• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on film cooling performance of imperfect holes

    2018-06-28 11:04:40KennHUANGJingzhouZHANGXiomingTANYongSHAN
    CHINESE JOURNAL OF AERONAUTICS 2018年6期

    Ke’nn HUANG,Jingzhou ZHANG,b,*,Xioming TAN,Yong SHAN

    aCollege of Energy and Power Engineering,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bCollaborative Innovation Center for Advanced Aero-Engine,Beijing 100083,China

    1.Introduction

    Film cooling plays an important role on protecting the hotsection components from overheating.In the real applications,the initially designed perfect film holes may be partially obstructed by fine particulate matter due to foreign ingestion and combustion production.1–3In addition,the film-hole imperfections may also be resulted from thermal barrier coating spallation as well as imperfect manufacturing.4,5

    It is well known that the geometric shape of film cooling holes is an important factor affecting film cooling behaviors.A lot of efforts have been devoted to the film cooling enhancement in past decades by actively optimizing the film-hole shape.6–12These shaped film-holes are properly designed to mitigate the detrimental effect of large-scale kidney vortices generated from a conventional film cooling hole.Differing from the shaped holes designed actively in the view of enhancing film cooling effectiveness,however,the alteration of initially designed film-hole caused by some uncontrolled reasons,such as particulate deposition,thermal barrier coatingspallation and manufacturing inaccuracy,etc.,is generally undesirable.In order to illustrate the influences of filmhole imperfection on the film cooling performance,some investigationswere carried outexperimentally4,5,13–16or numerically.17–19As the imperfections inside the film cooling holes are caused randomly with vast possibilities of blockage shapes as well as deposition orientations,some simplified configurations for simulating the in-hole blockage were presented,such as half torus,carving round rods and pyramid-shaped elements,etc.Of particular significance was that the affecting roles of film-hole imperfection on the film cooling behaviors illustrated by different researchers were found to be non-consistent,tightly dependent on the in-hole blockage orientations and blocking ratios.Due to the diversity of in-hole blockages and complexity of affecting roles,the knowledge about the film cooling performance of imperfect holes need further illustration.

    To address this issue,a series of experiments are conducted in the present investigation to study the effects of in-hole blockages on a row of holes film cooling over a flat plate.

    2.Experimental procedures

    The experimental setup is schematically shown in Fig.1,the same as that used by Yang and Zhang11which consists basically of three main parts:the primary flow or mainstream supply passage,the secondary flow or coolant supply passage,and the test section.

    The primary flow and secondary flow are supplied by two independent air compressors.Both flows are measured and adjusted by respective flow-meter and valve.In the primary flow supply passage,an electric heater is used for air heating.The test section has a constant rectangular cross-section(180 mm in width and 100 mm in height).Consequently,the primary inlet velocity(u∞)is controlled at 20 m/s approximately.The temperature of primary flow(T∞)is measured by a temperature probe.In the current tests,the temperature of primary flow is 85°C approximately.

    Fig.1 Schematic of computational model.

    The secondary flow plenum has a height of 18 mm.Its inlet is located at 90 mm ahead of the film-hole outlet and its end is located at 30 mm down the film-hole outlet.A row of perfect cylindrical holes with the same inclination angle(α)of 35°and diameter(d)of 6 mm is selected as the baseline case.Nine holes are involved in a single row with a fixed hole-to-hole spacing pitch of 3d.The temperature(Tc)and total pressure(p*c)of secondary flow are measured by a temperature probe and a total pressure probe respectively.Both probes are placed inside the coolant plenum.Besides,a static pressure probe is located immediately down the film hole to measure the exiting static pressure of coolant flow(pc).

    Considering that a practical in-hole blockage is randomly distributed around the hole and the deposition generally has a bigger base and a smaller top,the specifically pyramidshaped element numerically investigated by Pan et al.19is selected as the in-hole obstruction in the present study.Six representative deposition locations are determined according to their orientations,as seen in Fig.2.The film-protected plate is made of a bakelite plate,which has a thermal conductivity of about 0.15 W/(m·K).All the pyramid-shaped elements occupy one-third of film-hole length.For the blockage deposited in vicinity of film-hole inlet or exit,the apex of in-hole blockage is located at the corresponding inlet plane or exit plane.While for the blockage deposited at the middle of film-hole,the apex of in-hole blockage is located at the middle plane.The in-hole blockage blocking ratio(B)is defined according to this specified cross-sectional plane where the apex of in-hole blockage is located,as seen in Eq.(1).

    where Ab,sectionis the cross-sectional area of blockage at the cross-sectional plane where the apex is located.In this crosssectional plane,the obstruction of the in-hole blockage inside the film cooling hole is the maximum.

    Fig.2 Schematic of in-hole blockage.

    Two sets of blockage geometries are considered in the current experimental test.

    (1)Varying the blockage orientation for a fixed blocking ratio of B=0.3.

    (2)Varying the blocking ratio from 0.1 to 0.4 for a specific leading-exit blockage orientation.

    The definitions of blowing ratio(M),cooling effectiveness(η)and discharge coefficient(Cd)are illustrated in Eqs.(2)–(4)in turns.

    where ρ,u and T are density,velocity and temperature respectively;the subscripts ‘c”,‘∞”,‘w” and ‘inlet” denote the secondary flow,primary flow,wall and in let parameters respectively;mcis actual coolant mass flow rate,which is measured in the secondary flow supply passage;p*cand pcare total pressure at hole-inlet and static pressure at hole-outlet of the coolant flow respectively;Ac,inletis the total inlet area of a row of film cooling holes.

    A special notice needs pointing out in the current definitions of blowing ratio(Eq.(2))and discharge coefficient(Eq.(4))is that the parameters of coolant flow are selected as the corresponding values at the film-hole inlet.Such selections ensure that both the imperfect hole and the perfect hole have the same coolant mass flow rate under a given blowing ratio.The coordinate origin is located at the trailing edge of central-hole exit.x-,y-,and z-directions are defined as the streamwise,normal and lateral directions respectively.

    The wall temperature(Tw)is measured by an infrared camera.For ensuring a nearly perfect emissivity of tested surface,the surface treatment is made in advance by spraying a thin black paint uniformly.An infrared glass with a high transmissivity serves as the measuring window to the infrared camera.

    Fig.3 Surface temperature distributions(M=0.5,B=0.3).

    In addition,several flow field measurements are also conducted by using particle image velocimetry methodology.These measurements were performed on the film-hole centerline plane(z/d=0).

    In the experiments,the individual measured temperature uncertainties of the primary flow,cooling air and wall surface are approximately ±1.0°C, ±0.5°C and ±1.0°C,respectively.According to the theory of error methodology,the maximum uncertainty for the cooling effectiveness measurement is estimated to be±7%approximately.The uncertainty in discharge coefficient measurements is estimated to be within of±4%.

    3.Results and discussion

    3.1.Detailed temperature and flow fields

    Fig.3 presents some surface temperature distributions under a moderate blowing ratio of M=0.5.For the imperfect film cooling holes,the blocking ratio(B)is kept as 0.3.Comparing with the perfect hole or baseline case,it is found that the local blockages orientated at the film-hole exit have more obvious effect on the film cooling behaviors.When the local blockage is deposited at leading-exit of film-hole,the wall temperature on the film-cooling protected surface is decreased downstream the film-hole exit,indicating an improvement of film cooling is achieved.While for the trailing-exit blockage orientation,the wall temperature is increased drastically related to the baseline case,indicating a serious degradation of film cooling effectiveness occurs in this situation.For the other in-hole blockages orientated at inlet or mid positions,a negative influence on the film cooling is generally confirmed,but this influence seems relatively weaker than that of trailing-exit blockage orientation.

    Fig.4 shows the measured velocity field on the film-hole centerline plane.It is confirmed that the in-hole blockages change the flow field near the film-hole exit significantly.Related to the baseline case(as seen in Fig.4(a)),the local blockage deposited at leading-exit of film-hole leads to a relatively weaker coolant penetration into the primary flow,as seen in Fig.4(b).This role was also proved by previous investigations11,19,20,which is helpful for film cooling enhancement.On the contrary,the local blockage deposited at trailing-exit of film-hole leads to a stronger coolant jet penetration into primary flow,as seen in Fig.4(c).As more coolant injection momentum is transferred along the normal direction,the coolant jet is more seriously lifted off the film-cooling protected surface,thus producing detrimental influence on film cooling effectiveness.

    3.2.Film cooling effectiveness

    Fig.4 Velocity vector at hole-centerline plane under M=1.0.

    The influences of in-hole blockage orientation on the laterallyaveraged film cooling effectiveness distributions under a fixed blocking ratio of B=0.3 and a moderate blowing ratio of M=1.0 are demonstrated in Fig.5.In Fig.5(a),the experimental data presented by Lu et al.21are also displayed for comparison.It is seen that the current tested result for the cylindrical hole agrees well with that of Lu et al.21beyond x/d=7.Near the film-hole outlet,the current laterallyaveraged film cooling effectiveness varies more smoothly along the streamwise direction than that of Lu et al.21This is caused by the thermal conductive effect in the current test.It is found that the partial leading-exit blockage plays a role on enhancing the film cooling effectiveness.It leads to approximately 20%increase in the region between 2<x/d<12 related to the baseline case.While the other blockage orientations are shown to play roles on deteriorating the film cooling effectiveness,especially for the trailing-exit orientation.Approximately 50% reduction of the laterally-averaged film cooling effectiveness related to the perfect film-hole is found under the trailing-exit deposition case.From Fig.5,it is also found that the in-hole blockages deposited vicinity of film-hole inlet and the middle of film-hole play nearly the same influence on the film cooling effectiveness.

    The influences of blowing ratio on laterally-averaged film cooling effectiveness distributions of imperfect film cooling holes under a fixed blocking ratio of 0.3 is shown in Fig.6.When the blowing ratio is far less than one,the laterallyaveraged film cooling effectiveness decreases along the streamwise direction monotonously despite the blockage deposition orientation.When the blowing ratio is bigger than one,the laterally-averaged film cooling effectiveness in the region immediately close to the film hole is weakened drastically.However,the film cooling far downstream from film-hole exit is sometimes enhanced,dependently on the blockage orienta-tion.It is also found that the influence of in-hole blockage orientation behaves more significantly under higher blowing ratios.In a common sense,the in-hole blockage induces the coolant flow distortion,which is the main due for creating the film cooling difference of the imperfect hole from the perfect case.Under a smaller blowing ratio,the coolant flow distortion is recovered more easily,thus showing a relatively weaker influence.

    Fig.5 Effect of blockage position on laterally-averaged film cooling effectiveness(M=1.0,B=0.3).

    The influences of blocking ratio on the laterally averaged film cooling effectiveness distributions for a specific leadingexit blockage orientation are illustrated in Fig.7.Under M=0.5,the leading-exit orientation seems to have a little influence.Under M=1.0,the positive role of leading-exit blockage on improving film cooling appears.Under M=1.5,the enhancement of film cooling effectiveness by the leading-exit blockage behaves more significantly.Also,it is found that the leading-exit blockage with B=0.3 produces the highest film cooling effectiveness.

    3.3.Discharge coefficient

    Fig.8 presents the influence of blockage orientation on filmhole discharge coefficient under a fixed blocking ratio of 0.3.Here the Reynolds number of coolant flow(Rec)is defined as

    where μcis dynamic viscosity of the coolant.The parameters(such as ρcand uc)in this definition are selected as the corresponding values at the film-hole inlet.

    Fig.6 Laterally-averaged film cooling effectiveness under different blowing ratios(B=0.3).

    Fig.7 Laterally-averaged film cooling effectivenessunder different blocking ratios(leading-exit deposition).

    Compared with the perfect film cooling hole,it is confirmed that the in-hole blockage makes the discharge coefficient reduction under the same coolant flow Reynolds number.According to the definition of discharge coefficient,as illustrated in Eq.(4),it is also concluded that the in-hole blockage creates a larger pressure drop across the film hole to under the same coolant flow Reynolds number related to the perfect filmhole,which is well satisfactory with the previous investigation.4,11Of particular is that the film-hole discharge coefficient is tightly associated with the blockage orientation.For examples,for the in-hole blockage deposited at leading edge of film hole,the leading-exit blockage seems to produce the most serious pressure drop.While for the in-hole blockage deposited at trailing edge of film hole,it is found the trailing-inlet deposition has the strongest influence on the film-hole discharge coefficient.In the situations of leading-exit and trailing-inlet blockage deposition,the reduction of film-hole discharge coefficient is approximately 50%related to the perfect film-hole,reflecting that the internal flows of coolant inside film hole are distorted more seriously.

    Fig.8 Effect of blockage orientation on film-hole discharge coefficient(B=0.3).

    Fig.9 shows the influence of in-hole blockage size on film hole discharge coefficient for a specific leading-exit blockage.It is seen that the discharge coefficient decreases with the increase of blocking ratio varying from 0.1 to 0.4,which means that a larger pressure ratio()is needed for the bigger blocking ratio case to achieve the same coolant mass- flow as that of perfect film-hole.

    Fig.9 Effect of blocking ratio on film-hole discharge coefficient(leading-exit deposition).

    4.Conclusions

    The effects of in-hole blockage on the flat-plate film cooling behaviors are investigated experimentally.A specifically pyramid-shaped element is used for simulating the in-hole blockage.Six representative in-hole blockage orientations and four blocking ratios are taken into considerations.The main conclusions are summarized as the followings:

    (1)In-hole blockage orientation shows complicated roles on the film cooling effectiveness.In general,the in-hole blockages except for the leading-exit blockage orientation produce detrimental influence on the film cooling effectiveness,especially for the trailing-exit blockage orientation.

    (2)The influence of in-hole blockage on the film cooling effectiveness is significant under high blowing ratios.With regard to leading-exit blockage orientation,it is found that the leading-exit blockage with a blocking ratio of 0.3 produces the highest film cooling effectiveness.

    (3)In-hole blockage makes discharge coefficient reduction under the same coolant Reynolds number.The leading-exit and trailing-inlet blockage orientations produce the most serious pressure drop across the film hole related to the perfect film-hole.As the blocking ratio increases,the discharge coefficient decreases rapidly.

    Acknowledgements

    The authors gratefully acknowledge the financial support for this project from the National Natural Science Foundation of China(Nos.51276090 and U1508212).

    1.Hamed A,Tabak off W,Wenglarz R.Erosion and deposition in turbomachinery.J.Propulsion Power 2006;22(2):350–60.

    2.Walsh WS,Thole KA,Joe C.Effects of sand ingestion on the blockage of film-cooling holes.New York:ASME;2006.Report No.:GT2006-90067.

    3.Zhou JH,Zhang JZ.Numerical investigation on particle deposition characteristic inside turbine cascade.Acta Aeronautica et Astronautica Sinica 2013;34(11):2492–9[Chinese].

    4.Bunker RS.Effect of partial coating blockage on film cooling effectiveness.New York:ASME;2000.Report No.:2000-GT-0244.

    5.Jovanovic MB,De Lange HC,Van Steenhoven AA.Influence of laser drilling imperfection on film cooling performances.New York:ASME;2005.Report No.:GT2005-68251.

    6.Bunker RS.A review of shaped hole turbine film-cooling technology.J Heat Transf 2005;127(4):441–53.

    7.Gritsch M,Colban W,Schar H,Dobbeling K.Effect of hole geometry on the thermal performance of fan-shaped film cooling holes.J Turbomach 2005;127(4):718–25.

    8.Okita Y,Nishiura M.Film effectiveness performance of an arrowhead-shaped film-cooling hole geometry.J Turbomach 2007;129(2):331–9.

    9.Liu CL,Zhu HR,Bai JT,Xu DC.Experimental research on film cooling characteristics of converging-expanding hole rows on turbine blade surface.Acta Aeronautica et Astronautica Sinica 2010;31(4):687–93[Chinese].

    10.Yao Y,Zhang JZ,He F,Guo W.Numerical investigation on film cooling effectiveness of converging slot hole at turbine blade suction surface.Acta Aeronautica et Astronautica Sinica 2010;31(6):1115–20[Chinese].

    11.Yang CF,Zhang JZ.Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs.Exp Therm Fluid Sci 2012;37(3):113–20.

    12.Ding Y,Chang HP,Du ZN.Investigation on characteristics of multiple rows of opposite lateral ejection angle film cooling.Acta Aeronautica et Astronautica Sinica 2013;34(11):2472–81[Chinese].

    13.Jovanovic MB,De Lange HC,Van Steenhoven AA.Influence of hole imperfection on jet cross flow interaction.Int J Heat Fluid Flow 2006;27(1):42–53.

    14.Jovanovic MB,De Lange HC,Van Steenhoven AA.Effect of hole imperfection on adiabatic film cooling effectiveness.Int J Heat Fluid Flow 2008;29(2):377–86.

    15.Somawardhana RP,Bogard DG.Effects of obstructions and surface roughness on film cooling effectiveness with and without a transverse trench.J Turbomach 2009;131(1):011010.

    16.Whit field CA,Schroeder RP,Thole KA,Scott DL.Blockage effects from simulated thermal barrier coatings for cylindrical and shaped cooling holes.J Turbomach 2015;137(9):091004.

    17.Na S,Cunha FJ,Chyu MK,Shih T.Effects of coating blockage and deposit on film-cooling effectiveness and surface heat transfer.Reston:AIAA;2006.Report No.:AIAA-2006-0024.

    18.Nemdili F,Azzi A,Jubran BA.Numerical investigation of the influence of a hole imperfection on film cooling effectiveness.Int J Numer Meth Heat Fluid Flow 2011;21(1):46–60.

    19.Pan CX,Zhang JZ,Huang KN.Numerical investigation of partial blockage effect on film cooling effectiveness.Math Probl Eng 2014;2014(6):1–13.

    20.Nasir H,Acharya S,Ekkad S.Improved film cooling from cylindrical angled holes with triangular tabs:Effect of tab orientations.Int J Heat Fluid Flow 2003;24(5):657–68.

    21.Lu YP,Dhungel A,Ekkad SV,Bunker RS.Effect of trench width and depth on film cooling from cylindrical holes embedded in trenches.J Turbomach 2009;131(1):011003.

    高清在线国产一区| 老司机深夜福利视频在线观看| 精品久久久精品久久久| 国产三级在线视频| 久久久水蜜桃国产精品网| 久久精品国产亚洲av高清一级| 国产成人一区二区三区免费视频网站| 色综合婷婷激情| 999久久久精品免费观看国产| 日韩欧美一区视频在线观看| av超薄肉色丝袜交足视频| 久久精品国产99精品国产亚洲性色 | 80岁老熟妇乱子伦牲交| 久久中文字幕一级| 亚洲成a人片在线一区二区| 我的亚洲天堂| 一进一出抽搐gif免费好疼 | 久久精品亚洲熟妇少妇任你| 午夜影院日韩av| 国产成人精品在线电影| 国产亚洲欧美98| 成人精品一区二区免费| 精品人妻1区二区| 国产亚洲欧美在线一区二区| 中文欧美无线码| 国产片内射在线| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 国产精品av久久久久免费| 人人妻人人澡人人看| 最近最新中文字幕大全电影3 | 黄色丝袜av网址大全| 亚洲av五月六月丁香网| 久久国产乱子伦精品免费另类| 免费高清在线观看日韩| 人人妻人人澡人人看| 性欧美人与动物交配| 久久久国产成人精品二区 | 国产男靠女视频免费网站| 男女床上黄色一级片免费看| 两性夫妻黄色片| 成人影院久久| 亚洲精品国产区一区二| videosex国产| 久久久精品国产亚洲av高清涩受| 国内久久婷婷六月综合欲色啪| 伦理电影免费视频| 黄色视频,在线免费观看| 成年人黄色毛片网站| √禁漫天堂资源中文www| 日本vs欧美在线观看视频| 国产精品一区二区免费欧美| 午夜91福利影院| 亚洲国产精品合色在线| 搡老乐熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 国产三级在线视频| 亚洲av日韩精品久久久久久密| 丝袜人妻中文字幕| 99在线视频只有这里精品首页| 亚洲国产中文字幕在线视频| 人人妻人人添人人爽欧美一区卜| 国产伦一二天堂av在线观看| 激情视频va一区二区三区| 欧美日本亚洲视频在线播放| 久久精品国产清高在天天线| 琪琪午夜伦伦电影理论片6080| 一个人观看的视频www高清免费观看 | 丰满迷人的少妇在线观看| 久久精品亚洲熟妇少妇任你| 91字幕亚洲| 在线观看一区二区三区激情| 岛国视频午夜一区免费看| 亚洲国产欧美一区二区综合| aaaaa片日本免费| 国产在线精品亚洲第一网站| 又黄又粗又硬又大视频| 亚洲专区中文字幕在线| 丰满的人妻完整版| 一个人免费在线观看的高清视频| a在线观看视频网站| 国产97色在线日韩免费| 搡老乐熟女国产| 亚洲国产欧美网| 久热爱精品视频在线9| 最好的美女福利视频网| 日韩 欧美 亚洲 中文字幕| 黄色视频不卡| 18美女黄网站色大片免费观看| 亚洲人成伊人成综合网2020| 精品一区二区三区四区五区乱码| 人妻久久中文字幕网| 窝窝影院91人妻| 久久人妻福利社区极品人妻图片| 91成年电影在线观看| 国产成人精品久久二区二区91| 亚洲人成电影免费在线| 无限看片的www在线观看| 97碰自拍视频| 日韩欧美免费精品| 国产激情久久老熟女| 久久国产精品影院| 色综合站精品国产| 欧美一级毛片孕妇| 日本黄色视频三级网站网址| 国产成人精品在线电影| 国产亚洲欧美98| 老司机亚洲免费影院| 午夜福利欧美成人| 久久精品亚洲av国产电影网| 国产精品野战在线观看 | 亚洲欧美激情综合另类| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 女警被强在线播放| www.精华液| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区mp4| 天天影视国产精品| 国产精品久久久人人做人人爽| 久久99一区二区三区| 十分钟在线观看高清视频www| 久久精品国产综合久久久| 老汉色∧v一级毛片| 最好的美女福利视频网| 午夜a级毛片| 亚洲av电影在线进入| a在线观看视频网站| 欧美成人免费av一区二区三区| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区| 久久香蕉激情| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| avwww免费| 国产成人影院久久av| 精品久久久久久久久久免费视频 | 午夜福利在线免费观看网站| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费 | 欧美日韩乱码在线| 欧美久久黑人一区二区| 亚洲自拍偷在线| 久久亚洲真实| 看片在线看免费视频| 新久久久久国产一级毛片| 美女高潮到喷水免费观看| 色综合站精品国产| 国产精品影院久久| 国产成人精品在线电影| 国产成人欧美在线观看| 亚洲一区二区三区不卡视频| 日本免费一区二区三区高清不卡 | 村上凉子中文字幕在线| 99在线人妻在线中文字幕| 亚洲黑人精品在线| 久久午夜亚洲精品久久| 欧美成人免费av一区二区三区| 男男h啪啪无遮挡| 久久 成人 亚洲| 两个人看的免费小视频| 午夜日韩欧美国产| 99国产精品一区二区三区| 亚洲成人精品中文字幕电影 | 欧美乱色亚洲激情| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 老司机亚洲免费影院| 欧美激情 高清一区二区三区| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 亚洲成国产人片在线观看| 又紧又爽又黄一区二区| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线| 亚洲精品成人av观看孕妇| 久久久国产精品麻豆| 一级片'在线观看视频| 身体一侧抽搐| 交换朋友夫妻互换小说| 一区二区三区国产精品乱码| 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 国产成人精品在线电影| 国产麻豆69| 99久久99久久久精品蜜桃| cao死你这个sao货| 很黄的视频免费| 日韩大尺度精品在线看网址 | 精品国产乱子伦一区二区三区| 丝袜美足系列| 777久久人妻少妇嫩草av网站| 日韩精品免费视频一区二区三区| 午夜精品在线福利| a级毛片黄视频| 在线免费观看的www视频| aaaaa片日本免费| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 久久人妻av系列| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 91在线观看av| 另类亚洲欧美激情| 最新在线观看一区二区三区| 黄色成人免费大全| 久久中文字幕一级| 麻豆一二三区av精品| 国产不卡一卡二| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区| 国产精品二区激情视频| svipshipincom国产片| 纯流量卡能插随身wifi吗| 黄频高清免费视频| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 国产欧美日韩一区二区三区在线| 国产精品偷伦视频观看了| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站 | 国产精品日韩av在线免费观看 | 亚洲欧美日韩另类电影网站| 性色av乱码一区二区三区2| 日韩大尺度精品在线看网址 | 久久久久久久久久久久大奶| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| www.熟女人妻精品国产| 精品久久久久久,| 男人操女人黄网站| 欧美激情久久久久久爽电影 | 午夜老司机福利片| 国产一区二区三区视频了| 亚洲av第一区精品v没综合| 国产99久久九九免费精品| 亚洲片人在线观看| 精品欧美一区二区三区在线| 国产三级在线视频| 热99re8久久精品国产| 在线观看免费视频日本深夜| 亚洲av熟女| 一级毛片高清免费大全| 天堂动漫精品| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 制服诱惑二区| 亚洲 欧美 日韩 在线 免费| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 国产蜜桃级精品一区二区三区| 精品久久久久久电影网| 国产成人欧美| 久久精品91无色码中文字幕| 亚洲午夜精品一区,二区,三区| 午夜福利在线免费观看网站| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三| 性欧美人与动物交配| 国产欧美日韩一区二区三区在线| 成年人黄色毛片网站| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产 | 久久中文看片网| 亚洲欧美精品综合久久99| 欧美+亚洲+日韩+国产| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 国产成人精品在线电影| 美女福利国产在线| 久久久水蜜桃国产精品网| 成人影院久久| 久久久久久人人人人人| a级片在线免费高清观看视频| 亚洲专区中文字幕在线| 国产精品二区激情视频| 一级作爱视频免费观看| 在线国产一区二区在线| 午夜免费观看网址| e午夜精品久久久久久久| 一区二区三区激情视频| 免费观看人在逋| 最新美女视频免费是黄的| 欧美av亚洲av综合av国产av| 午夜精品在线福利| 9热在线视频观看99| 91成年电影在线观看| 丰满迷人的少妇在线观看| 日本欧美视频一区| 午夜精品久久久久久毛片777| 亚洲午夜精品一区,二区,三区| 久久精品人人爽人人爽视色| 久久影院123| 亚洲国产精品sss在线观看 | 两性夫妻黄色片| 国产1区2区3区精品| 丝袜在线中文字幕| 久久精品aⅴ一区二区三区四区| 日韩大码丰满熟妇| 看免费av毛片| 男女做爰动态图高潮gif福利片 | 日日爽夜夜爽网站| 国产午夜精品久久久久久| 黑人欧美特级aaaaaa片| 美女高潮喷水抽搐中文字幕| xxx96com| www.999成人在线观看| 久久伊人香网站| 男人舔女人下体高潮全视频| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 久久草成人影院| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 国产深夜福利视频在线观看| 热99re8久久精品国产| 欧美日韩亚洲高清精品| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 久久婷婷成人综合色麻豆| 桃红色精品国产亚洲av| 亚洲精品成人av观看孕妇| a级毛片在线看网站| 亚洲午夜精品一区,二区,三区| 天堂中文最新版在线下载| 欧美乱码精品一区二区三区| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看| av在线天堂中文字幕 | 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 欧美日本中文国产一区发布| 欧美最黄视频在线播放免费 | 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇熟女久久| avwww免费| 久久精品亚洲av国产电影网| 国产1区2区3区精品| ponron亚洲| 精品久久久久久久毛片微露脸| 精品久久蜜臀av无| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 国产免费男女视频| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 一个人观看的视频www高清免费观看 | 精品日产1卡2卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧美丝袜亚洲另类 | 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 久久人妻熟女aⅴ| av电影中文网址| 成在线人永久免费视频| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| av网站免费在线观看视频| 午夜激情av网站| 日韩av在线大香蕉| 久热爱精品视频在线9| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 一级片免费观看大全| 亚洲专区国产一区二区| 久久九九热精品免费| 久热爱精品视频在线9| 国产黄色免费在线视频| 超碰97精品在线观看| 99在线视频只有这里精品首页| 亚洲成人久久性| 欧美日韩视频精品一区| 日本免费一区二区三区高清不卡 | 一级毛片高清免费大全| 日韩欧美免费精品| 美女国产高潮福利片在线看| 国产精品久久视频播放| 亚洲三区欧美一区| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 精品久久久久久成人av| 日本 av在线| 午夜久久久在线观看| 日韩欧美一区二区三区在线观看| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出 | 久久人妻熟女aⅴ| 国产精品乱码一区二三区的特点 | 可以免费在线观看a视频的电影网站| 日本欧美视频一区| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 高清在线国产一区| 亚洲第一青青草原| 日日爽夜夜爽网站| 亚洲九九香蕉| 美女国产高潮福利片在线看| 超色免费av| 一区二区三区激情视频| 女警被强在线播放| 久久国产乱子伦精品免费另类| www国产在线视频色| 国产成人系列免费观看| 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 国产99久久九九免费精品| 国产免费现黄频在线看| 在线十欧美十亚洲十日本专区| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 亚洲少妇的诱惑av| 日韩欧美在线二视频| 亚洲视频免费观看视频| 一级毛片精品| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 91字幕亚洲| 女人被狂操c到高潮| 国产又爽黄色视频| 最新美女视频免费是黄的| 亚洲一区二区三区色噜噜 | 午夜激情av网站| 在线观看免费日韩欧美大片| 嫩草影视91久久| 久久久久久亚洲精品国产蜜桃av| avwww免费| xxx96com| 免费高清在线观看日韩| 成年版毛片免费区| 久久午夜亚洲精品久久| 最好的美女福利视频网| 色尼玛亚洲综合影院| 亚洲久久久国产精品| 国产成人精品久久二区二区免费| 最近最新中文字幕大全免费视频| 午夜两性在线视频| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久影院123| 国产一区二区激情短视频| 一本大道久久a久久精品| 电影成人av| 欧美亚洲日本最大视频资源| 国产97色在线日韩免费| 国产精品国产av在线观看| 亚洲色图综合在线观看| 天堂中文最新版在线下载| 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 国产三级在线视频| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华精| 悠悠久久av| 欧美黄色淫秽网站| 国产91精品成人一区二区三区| 精品国内亚洲2022精品成人| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区精品视频观看| 欧美人与性动交α欧美精品济南到| 午夜影院日韩av| 高清在线国产一区| videosex国产| 水蜜桃什么品种好| 别揉我奶头~嗯~啊~动态视频| 波多野结衣av一区二区av| 亚洲精品国产色婷婷电影| 女生性感内裤真人,穿戴方法视频| 老司机深夜福利视频在线观看| 亚洲人成电影观看| av中文乱码字幕在线| 久久伊人香网站| 久久香蕉国产精品| 欧美精品啪啪一区二区三区| tocl精华| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂| 丝袜美腿诱惑在线| 黄网站色视频无遮挡免费观看| 免费在线观看亚洲国产| 国产精品久久久av美女十八| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 真人一进一出gif抽搐免费| 波多野结衣av一区二区av| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 97人妻天天添夜夜摸| 精品熟女少妇八av免费久了| 在线观看一区二区三区| 窝窝影院91人妻| 久久99一区二区三区| 亚洲精品中文字幕在线视频| 中出人妻视频一区二区| 亚洲精品美女久久久久99蜜臀| 搡老熟女国产l中国老女人| 1024视频免费在线观看| 欧美+亚洲+日韩+国产| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 手机成人av网站| 欧美日韩福利视频一区二区| 99re在线观看精品视频| 亚洲情色 制服丝袜| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 麻豆一二三区av精品| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址 | 久久精品人人爽人人爽视色| 变态另类成人亚洲欧美熟女 | 咕卡用的链子| 超色免费av| 亚洲成人免费av在线播放| 亚洲情色 制服丝袜| 国产亚洲精品久久久久5区| 久久久久久免费高清国产稀缺| 首页视频小说图片口味搜索| 亚洲久久久国产精品| 国产精品乱码一区二三区的特点 | 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 嫩草影视91久久| 亚洲精品国产色婷婷电影| 国产av精品麻豆| 日本黄色视频三级网站网址| 可以免费在线观看a视频的电影网站| 99精品欧美一区二区三区四区| 高清欧美精品videossex| 后天国语完整版免费观看| 日韩 欧美 亚洲 中文字幕| 国产精品野战在线观看 | 18禁观看日本| 夫妻午夜视频| 成人亚洲精品一区在线观看| 一边摸一边做爽爽视频免费| 欧美中文日本在线观看视频| 十八禁网站免费在线| 激情在线观看视频在线高清| 午夜老司机福利片| 亚洲第一青青草原| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品久久久久久毛片777| 亚洲片人在线观看| 国产亚洲精品综合一区在线观看 | av中文乱码字幕在线| 两个人看的免费小视频| 亚洲国产精品一区二区三区在线| 亚洲全国av大片| 天堂影院成人在线观看| 国产伦人伦偷精品视频| 久久婷婷成人综合色麻豆| 午夜久久久在线观看| 国产欧美日韩一区二区精品| 在线观看一区二区三区| 在线国产一区二区在线| 国产精品成人在线| 久久狼人影院| 热re99久久国产66热| 亚洲五月婷婷丁香| 99re在线观看精品视频| 色综合婷婷激情| 久久性视频一级片| 在线观看一区二区三区| 精品卡一卡二卡四卡免费| 亚洲国产欧美一区二区综合| 男女午夜视频在线观看| 脱女人内裤的视频| 午夜福利在线观看吧| 涩涩av久久男人的天堂| 免费观看精品视频网站| 国产精品久久视频播放| 天天躁狠狠躁夜夜躁狠狠躁| 久久 成人 亚洲| 超色免费av| av在线播放免费不卡| 91在线观看av| 真人一进一出gif抽搐免费| 两个人免费观看高清视频| 欧美日韩国产mv在线观看视频| 国产精品久久视频播放| 亚洲熟女毛片儿| x7x7x7水蜜桃| 亚洲成人国产一区在线观看| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 最好的美女福利视频网|