频| 麻豆一二三区av精品| 日韩国内少妇激情av| 我的老师免费观看完整版| 七月丁香在线播放| 欧美xxxx性猛交bbbb| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| a级毛色黄片| 夫妻性生交免费视频一级片| 国产精品三级大全| 老司机福利观看| 日本黄大片高清| 午夜亚洲福利在线播放| 乱码一卡2卡4卡精品| 波多野结衣高清无吗| 91精品伊人久久大香线蕉| 免费人成在线观看视频色| 少妇丰满av| 亚洲综合精品二区| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 亚洲精品456在线播放app| 黄色配什么色好看| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 久久精品夜色国产| 成年版毛片免费区| 国产精品一区二区三区四区久久| 人妻系列 视频| h日本视频在线播放| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 小说图片视频综合网站| 成人特级av手机在线观看| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 丝袜喷水一区| 日本与韩国留学比较| 最近手机中文字幕大全| 国产精品野战在线观看| 免费播放大片免费观看视频在线观看 | 又黄又爽又刺激的免费视频.| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 日韩中字成人| 国产精品久久电影中文字幕| 黄片wwwwww| 特大巨黑吊av在线直播| 免费播放大片免费观看视频在线观看 | 亚洲无线观看免费| or卡值多少钱| 国产伦一二天堂av在线观看| 久久99热这里只频精品6学生 | 欧美性猛交黑人性爽| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 变态另类丝袜制服| 成人欧美大片| 亚洲最大成人av| 人人妻人人看人人澡| 丰满乱子伦码专区| 在线播放无遮挡| 青春草亚洲视频在线观看| 欧美日本视频| 嫩草影院新地址| 日本熟妇午夜| 91久久精品国产一区二区成人| 黄色配什么色好看| 亚洲高清免费不卡视频| 熟女电影av网| 久久久久网色| 国产三级中文精品| 国产69精品久久久久777片| 亚洲乱码一区二区免费版| 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 久热久热在线精品观看| 热99在线观看视频| 最近最新中文字幕大全电影3| 色吧在线观看| 99热精品在线国产| a级毛片免费高清观看在线播放| 国产午夜精品一二区理论片| 免费大片18禁| 伦理电影大哥的女人| 毛片一级片免费看久久久久| 在线天堂最新版资源| 亚洲最大成人手机在线| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| eeuss影院久久| 成年av动漫网址| 99久久精品热视频| 亚洲av成人精品一区久久| 亚洲国产欧洲综合997久久,| 国产在线男女| 午夜亚洲福利在线播放| 大香蕉久久网| 成人无遮挡网站| 亚洲电影在线观看av| 欧美色视频一区免费| 久久久久久九九精品二区国产| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 国产 一区精品| 麻豆乱淫一区二区| 精品熟女少妇av免费看| 男女视频在线观看网站免费| 国产色婷婷99| 黄片无遮挡物在线观看| 日韩高清综合在线| 又黄又爽又刺激的免费视频.| 欧美日韩在线观看h| 亚洲精品影视一区二区三区av| 国产在线男女| 欧美又色又爽又黄视频| 亚洲av一区综合| 欧美极品一区二区三区四区| 午夜免费男女啪啪视频观看| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 97超视频在线观看视频| 亚洲图色成人| www日本黄色视频网| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 国产亚洲精品久久久com| 夫妻性生交免费视频一级片| 亚洲av熟女| 国产免费男女视频| 久久久精品欧美日韩精品| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄 | 一个人看的www免费观看视频| 亚洲最大成人av| 欧美+日韩+精品| 久久韩国三级中文字幕| 国产成人精品久久久久久| 国产成人aa在线观看| 日本与韩国留学比较| 中文字幕免费在线视频6| av免费在线看不卡| 一级毛片aaaaaa免费看小| 日韩强制内射视频| 精品酒店卫生间| 能在线免费看毛片的网站| 永久免费av网站大全| 国产乱来视频区| 97人妻精品一区二区三区麻豆| 99久久人妻综合| av又黄又爽大尺度在线免费看 | 亚洲国产欧美在线一区| 亚洲国产日韩欧美精品在线观看| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 久久久久性生活片| 亚洲av成人精品一二三区| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 青春草亚洲视频在线观看| 少妇高潮的动态图| 老司机影院成人| 久久久午夜欧美精品| 成人亚洲精品av一区二区| 97超视频在线观看视频| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频 | av天堂中文字幕网| 午夜爱爱视频在线播放| 五月伊人婷婷丁香| 最近最新中文字幕大全电影3| 久久精品综合一区二区三区| 黄色一级大片看看| 亚洲欧美日韩高清专用| 深夜a级毛片| 99久久人妻综合| 床上黄色一级片| 国产免费男女视频| 美女cb高潮喷水在线观看| 国产三级中文精品| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久影院| 欧美日本视频| 成人无遮挡网站| 国产乱人视频| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放 | 国产精品国产三级专区第一集| 极品教师在线视频| 精品午夜福利在线看| 亚洲无线观看免费| 18禁裸乳无遮挡免费网站照片| 又粗又爽又猛毛片免费看| 午夜精品国产一区二区电影 | 国产精品综合久久久久久久免费| 久久精品国产99精品国产亚洲性色| 国产私拍福利视频在线观看| 国产精品不卡视频一区二区| 国模一区二区三区四区视频| 神马国产精品三级电影在线观看| av线在线观看网站| 欧美一区二区国产精品久久精品| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 亚洲av熟女| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 爱豆传媒免费全集在线观看| 国产精品99久久久久久久久| 亚洲最大成人手机在线| 少妇人妻一区二区三区视频| 成人美女网站在线观看视频| 嫩草影院新地址| 国产成人精品久久久久久| 女人被狂操c到高潮| 日日撸夜夜添| 亚洲无线观看免费| 午夜福利视频1000在线观看| 久久久久性生活片| 色噜噜av男人的天堂激情| 国产探花在线观看一区二区| 国产亚洲午夜精品一区二区久久 | 高清在线视频一区二区三区 | 午夜精品一区二区三区免费看| 18禁在线播放成人免费| 你懂的网址亚洲精品在线观看 | 草草在线视频免费看| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 国产探花极品一区二区| 欧美色视频一区免费| 成人三级黄色视频| 亚洲在线自拍视频| 91在线精品国自产拍蜜月| av在线蜜桃| 老司机福利观看| 国产黄a三级三级三级人| 大香蕉久久网| 亚洲欧美一区二区三区国产| 九九久久精品国产亚洲av麻豆| 免费一级毛片在线播放高清视频| 性插视频无遮挡在线免费观看| 午夜福利高清视频| 国产在线一区二区三区精 | 亚洲人成网站高清观看| 久久综合国产亚洲精品| 亚洲国产高清在线一区二区三| 桃色一区二区三区在线观看| av又黄又爽大尺度在线免费看 | 乱人视频在线观看| av.在线天堂| 久热久热在线精品观看| 国产成人福利小说| 亚洲欧美成人精品一区二区| 欧美性猛交╳xxx乱大交人| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 少妇的逼水好多| or卡值多少钱| 看黄色毛片网站| 床上黄色一级片| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 最近最新中文字幕免费大全7| 直男gayav资源| 最新中文字幕久久久久| 亚洲欧美精品综合久久99| 免费看a级黄色片| 国产精品国产三级国产专区5o | 一边摸一边抽搐一进一小说| 成年版毛片免费区| 欧美激情在线99| 九草在线视频观看| 日韩av在线大香蕉| 黄色配什么色好看| videossex国产| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影小说 | 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 又粗又爽又猛毛片免费看| 欧美xxxx性猛交bbbb| 91av网一区二区| 天堂影院成人在线观看| 亚洲欧洲日产国产| 国产免费男女视频| 性插视频无遮挡在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 最近的中文字幕免费完整| 自拍偷自拍亚洲精品老妇| 亚洲国产成人一精品久久久| 看非洲黑人一级黄片| 国产精品永久免费网站| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 免费一级毛片在线播放高清视频| 亚洲最大成人av| 搞女人的毛片| 亚洲五月天丁香| 亚洲电影在线观看av| 人妻少妇偷人精品九色|