• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Attitude control without angular velocity measurement for flexible satellites

    2018-06-28 11:05:20QinghuZHUGungfuMAXiotingWANGAiguoWU
    CHINESE JOURNAL OF AERONAUTICS 2018年6期

    Qinghu ZHU,Gungfu MA,Xioting WANG,Aiguo WU,*

    aDepartment of Control Science and Control Engineering,Harbin Institute of Technology,Harbin 150001,China

    bShanghai Aerospace Control Technology Institute,Shanghai 201109,China

    cHarbin Institute of Technology Shenzhen Graduate School,Shenzhen 518055,China

    dShanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai 201109,China

    1.Introduction

    The attitude control of spacecrafts and satellites has important applications for some space missions such as pointing and formation flying.This topic has attracted much attention from a considerable number of researchers.1–4For attitude control,much investigation is based on the unit quaternion representation.5–8In Ref.5,some attitude controllers with the structure of a Proportional-Derivative(PD)feedback plus feed-forward were designed for a rigid body.In Ref.6,a sliding mode control law was designed and applied to spacecraft attitude tracking maneuvers when the inertia of a spacecraft was not exactly known.In Ref.7,attitude control was considered for a rigid spacecraft with the control signal constrained by a common maximum magnitude in the presence of bounded unknown disturbances.A sliding mode controller was designed for such a type of spacecrafts to achieve global stability.The designed controller was in the form of a proportional feedback plus a smooth switch-like feedback with an auxiliary time-varying attitude gain function.High-order sliding mode controllers were designed in Ref.8for attitude control of a rigid spacecraft.A merit of the designed controller is that the phenomena of chattering can be eliminated.In Ref.9,two Fault-Tolerant Control(FTC)schemes were derived for spacecraft attitude stabilization with external disturbances.In Ref.10,the quaternion model of a rigid spacecraft was firstly transformed into the Lagrange-like,and then two robust sliding mode controllers were proposed to solve attitude tracking problems in the absence of both model uncertainties and external disturbances as well as in their presence.

    In the aforementioned attitude control laws,the angular velocity of a rigid spacecraft was used in the construction of an attitude control law.However,in some circumstances,it is not easy to measure the angular velocity.Therefore,it is necessary to design an attitude control law without angular velocity measurement.Such a controller was designed in Ref.11by using a nonlinear filter of the quaternion to replace the angular velocity feedback.In Ref.12,a velocity free attitude stabilization scheme was proposed for a rigid spacecraft.In this control scheme,an angular velocity observer-like system was explicitly designed to construct the stabilizing feedback.In Ref.13,two simple Saturated Proportional-Derivative(SPD)controllers were proposed for asymptotic stabilization of a rigid spacecraft with actuator constraints and without velocity measurement.In Ref.14,a continuous angular velocity observer with fractional power functions was proposed to estimate the angular velocity via quaternion attitude information.

    For flexible spacecraft,the effect of the motion of the elastic appendages must be taken into consideration,and thus the attitude control problem is more complicated.In Ref.15,a dynamic controller was proposed for the attitude control of a flexible spacecraft under the assumption that the modal variables describing flexible elements were not available.In Ref.16,an adaptive sliding mode control law with a hybrid sliding surface was proposed for a flexible spacecraft to minimize the effect of uncertainties and disturbances.In Ref.17,an adaptive control law was proposed to solve the attitude tracking problem for flexible spacecrafts subject to a gravity-gradient disturbance under inertia matrix uncertainty.In Ref.18,a nonlinear observer-based state feedback control law was designed to ensure the control objectives for attitude tracking.In Refs.15–18,attitude control laws for flexible spacecraft were designed based on the unit quaternion representation.In Ref.19,the three-axis attitude tracking control problem was investigated in presence of parameter uncertainties and disturbances based on the modified Rodrigues parameterization.An attitude control law was presented in the form of a nonlinear PD term plus a switching function about a sliding variable.

    In this paper,we consider the problem of attitude control for flexible satellites based on the unit quaternion representation.It is assumed that the modal variables describing flexible elements are not measurable.For such a class of flexible satellites,a dynamic controller is given to achieve stability for the closed-loop system.The designed controller has two features.One is that it is in the form of an observer-based state feedback.The other is that the angular velocity feedback is not used.

    2.Motion equations of a flexible satellite and problem formulation

    In this section,the mathematical model of a flexible satellite is given.We adopt the unit quaternion to describe the attitude of a satellite.The associated quaternion is given by

    with

    where ∈ is the unit Euler axis,and φ is the rotation angel about the Euler axis.The quaternion components are not independent on each other,and they satisfy a single constraint as

    For the quaternion q in Eq.(1),define the following matrix Ξ:

    With the preceding notation,the quaternion kinematics equation is given as6

    where ω is the satellite angular velocity.Due to the property of the matrix Ξ,there holds

    Under the hypothesis of small deformations,by using the Euler theorem,the dynamic equations of a flexible satellite can be given by

    where J is the total inertia matrix which is symmetric,u is the external torque acting on the main body of the satellite,and η is the modal coordinate vector.In the modal Eq.(8),C and K are respectively the damping matrix and the stiffness matrix,which are in the following forms:

    δ is the coupling matrix between flexible and rigid dynamics.In this paper,N elastic modes are considered.The corresponding natural frequencies are ωni,(i=1,2,...,N),and the associated dampings are ζi,(i=1,2,...,N).From Eqs.(7)and(8),the following dynamic equations of the flexible satellite can be obtained15:

    In dynamic Eq.(9),

    is the main body inertia matrix and

    is the total velocity of the flexible appendages.By summarizing derivation,a satellite with flexible appendages can be described by the mathematical models in Eqs.(5)and(9).

    Compared with attitude sensors,angular velocity sensors are more expensive.Therefore,it is practically important to design a control law without angular velocity measurement.In this paper,we aim to design such a control law so that

    3.Partial state feedback control

    In this section,it is assumed that the modal variables η and ψ are available.Since the angular velocity is not available,we introduce the following filter:

    where Cv(s)is a 4 × 4 linear time-invariant,strictly positive real,strictly proper transfer matrix.With the aid of this filter,we design the following partial state feedback controller for the flexible satellite system described by Eqs.(5)and(9):

    where k is the control parameter,in the control gain of Eq.(13),the matrix P will be determined later.The main result of this section is given in the following theorem.

    Theorem 1.Consider the satellite system described by Eqs.(5)and(9).Let Cv(s)be a 4×4 linear time-invariant,strictly positive real,strictly proper transfer matrix,and the symmetric matrix P satisfies the following Lyapunov matrix equation

    for a prescribed positive definite matrix Q.Then,under the control law in Eqs.(11)–(13),the closed-loop system achieves the performance in Eq.(10).

    Proof.Consider an arbitrary minimal realization of Cv(s)as follows:

    Since Cv(s)is linear time-invariant,strictly positive real,strictly proper,then according to Kalman-Yakubovich-Popv’s lemma,there exist positive definite matrices P1and Q1such that

    For the closed-loop system under the control law in Eqs.(11)–(13),we consider the following Lyapunov function:

    Denote

    Thus,V=V1+V2+V3+V4.

    Next,we give the time derivatives for the four functions V1,V2,V3,and V4along the solution of the closed-loop system.For the function V1,from Eq.(5),we have

    For the function V2,by using Eqs.(5),(9),and(12),we have

    For the function V3,it follows Eqs.(15),(16),and(9)that

    For the function V4,it can be obtained from Eq.(9)that

    With the previous time derivatives for the functions Vi,i=1,2,3,4,it can be obtained that

    Since V is a continuously differentiable, radially unbounded,and positive definite function,and˙V≤0 over the entire state,then the global asymptotic stability can be stated by using the LaSalle invariant theorem.De fineˉΩ as the largest invariant set,which is contained in

    Then we obtain=0 on Ω.With this,it follows from the first expression in Eq.(9)that

    which implies that on the set Ω,there holds u=0.By using Eqs.(12),(13),and(15),it can be obtained that

    From the preceding expression,it can be derived that qv=0 on the set Ω.Therefore,ˉΩ={(q,ω,x,η,ψ):x=0,ω =0,qv=0,η =0,ψ =0},and the global asymptotic stability is proven.□

    Remark 1.In the proposed stabilizing control law of Eqs.(12)and(13),the need for direct angular velocity measurement is removed since the filter Cv(s),or equivalently the filter in Eq.(15),is used.

    4.Observer-based feedback controllers

    In the designed control law in Eqs.(11)–(13),modal measurements are needed.However,in many cases,it is difficult to measure vibration modals.Thus,it is necessary to construct a control law when modal measurements are not available.For this end,we adopt the idea of an observer-based control law.For these vibration modals,we use an observer to give their estimation,and then the overall control law can be obtained by replacing the modals in the controller Eqs.(11)–(13)with their estimates.De fine the estimates of the modal variables η and ψ as^η and^ψ,respectively.We construct the following observer to obtain the estimates of η and ψ:

    where

    and the positive definite matrices P2and P3are determined later.With the aid of the observer in Eq.(28),now we construct the following dynamic controller for the satellite system in Eqs.(5)and(9):

    where F is given by Eq.(13),and z is constructed by Eq.(11).

    Remark 2.When the observer in Eq.(28)for estimating the flexible modals η and ψ is constructed,the basic structure of the sub-equation on η-ψ in Eq.(9)is utilized.With the estimationsη andof η and ψ,the overall controller is then obtained by replacing η and ψ in the control law Eq.(12)withand.

    Remark 3.Compared with some existing observers in flexible spacecraft,for example in Ref.15,an important feature of the observer in Eq.(28)is that angular velocity measurement is not used.Thus,the overall dynamic output feedback controller in Eqs.(28),(29)can be implemented without angular velocity measurement.

    Theorem 2.Consider the satellite system described by Eqs.(5)and(9).Let Cv(s)be a 4×4 linear time-invariant,strictly positive real,strictly proper transfer matrix,and the symmetric matrices P2and P3satisfy the following Lyapunov matrix equation:

    for two prescribed positive definite matrices Q2and Q3.Then under the control law Eqs.(29),(28),and(11),qv,ω,x,η,and ψ tend to zero asymptotically for any initial condition.

    Proof.Consider an arbitrary minimal realization of Cv(s)as in Eqs.(15)and(16).For the closed-loop system under the control law Eqs.(29)and(28),introduce the errors

    and denote

    In addition,we also define functions V1,V2,and V3as in Eqs.(18),(19),and(20),respectively.For the closed-loop system,we consider the following Lyapunov function:

    By calculation,it can be found that the time derivatives of V1and V3are the same as those in the proof of Theorem 1.Next,we give the time derivatives of functions V2,V4,and V5along the solution of the closed-loop system.For the function V2,by using Eqs.(5),(9),(29),and(31),we have

    For function V4,it can be obtained from Eq.(9)that

    Fig.1 Quaternion behavior for case of partial state feedback in Eqs.(11)–(13).

    For the function V5,from Eqs.(9),(31),(28),and(6),it can be derived that

    With the previous preliminaries,it can be obtained from Eq.(14)that

    Next,along a similar line to that in the proof of Theorem 1,the conclusion of this theorem can be obtained according to the LaSalle invariant theorem.□

    5.Simulation results

    In this section,we apply the control law Eqs.(12),(29),and(28)to a satellite model with four modes to demonstrate the previous theoretical results.The main parameters of the flexible satellite taken from Ref.20are as follows.

    The main body inertia matrix(in kg·m2)is

    and the coupling matrix between flexible and rigid dynamics(in kg1/2·m)is

    For the four natural modes of the flexible satellite,the natural frequencies are as follows:

    and the dampings are given as

    The maneuver of the considered flexible satellite is a rotation of 160°with an Euler axis,i.e.,

    Thus,the initial attitude described by the quaternion is

    and the initial angular velocity of the spacecraft is ω(0)= [0,0,0]T

    In addition,the initial values of the four modals of the flexible appendages are

    Firstly,we apply the partial state feedback controller Eqs.(11)–(13)to the flexible satellite.The parameters of the controller are as follows:

    In addition,the parameter P is determined by solving the Lyapunov matrix Eq.(14).The behavior of the quaternion q=q0+q1i+q2j+q3k is shown in Fig.1 where i,j and k are the fundamental quaternion units.The modal displacements are shown in Fig.2.From Fig.1,it can be seen that the quaternion q of the closed-loop system is asymptotically convergent.

    Fig.2 Modal displacements for case of partial state feedback in Eqs.(11)–(13).

    Fig.3 Quaternion behavior for case of observer-based state feedback in Eqs.(28)and(29).

    Fig.4 Modal displacements for case of partial state feedback in Eqs.(28)and(29).

    Secondly,the observer-based feedback controller in Eqs.(28),(29)is also used for the flexible satellite,and the parameters are chosen to be as follows:

    In addition,the matrices P2and P3are determined by Eq.(30).In this case, the behavior of the quaternion q=q0+q1i+q2j+q3k is shown in Fig.3,and the modal displacements are shown in Fig.4(where^means estimated value).From Fig.3,it can be seen that the quaternion q is also asymptotically convergent when the observer-based control law is used.In addition,it can be seen from Figs.2 and 4 that the vibration amplitude of the flexible modals under the observer-based control law is bigger than that under the state feedback control law.

    6.Conclusions

    In this paper,attitude control is considered without angular velocity measurement for satellites with flexible appendages based on quaternion models.Firstly,a partial state feedback control law is proposed for this kind of satellites to guarantee convergence of the quaternion behaviors of the considered satellites.Secondly,when the modal variables describing flexible elements are not measurable,an observer-based partial state feedback control law is also presented.By applying this dynamic controller to the considered satellites,the convergence of the closed-loop system can also be guaranteed.A common feature of the two control laws proposed in this paper is that angular velocity measurement is not used.In future,we will use the idea in this paper to the problem of attitude tracking for flexible satellites.

    Acknowledgements

    This work was co-supported by the Major Program of National Natural Science Foundation of China (Nos.61690210,61690212),Shenzhen Municipal Basic Research Project for Discipline Layout(No.JCYJ20170413112722597),and Shenzhen Municipal Project for Basic Research(Nos.JCYJ20170307150952660,JCYJ20170307150227897).

    1.Liu H,Guo L,Zhang Y.An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts.Nonlinear Dyn 2011;67(3):2081–8.

    2.Xiao B,Hu QL,Zhang Y.Adaptive sliding mode fault yolerant attitude tracking control for flexible spacecraft under actuator saturation.IEEE Trans Control Syst Technol 2012;20(6):1605–12.

    3.Guo Y,Song S.Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix.Chin J Aeronaut 2014;27(2):375–82.

    4.Sun H,Li S.Composite control method for stabilizing spacecraft attitude in terms of Rodrigues parameters.Chin J Aeronaut 2013;26(3):687–96.

    5.Wen TY,Kreutz-Delgado K.The attitude control problem.IEEE Trans Autom Control 1991;36(10):1148–62.

    6.Lo SC,Chen YP.Smooth sliding-mode control for spacecraft attitude tracking maneuvers.J Guid Control Dyn1995;18(6):1345–9.

    7.Wallsgrove RJ,Akella MR.Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances.J Guid Control Dyn 2005;28(5):957–63.

    8.Tiwari PM,Janardhanan S,Nabi MU.Attitude control using higher order sliding mode.Aerosp Sci Technol 2016;54:108–13.

    9.Shen Q,Wang D,Zhu S,Poh EK.Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft.IEEE Trans Control Syst Technol 2015;23(3):1131–8.

    10.Wu S,Radice G,Gao Y,Sun Z.Quaternion-based finite time control for spacecraft attitude tracking.Acta Astronaut 2011;69(1–2):48–58.

    11.Lizarralde F,Wen JT.Attitude control without angular velocity measurement:a passivity approach.IEEE Trans Autom Control 1996;41(3):468–72.

    12.Benziane L,Benallegue A,Chitour Y,Tayebi A.Velocity-free attitude stabilization with inertial vector measurements.Int J Robust Nonlinear Control 2016;26(11):2478–93.

    13.Su Y,Zheng C.Velocity-free saturated PD controller for asymptotic stabilization of spacecraft.Aerosp Sci Technol 2014;39:6–12.

    14.Gui H,Vukovich G.Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs.Int J Robust Nonlinear Control 2017;27(1):15–38.

    15.Gennaro SD.Passive attitude control of flexible spacecraft from quaternion measurements.J Optim Theory Appl 2003;116(1):41–60.

    16.Shahravi M,Kabganian M,Alasty AM.Adaptive robust attitude control of a flexible spacecraft.Int J Robust Nonlinear Control 2006;16(6):287–302.

    17.Gennaro SD.Adaptive robust tracking of flexible spacecraft in presence of disturbances.J Optim Theory Appl 1998;98(3):545–68.

    18.Gennaro SD.Output attitude tracking for flexible spacecraft.Automatica 2002;38(10):1719–26.

    19.Jin E,Sun Z.Robust attitude tracking control of flexible spacecraft for achieving globally asymptotic stability.Int J Robust Nonlinear Control 2009;19(11):1201–23.

    20.Hu QL.Robust adaptive backstepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint.J Sound Vib 2009;327(3–5):285–98.

    精品国产超薄肉色丝袜足j| 亚洲va日本ⅴa欧美va伊人久久| 国产日韩一区二区三区精品不卡| 首页视频小说图片口味搜索| 亚洲五月婷婷丁香| 亚洲黑人精品在线| 国产一区二区三区在线臀色熟女| 一区二区日韩欧美中文字幕| 亚洲自拍偷在线| 神马国产精品三级电影在线观看 | 日本免费a在线| 国产黄a三级三级三级人| 男女做爰动态图高潮gif福利片 | 亚洲无线在线观看| 天堂动漫精品| 黄色女人牲交| 国产主播在线观看一区二区| 美女免费视频网站| 亚洲精品在线观看二区| 久久欧美精品欧美久久欧美| 12—13女人毛片做爰片一| 亚洲欧美激情在线| 国产伦一二天堂av在线观看| 亚洲欧美日韩高清在线视频| 国产精品 欧美亚洲| 精品日产1卡2卡| 免费不卡黄色视频| 亚洲人成伊人成综合网2020| 无人区码免费观看不卡| 亚洲人成电影免费在线| 两性夫妻黄色片| 18禁裸乳无遮挡免费网站照片 | 美女免费视频网站| 在线视频色国产色| 国产av在哪里看| av中文乱码字幕在线| 欧美+亚洲+日韩+国产| 亚洲精品国产区一区二| 精品一区二区三区视频在线观看免费| 中文亚洲av片在线观看爽| 一级黄色大片毛片| 一级a爱视频在线免费观看| 免费无遮挡裸体视频| 美女国产高潮福利片在线看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲午夜理论影院| 热re99久久国产66热| 一区二区三区国产精品乱码| 丝袜美足系列| 91九色精品人成在线观看| 搡老熟女国产l中国老女人| 色综合婷婷激情| 韩国av一区二区三区四区| 久久精品国产综合久久久| 午夜日韩欧美国产| 色综合婷婷激情| 欧美乱码精品一区二区三区| 91在线观看av| 国产精品亚洲美女久久久| 国产免费男女视频| 久久精品亚洲熟妇少妇任你| 超碰成人久久| 国产精品国产高清国产av| 天天一区二区日本电影三级 | 亚洲av日韩精品久久久久久密| 久久精品影院6| 久久久久久国产a免费观看| 免费高清视频大片| 变态另类丝袜制服| 亚洲中文av在线| 成人亚洲精品一区在线观看| 日韩视频一区二区在线观看| 香蕉丝袜av| 国产成人精品久久二区二区91| 亚洲一码二码三码区别大吗| 久久久久久久精品吃奶| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 欧美性长视频在线观看| 国产黄a三级三级三级人| 在线天堂中文资源库| 久久久水蜜桃国产精品网| 亚洲无线在线观看| 国产精品av久久久久免费| 久久人妻福利社区极品人妻图片| 香蕉丝袜av| www.www免费av| 99精品久久久久人妻精品| 美女 人体艺术 gogo| 97热精品久久久久久| 国产精品久久视频播放| 美女cb高潮喷水在线观看| 亚洲成人久久爱视频| 日本黄色片子视频| 中出人妻视频一区二区| 久久精品国产亚洲av天美| 国产精品一区二区免费欧美| 人妻丰满熟妇av一区二区三区| 成人欧美大片| netflix在线观看网站| 成人永久免费在线观看视频| 欧美日韩国产亚洲二区| 欧美不卡视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 国产午夜福利久久久久久| 日本黄大片高清| 精品人妻1区二区| 91av网一区二区| 久久婷婷人人爽人人干人人爱| 免费电影在线观看免费观看| 久久久久久久久久黄片| 亚洲国产欧美人成| 一级毛片久久久久久久久女| 日本 欧美在线| 成年人黄色毛片网站| 非洲黑人性xxxx精品又粗又长| 久久99热6这里只有精品| 99久国产av精品| 亚洲第一电影网av| 精品久久久噜噜| 麻豆一二三区av精品| 不卡视频在线观看欧美| 国产精品1区2区在线观看.| 动漫黄色视频在线观看| 1000部很黄的大片| 国产一区二区三区av在线 | 成人鲁丝片一二三区免费| 欧美极品一区二区三区四区| 久久久久精品国产欧美久久久| 黄色欧美视频在线观看| 搡老熟女国产l中国老女人| 免费av不卡在线播放| 国内少妇人妻偷人精品xxx网站| 日韩一本色道免费dvd| 国产 一区精品| 久久久久久久久大av| 女生性感内裤真人,穿戴方法视频| 校园人妻丝袜中文字幕| 日本 欧美在线| 麻豆成人午夜福利视频| 国产69精品久久久久777片| 亚洲不卡免费看| 国产精品电影一区二区三区| 亚洲精华国产精华液的使用体验 | 制服丝袜大香蕉在线| 精品久久久久久久末码| 一本一本综合久久| 欧美3d第一页| 九色国产91popny在线| 成人欧美大片| 国产毛片a区久久久久| 91久久精品电影网| 无遮挡黄片免费观看| 美女黄网站色视频| 偷拍熟女少妇极品色| 啪啪无遮挡十八禁网站| 能在线免费观看的黄片| 欧美另类亚洲清纯唯美| 国产探花在线观看一区二区| 国产精品亚洲美女久久久| 一级黄色大片毛片| 又粗又爽又猛毛片免费看| 久久精品久久久久久噜噜老黄 | 国产一区二区在线av高清观看| 欧美日韩乱码在线| 99久久精品国产国产毛片| 国产日本99.免费观看| 精品日产1卡2卡| 亚洲av成人精品一区久久| 欧美人与善性xxx| 中文亚洲av片在线观看爽| 久久人人精品亚洲av| 久久久久久久久大av| 亚洲av日韩精品久久久久久密| 日本爱情动作片www.在线观看 | 国模一区二区三区四区视频| 人妻少妇偷人精品九色| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 制服丝袜大香蕉在线| 欧美成人a在线观看| 日本撒尿小便嘘嘘汇集6| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品亚洲一级av第二区| 国产三级在线视频| 国产精品免费一区二区三区在线| 舔av片在线| 男人和女人高潮做爰伦理| 一级av片app| 精品一区二区三区av网在线观看| 91在线观看av| 身体一侧抽搐| www日本黄色视频网| 久久精品综合一区二区三区| 夜夜爽天天搞| 亚洲欧美激情综合另类| 亚洲人成网站高清观看| 国产探花极品一区二区| 老熟妇仑乱视频hdxx| 亚洲美女视频黄频| 国产精品自产拍在线观看55亚洲| 久久午夜福利片| 欧美色欧美亚洲另类二区| 国产色爽女视频免费观看| 老司机深夜福利视频在线观看| 在线观看免费视频日本深夜| 午夜福利18| 欧美黑人欧美精品刺激| 一级毛片久久久久久久久女| 18禁黄网站禁片午夜丰满| 日韩欧美国产在线观看| 国产毛片a区久久久久| 久久热精品热| 欧美精品国产亚洲| 欧美激情在线99| 在线看三级毛片| 国内精品久久久久精免费| 波野结衣二区三区在线| 午夜影院日韩av| 国产欧美日韩精品亚洲av| 夜夜爽天天搞| 91麻豆av在线| 国产探花在线观看一区二区| 在线观看免费视频日本深夜| 一级a爱片免费观看的视频| 九九热线精品视视频播放| 嫁个100分男人电影在线观看| 久久草成人影院| 18+在线观看网站| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 一个人免费在线观看电影| 国产成人aa在线观看| av黄色大香蕉| 色综合色国产| 99国产极品粉嫩在线观看| 亚洲18禁久久av| videossex国产| 免费看日本二区| 人人妻人人看人人澡| 国产熟女欧美一区二区| 草草在线视频免费看| 一个人免费在线观看电影| 欧美xxxx性猛交bbbb| 精品一区二区三区av网在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品日韩av片在线观看| 日韩强制内射视频| 麻豆国产97在线/欧美| 欧美激情在线99| 狠狠狠狠99中文字幕| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲av天美| 国产精品亚洲美女久久久| 久久欧美精品欧美久久欧美| 国产精品一区二区三区四区久久| 在线观看午夜福利视频| 99久国产av精品| 搞女人的毛片| 午夜福利在线在线| 国产国拍精品亚洲av在线观看| 欧美成人a在线观看| 精品日产1卡2卡| 欧美日韩国产亚洲二区| 国产av在哪里看| 九九热线精品视视频播放| 久9热在线精品视频| 国产大屁股一区二区在线视频| h日本视频在线播放| 3wmmmm亚洲av在线观看| 日本a在线网址| xxxwww97欧美| 欧美日本视频| 亚洲 国产 在线| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 久久精品国产亚洲av涩爱 | 欧美xxxx性猛交bbbb| 日韩大尺度精品在线看网址| 成人特级黄色片久久久久久久| 久久精品国产亚洲av香蕉五月| 校园人妻丝袜中文字幕| 国产69精品久久久久777片| 小蜜桃在线观看免费完整版高清| 12—13女人毛片做爰片一| 高清日韩中文字幕在线| 亚洲欧美日韩卡通动漫| 精品日产1卡2卡| 又黄又爽又免费观看的视频| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx在线观看| 能在线免费观看的黄片| 国产色爽女视频免费观看| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 白带黄色成豆腐渣| 搡女人真爽免费视频火全软件 | .国产精品久久| 国产高清激情床上av| 97热精品久久久久久| 久久久久精品国产欧美久久久| 国产黄片美女视频| 男女下面进入的视频免费午夜| 日韩av在线大香蕉| 国产精品伦人一区二区| 伦精品一区二区三区| 免费看a级黄色片| 欧美性感艳星| 成人二区视频| 白带黄色成豆腐渣| 少妇丰满av| 亚洲精华国产精华精| 亚洲不卡免费看| 婷婷精品国产亚洲av| 他把我摸到了高潮在线观看| 久久久久九九精品影院| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 床上黄色一级片| 在线免费观看不下载黄p国产 | 十八禁网站免费在线| 俺也久久电影网| 人妻丰满熟妇av一区二区三区| 国产精品一区二区性色av| 久久人人爽人人爽人人片va| 99在线视频只有这里精品首页| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 久久精品综合一区二区三区| 久久久久性生活片| av在线亚洲专区| 搡老岳熟女国产| 免费搜索国产男女视频| 国产在视频线在精品| 国产高清视频在线播放一区| 有码 亚洲区| 最新在线观看一区二区三区| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 国产一级毛片七仙女欲春2| 精品久久久久久久久av| 午夜激情福利司机影院| 亚洲性久久影院| 午夜福利欧美成人| 一区二区三区免费毛片| 九色国产91popny在线| 三级国产精品欧美在线观看| 国产av不卡久久| 午夜激情福利司机影院| 国产伦在线观看视频一区| 3wmmmm亚洲av在线观看| 午夜福利在线观看吧| 精品久久久久久久久久免费视频| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 欧美xxxx性猛交bbbb| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 嫩草影院新地址| 中文在线观看免费www的网站| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 1024手机看黄色片| 欧美日本视频| 在线观看一区二区三区| 一本久久中文字幕| 午夜视频国产福利| 亚洲国产精品sss在线观看| 最后的刺客免费高清国语| 可以在线观看毛片的网站| 国产午夜精品久久久久久一区二区三区 | 小说图片视频综合网站| 亚洲18禁久久av| 97超级碰碰碰精品色视频在线观看| 欧美精品啪啪一区二区三区| 久久婷婷人人爽人人干人人爱| 午夜精品久久久久久毛片777| 欧美绝顶高潮抽搐喷水| 亚洲综合色惰| 人妻少妇偷人精品九色| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看| 午夜福利欧美成人| 麻豆国产av国片精品| 亚洲精华国产精华液的使用体验 | 女的被弄到高潮叫床怎么办 | 亚洲精华国产精华精| 亚洲三级黄色毛片| 亚洲真实伦在线观看| 我要搜黄色片| 亚洲天堂国产精品一区在线| 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| 亚洲人成网站高清观看| 日本五十路高清| 免费人成视频x8x8入口观看| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 黄片wwwwww| 久9热在线精品视频| 日韩,欧美,国产一区二区三区 | 91麻豆精品激情在线观看国产| 国产人妻一区二区三区在| 少妇熟女aⅴ在线视频| 国产精品一及| 99热这里只有是精品在线观看| 在线a可以看的网站| 亚洲无线在线观看| 国产久久久一区二区三区| 成人av一区二区三区在线看| 欧美激情在线99| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放| 成人综合一区亚洲| 少妇丰满av| 乱系列少妇在线播放| 国产毛片a区久久久久| 国产成人福利小说| 欧美成人免费av一区二区三区| 成年女人看的毛片在线观看| 91麻豆av在线| 国产乱人伦免费视频| 亚洲精品国产成人久久av| 色尼玛亚洲综合影院| 午夜福利在线在线| 桃红色精品国产亚洲av| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 精品日产1卡2卡| 亚洲 国产 在线| 久久久久国内视频| 中国美白少妇内射xxxbb| 日本精品一区二区三区蜜桃| 国产v大片淫在线免费观看| 欧美日韩黄片免| 丝袜美腿在线中文| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 三级毛片av免费| 一级黄色大片毛片| 我要搜黄色片| 99热精品在线国产| 精品一区二区免费观看| 两人在一起打扑克的视频| 色哟哟哟哟哟哟| 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av| 日本 av在线| xxxwww97欧美| 免费在线观看影片大全网站| 免费搜索国产男女视频| 尾随美女入室| 黄色女人牲交| 亚洲精品456在线播放app | 国产精华一区二区三区| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| bbb黄色大片| 久久精品91蜜桃| 亚洲黑人精品在线| 特级一级黄色大片| 床上黄色一级片| 国产综合懂色| 国产伦精品一区二区三区视频9| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 国产精品不卡视频一区二区| 国产男人的电影天堂91| 亚洲久久久久久中文字幕| 91av网一区二区| 99热6这里只有精品| 欧美区成人在线视频| 最近中文字幕高清免费大全6 | 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 免费看光身美女| 俄罗斯特黄特色一大片| 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 此物有八面人人有两片| 国产精品嫩草影院av在线观看 | 男女下面进入的视频免费午夜| 国产亚洲欧美98| 国产乱人视频| 一本一本综合久久| 亚洲国产高清在线一区二区三| 少妇猛男粗大的猛烈进出视频 | av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 91在线观看av| 久久久久久国产a免费观看| 亚洲三级黄色毛片| 国产精品免费一区二区三区在线| 99热这里只有精品一区| 日韩欧美精品v在线| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 黄色视频,在线免费观看| 在线国产一区二区在线| 有码 亚洲区| 免费在线观看日本一区| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久亚洲 | 国内少妇人妻偷人精品xxx网站| 成年人黄色毛片网站| 国产熟女欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 国产精品98久久久久久宅男小说| 嫩草影院新地址| 亚洲,欧美,日韩| 欧美一区二区亚洲| 赤兔流量卡办理| 久久精品影院6| 免费观看精品视频网站| 欧美精品国产亚洲| 日本一本二区三区精品| 亚洲一级一片aⅴ在线观看| 亚洲不卡免费看| 一a级毛片在线观看| 人妻久久中文字幕网| eeuss影院久久| 亚洲av不卡在线观看| 一级a爱片免费观看的视频| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看 | 成人毛片a级毛片在线播放| 麻豆成人午夜福利视频| 日本黄大片高清| 一本一本综合久久| 人妻夜夜爽99麻豆av| 日本欧美国产在线视频| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 99视频精品全部免费 在线| 性插视频无遮挡在线免费观看| 黄色一级大片看看| 亚洲av熟女| 亚洲av五月六月丁香网| 免费观看人在逋| 日本熟妇午夜| 欧美激情在线99| 看十八女毛片水多多多| 毛片一级片免费看久久久久 | 午夜影院日韩av| 成人二区视频| 婷婷色综合大香蕉| 亚洲男人的天堂狠狠| 精品国产三级普通话版| 九九爱精品视频在线观看| 精品国产三级普通话版| 午夜福利成人在线免费观看| 久久精品久久久久久噜噜老黄 | 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 欧美zozozo另类| 欧美不卡视频在线免费观看| 国产精品久久久久久av不卡| .国产精品久久| 成年人黄色毛片网站| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 三级毛片av免费| 国产av在哪里看| 91麻豆av在线| 国内揄拍国产精品人妻在线| 日韩欧美在线二视频| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 国产伦精品一区二区三区视频9| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 天堂网av新在线| 少妇的逼好多水| 日韩欧美在线乱码| 日韩欧美免费精品| 黄色配什么色好看| 欧美黑人巨大hd| 国产老妇女一区| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 热99re8久久精品国产|