• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic temperature prediction of electronic equipment under high altitude long endurance conditions

    2018-06-28 11:04:32LipingPANGMioZHAOKunLUOYongliYINZhouYUE
    CHINESE JOURNAL OF AERONAUTICS 2018年6期

    Liping PANG,Mio ZHAO,Kun LUO,Yongli YIN,Zhou YUE

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    bNational Key Laboratory of Human Factors Engineering,China Astronaut Research and Training Center,Beijing 100094,China

    cAviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing 211102,China

    1.Introduction

    Unmanned Aerial Vehicles(UAVs)mostly fly at low altitude for a short endurance,and thus their surveillance area is small.These UAVs cannot meet the needs of future war,so many countries are developing the High Altitude Long Endurance(HALE)UAVs.1HALE UAV is a kind of airborne vehicle flying at high altitude,and can fight for considerable long period without recourse to land.2Its power may be provided by thesolar and hydrogen energy.3–5However,HALE UAV will face a very harsh environment when it cruises at high altitude.According to the International Standard Atmosphere(ISA)1976,the atmospheric temperature and density are about–55 °C and 0.1 kg/m3,respectively,at the altitude of 10 –20 km.This harsh environment coupled with the high flight speed will make the heat transfer process become relatively complex.This will adversely affect the temperature control of electronic equipment.

    The strong effect of outside convection heat transfer will lead to a much lower temperature of airborne electronic equipment.Conversely,ifthe heatgenerated by the equipment cannot be dissipated effectively in the long flight process,the local temperature of equipment will be much higher.Both of these conditions can cause unstable work performance of electrical equipment.Therefore,it is of great significance to predict a node temperature of equipment and then to improve the thermal control according to the prediction results.6,7

    Usually,passive thermal management has a significant impact on the thermal balance of UAV during a long flight process.8–10In this paper,a thermal network analysis method will be developed for the HALE UAVs.The atmospheric environment model,the transient thermal model and the convective radiation model will be established.11The temperature simulation results of air and airborne electronic equipment are compared with the experimental results to verify the established model.12–14

    2.Computation scheme

    2.1.Thermal environment analysis for UAV

    The flight altitude and flight time of an HALE UAV will reach to 20000 m and 12 h,respectively.This will be a challenge for its thermal control performance especially when the HALE UAV uses passive thermal control technology.It needs to analyze its thermal environment and heat transfer process carefully.

    Fig.1 shows a typical flight thermal environment of UAV in a high altitude condition.This UAV uses passive thermal control technology based on a heat-pipe cold plate to maintain its temperature level of electronic equipment.The electric devices will transfer the heat to the passive thermal control device,the cabin walls and the cabin air.Outside factors,such as sun,atmosphere and earth,generate heat effects through the cabin walls.

    In Fig.1,there are six electrical devices in the cabin and they are installed on a cold plate where heat pipes are buried in advance.Six electric devices are installed on the cold plate in the UAV cabin,but only four devices are measured because there are two same groups of devices.The other two same devices will be considered in our thermal network model.But the temperature curves of four devices will be given in the following analysis.The internal heat transfer relationships include the convection between air and surface walls,the radiation and the heat conduction between the devices and the heat-pipe cold plate10.In addition,air leakage is also a nonignorable factor for the heat transfer due to its non-sealed surface design.The external thermal effects include:(A)the direct solar radiation;(B)the forced convection,the infrared radiation and the diffuse radiation of atmosphere;(C)the reflected solar radiation and infrared radiation of earth.

    Fig.1 Flight environment for UAV at a high altitude.

    In Fig.1,Te,irepresents the temperature of equipment node,i=1,2,...,6.Tairand Tuniare the temperatures of the cabin air and the cold plate,respectively.Tskin,Tbouand Tatmare the temperatures of the vehicle skin,vehicle boundary layer and the outside environment,respectively.QR,i,i=1,2,...,5,represent the radiation heat flux from the direct solar radiation,the infrared radiation and the diffuse radiation of atmosphere,the reflected solar radiation and the infrared radiation of earth.R is the thermal resistance,and its subscripts represent the thermal resistance relationship between two temperature nodes.

    For a high altitude UAV,the above external and internal thermal effects will affect the temperatures of electronic devices together.15The studied UAV adopts the passive thermal technology to control its internal thermal environment and meet the specified requirements.Therefore,it is necessary to evaluate its temperature change range when the high altitude UAV is in a state of long flight time.16

    Fig.2 shows the heat transfer network of UAV.In this study,the lumped parameter method is used,that is,a temperature node can represent its average temperature.17All of the surfaces are diffuse gray surfaces.There is not heat conduction between the equipment and the cabin wall.The devices only have a heat conduction relationship with the cold plate and have a convection relationship with the cabin air.The remaining internal surface of cold plate is so small that its internal radiation can be ignored.The cold plate can transfer the heat to the outside environment by convection and radiation.

    Fig.2 Thermal network diagram of heat transfer for UAV.

    The radiation resistance between the devices is not marked in the figure because of the crowded icons,but the way of their label is similar to R1,2.It should be noted that the heat transfer relationship,as shown in Fig.2,is only the one of Equipment 1 and the other thermal nodes.It is very similar for Equipment 2-Equipment 6,so the total thermal network diagram cannot be given totally here.

    2.2.Multi-node transient thermal model and boundary conditions

    2.2.1.Thermal network model

    Considering the above assumptions,the general equation of heat transfer for the equipment can be expressed as follows:

    where mi,ciand Qe,iare the mass,the specific heat and the inner heat source of Equipment i,respectively;τ is time;1/Duni,iis the contact thermal resistance between Equipment i and the cold plate;1/Ea,iis the thermal resistance of convection;Bskin,iand Bj,iare the equivalent radiation factors;σ is the Stefan-Boltzmann constant,5.67 × 10-8W/(m2·K4);n is the number of equipment,n=6.

    The average temperature of cabin air is given by the following equation:

    where mairand cvare the mass and the specific heat of air,respectively;1/Euni,aand 1/Eskin,aare the thermal resistances of convection;hairis the specific enthalpy of air.

    The temperature of skin can be given as follows:

    where mskin,cskinand Askinare the mass,the specific heat and the area of the UAV skin,respectively;1/Ebou,skinand 1/Eair,skinare the convection thermal resistances of outside and inside;εskinand αskinare the external emissivity and absorptivity of skin,respectively;ξskinis the index which takes into account the self-shadowing of the skin from the direct solar radiation.

    The temperature of the cold plate can be obtained as follows:

    where muni,cuniand Auniare the mass,the specific heat and the area of the heat-pipe cold plate,respectively;1/Ebou,uniis the outside convection thermal resistance; εuniand αuniare the externalemissivity and absorptivity of the cold plate,respectively.

    The equivalent radiation factor between node i and j,Bi,j,is calculated by the following equation:

    where Fi,jis the angle factor;Aiand εiare the area and the emissivity of node i,respectively.

    The boundary layer temperatures outside the vehicle,Tbou,can be obtained with Eq.(6)4:

    where Tatmis the atmospheric temperature at the flight altitude;Ma is the flight Mach number.

    The standard atmospheric parameters specified in ISA-1976 are used in this paper to obtain the atmospheric temperature and pressure change with the altitude.18

    2.2.2.Radiative fluxes

    The radiation heat fluxes,qR,i,i=1,2,...,5,can be calculated by the following equations:

    (1)Direct solar radiation heat flux7

    where τatmis the attenuation coefficient;I0is the average solar radiation intensity;e is the orbital eccentricity of the earth,e=0.0934;wTis the day angle.

    (2)Infrared and diffuse radiation heat fluxes of atmosphere19

    where Tskyis the equivalent blackbody temperature of atmosphere;pwis the partial pressure of vapor;Tais the environ-mental temperature near the UAV;γ is the solar elevation angle;Ptis the atmospheric transparency;m is the air quality.

    (3)Re flected solar radiation and infrared radiation heat fluxes of the earth19

    where ρGis the average reflection coefficient of ground;IDis the direct solar radiation at ground level;τatm,Gis the attenuation coefficient of ground reflected radiation;TGis the approximate temperature of earth.

    2.2.3.Convective heat transfer

    The Prandtl number,Pr,the Grashof number,Gr,the Rayleigh number,Ra,and the Reynolds number,Re,can be obtained by

    where μ is the absolute viscosity;cpis the specific heat at constant pressure;λ is the thermal conductivity;g is the gravity;ρ is the density;α is the volumetric expansion coefficient;Twalland Tfluidare the temperatures of wall and fluid respectively;vfluidis the velocity of the fluid;Lchais the characteristic length.

    Empirical equations are used to calculate the forced convective heat transfer coefficient of the external skin and the natural convective heat transfer coefficient in the cabin.The correlations to calculate the Nusselt number of forced convection are described as follows20:

    The Nusselt number for the natural convection in the cabin can be given by Eq.(10)20,21

    2.3.Model validation

    2.3.1.Experimental apparatus

    An experimental apparatus was set up to validate the above thermal equations.As shown in Fig.3,the experimental apparatus can produce a low-temperature and low-pressure environmentin its simulation chamber controlled by a temperature control unit and a pressure control unit.Hence the outside flight environmental parameters,Tenvand Penv,can be simulated in this chamber.A tested UAV electrical equipment cabin was placed in the experimental simulation chamber.

    The temperature control unit was composed of a refrigeration system and a heating system.The pressure control unit included a vacuum pump and an inlet valve.Temperature sensor measured the real-time temperature measurement data,which were recorded by a data logger.A recirculation fan was used to circulate the air in the experimental simulation chamber.The average wind velocity in the experimental simulation cabin could be calculated according to its cross-sectional area and the recirculation air flow rate.

    The physical parameters of electrical equipment are listed in Table 1.The thermal physical parameters of the cold plate,the skin and the equipment are listed in Table 2.

    The cold plate can realize an isothermal effect by the buried heat pipes,as shown in Fig.4.The dotted lines show the positions of the heat pipes buried in the cold plate.A previous experiment was conducted to test the uniform effect of cold plate.Ten temperature sensors were placed at the positions A1to A5and B1to B5.The power of thermal resistance was controlled to simulate the heating effect of electrical equipment.The results show that the temperature difference at each end of the heat pipe was less than 1°C.Therefore,the cold plate can be considered as an isothermal temperature node.

    The contact thermal resistance has a great influence on the simulation results in the thermal net analysis.According to the installation pressure between the equipment and the cold plate,the contact thermal conductivity can be determined with Table 3 by using the linear difference method.22,23Then the contact thermal resistance can be obtained correspondingly.

    2.3.2.Temperature correction

    In this study,the temperature measurement accuracy of thermocouple was corrected before the experiment.A standard thermocouple and the least square method were used to deal with the experimental data.Supposing that the jth temperature measured by the standard thermocouple is yj,and the corresponding temperature measured by the experimental thermocouple is xj,we transform the value measured by the experimental thermocouple into the standard value through the following linear fitting formula:

    Fig.3 Flowchart of experimental apparatus.

    Table 1 Physical parameters of devices.

    Table 2 Thermal physical parameters.

    Fig.4 Positions of heat pipes in cold plate.

    Table 3 Relationship between contact thermal conductivity and contact pressure.

    By measuring a series of values at different temperatures,the value ofandcan be given as follows:

    wherex andare the average values of xjand yj,respectively;n is the total number of measured data.

    2.3.3.Experimental conditions

    The temperature and pressure control curves in the environment simulation chamber are shown in Fig.5.

    The outside radiation heats were not considered in this experiment.In addition,the outside convection effect was only caused by the air velocity in the simulation chamber,so it cannot reflect the real outside convection caused by the flight Mach number.

    2.3.4.Comparison between simulation and experimental results

    According to the experimental conditions,a thermodynamic analysis code based on the proposed multi-node transient heat model was developed to simulate the whole experimental process.The experimental results were used to evaluate the proposed model.Fig.6 shows the comparison results of Equipment 1-Equipment 4.

    The above comparisons show that the change trend of simulation temperature curves matches the experimental temperature curves very well,and the maximum absolute difference between the experimental data and the simulation results is about 7°C in Fig.6(d).Based on the above comparison results,the thermal analysis code is reliable.Therefore,it can be used to predict the thermal responses of electrical equipment cabin under a certain flight mission.

    3.Prediction results

    Fig.5 Control curves of experimental temperature and pressure in chamber.

    Fig.6 Comparison between experimental and simulation results for electrical equipment.

    The thermal responses of equipment and cabin air in a hypothetical flight mission will be studied by using the above simulation code.The external radiation and convection effect in Eqs.(8)–(10)will be taken into account.Fig.7 shows the flight mission curves,in which the flight altitude will reach to 20000 m,and the flight duration will be more than twelve hours.

    In this section,the influence of the flight speed and external radiation on the heat transfer will be analyzed by the simulation comparison.The simulation conditions of flight speed and external radiation will be summarized into the following three simulation cases,see Table 4.

    According to the above three simulation conditions,the simulation results are given in the following.

    3.1.Temperature prediction results in Case 1

    Fig.8 shows the temperature changes in Case 1.Fig.8(a)is the temperature response curves of the atmosphere,the cabin air,the boundary and the skin.Fig.8(b)is the temperature responses of electrical devices and the cold plate.

    Compared with the results in Fig.6,the lower limits of temperature in Fig.8 are a little lower because the ambient temperature of Case 1 is lower.

    3.2.Temperature prediction results in Case 2

    Fig.9 shows the temperature changes in Case 2.Compared with the results in Fig.8,we can observe that:

    Fig.7 Flight mission curves.

    Table 4 Simulation cases.

    Fig.8 Temperature changes of nodes in Case 1.

    (1)In the altitude of 20000 m,the temperature change range of cabin air is from-30 °C to-10 °C,and the one of skin is from-40 °C to 0 °C.The total temperature levels in Fig.9(a)increase obviously compared with Fig.8(a)under the effect of the external radiation fluxes.

    (2)With the external radiation effect,the upper-lower limits of device temperature also become higher than the ones in Case 1.But they have the same temperature change trend.

    (3)Because of the simulation condition of low flight speed,the outside heat transfer coefficient is small,and its value is about 10 W/(m2·K).

    (4)In Fig.9(b),the temperature of the cold plate is lower than the one of the equipment.The temperature values of equipment are different because of different thermal resistances and internal heat source.

    Fig.9 Temperature changes of nodes in Case 2.

    (5)In Figs.8(a)and 9(a),the curves of ambient temperature and boundary temperature coincide.

    3.3.Temperature prediction results in Case 3

    Fig.10 shows the temperature changes in Case 3.Compared with the results in Fig.9,we can observe that:

    (1)In the simulation condition of high flight speed,Tairand Tskindecrease,and tend to be stable at-30°C and-40°C,respectively.Tairdecreases to 0–20 °C,and Tskindecreases to 0–40 °C.

    (2)The upper-lower limits of temperature change range become much smaller than the ones in Case 1.The average temperature level is greatly pulled down from Figs.9(b)to 10(b).Therefore,the external convection effect plays a very important role in the temperature control of electrical equipment cabin.

    (3)The temperature changes of equipment lag behind the ones of the cold plate.

    (4)All of the temperatures quickly reach a steady state because of strong convection,and the value of external convective heat transfer coefficient is about 280 W/(m2·K).

    Fig.10 Temperature changes of nodes in Case 3.

    4.Conclusions

    The study on cabin temperature response is of great significance for the thermal management of UAV.A multi-node transient model is established and calibrated by an experimental apparatus in this paper.A thermal simulation code for the UAV is built based on the calibrated model.It can predict and study the thermal response and thermal balance level of electrical equipment.

    (1)According to the features of HALE UAV,a multi-node transient model,which includes the internal and external heat transfer factors,is established in this paper.

    (2)An experimental bench with six electrical devices was installed in the simulation chamber.A typical flight condition was simulated by controlling the temperature and pressure in the chamber.The established model is corrected according to the experimental results.Then a thermodynamic analysis code is programmed to predict the thermal changes of electrical equipment cabin.

    (3)Three simulation cases are conducted.By comparison of prediction results of Case 1 and Case 2,the external radiation has a certain effect on the thermal changes of electrical equipment cabin.It will raise the temperature level to some extent,but its impact is limited.

    (4)The high flight speed condition in Case 3 has an obvious influence on the thermal responds of electrical equipment cabin.The total temperature level is pulled down greatly due to the effect of outside high-speed forced convection even with the presence of low atmospheric pressure and low density.

    Acknowledgments

    The authors gratefully acknowledge the financial support of National Key R&D Program of China (No.2017YFB1201100).

    1.Jamison L,Sommer GS,Iii IRP.High-altitude airships for the future force army.Santa Monica:Rand Corporation;2005.

    2.Goraj Z,Frydrychiewicz A,Winiecki J.Design concept of a highaltitude long-endurance unmanned aerial vehicle.Aircr Des 1999;2(1):19–44.

    3.Barbosa R,Escobar B,Sanchez VM,Hernandez J,Acosta R,Verde Y.Sizing of a solar/hydrogen system for high altitude long endurance aircrafts.Int J Hydrogen Energy 2014;39(29):16637–45.

    4.Romeo G,Frulla G,Cestino E.Design of a high-altitude longendurance solar-powered unmanned air vehicle for multi-payload and operations.Proc Inst Mech Eng,Part G:J Aerospace Eng 2005;221(2):199–216.

    5.Peng WG,He YR,Wang XZ,Zhu JQ,Han JC.Thermal protection mechanism of heat pipe in leading edge under hypersonic conditions.Chin J Aeronaut 2015;28(1):121–32.

    6.Su XH,Xu F.Transient thermal analysis of a plate fin heat sink with Green’s function.Chin J Aeronaut 2011;24(3):243–8.

    7.Yao W,Lu X,Wang C,Ma R.A heat transient model for the thermal behavior prediction of stratospheric airships.Appl Therm Eng 2014;70(1):380–7.

    8.Gao XZ,Hou ZX,Guo Z,Liu JX,Chen XQ.Energy management strategy for solar-powered high-altitude long-endurance aircraft.Energy Convers Manage 2013;70:20–30.

    9.Shang B,Ma Y,Hu R,Chao Y,Hu JY,Luo XB.Passive thermal management system for downhole electronics in harsh thermal environments.Appl Therm Eng 2017;118:593–9.

    10.Phillips AL,Wert KL.Skin as radiator-passive thermal management for high altitude long endurance-UAVs.34th intersociety energy conversion engineering conference.Vancouver:SAE Technical Paper;1999.p.2501-8.

    11.Alam MI,Pant RS.A multi-node model for transient heat transfer analysis of stratospheric airships.Adv Space Res2017;59(12):3023–35.

    12.Lemmens YCJ,Benoit T,Roo RD,Verbeke J.Real-time simulation of an integrated electrical system of a UAV.Cheminform 2014;36(14):2637–40.

    13.Wu BH,Cui D,He XD,Zhang DH,Tang K.Cutting tool temperature prediction method using analytical model for end milling.Chin J Aeronaut 2016;29(6):1788–94.

    14.Lu P,Geng Q.Real-time simulation system for UAV based on Matlab/Simulink.International conference on computing,control and industrial engineering.Piscataway:IEEE Press;2011.p.399-404.

    15.Ba?ri A.Transient thermal characteristics of airborne electronic equipment with discrete hot bands in square cavities.Appl Energy 2008;85(10):951–67.

    16.Qiu ZZ,Pang LP,Li GX,Zhang HL.Numerical simulation of cabin ventilation subsystem in space station oriented real-time system.Chin J Aeronaut 2017;30(6):1809–17.

    17.Alyanak EJ,Allison DL.Fuel thermal management system consideration in conceptual design sizing.57th AIAA/ASCE/AHS/ASC structures,structural dynamics,and materials conference;2016 January 4-8;San Diego,USA.Reston:AIAA;2016.

    18.Goswami DY,Kreith F,Kreider JF.Principles of solar engineering.Boca Raton:CRC Press;2015.

    19.Dai QM,Fang XD,Li XJ,Tian LL.Performance simulation of high altitude scientific balloons.Adv Space Res 2012;49(6):1045–52.

    20.Dewitt DP,Incropera FP.Fundamentals of heat and mass transfer.New York:John Wiley&Sons;2002.p.27–139.

    21.Ba?ri A,García de María JM,Ba?ri I,Laraqi N,Zarco-Pernia E,Alilat N.2D transient natural convection in diode cavities containing an electronic equipment with discrete active bands under constant heat flux.Int J Heat Mass Transfer 2012;55(19–20):4970–80.

    22.Min GR.Thermal control technology of satellite.Beijing:China Astronautic Publishing House;1991[Chinese].

    23.Yang SM,Tao WQ.Heat transfer.Beijing:Higher Education Press;2006[Chinese].

    av线在线观看网站| 午夜老司机福利片| 亚洲精品国产色婷婷电影| 大片电影免费在线观看免费| 又黄又粗又硬又大视频| 丝袜在线中文字幕| 国产日韩欧美视频二区| 亚洲欧美精品综合一区二区三区| 午夜两性在线视频| 999久久久国产精品视频| 人人妻,人人澡人人爽秒播| 丝袜在线中文字幕| 老汉色∧v一级毛片| 久久久久久久国产电影| 在线亚洲精品国产二区图片欧美| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 亚洲欧美一区二区三区久久| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区 | 我的亚洲天堂| 自拍欧美九色日韩亚洲蝌蚪91| 极品人妻少妇av视频| 国产精品亚洲av一区麻豆| 久久国产亚洲av麻豆专区| 超碰97精品在线观看| 欧美午夜高清在线| 亚洲性夜色夜夜综合| 少妇裸体淫交视频免费看高清 | 肉色欧美久久久久久久蜜桃| 岛国毛片在线播放| 亚洲人成77777在线视频| 国产色视频综合| 国产人伦9x9x在线观看| 国产成人欧美| 人人妻人人澡人人爽人人夜夜| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| 性少妇av在线| 久久精品亚洲熟妇少妇任你| 国产精品国产av在线观看| 夜夜爽天天搞| 大片电影免费在线观看免费| 久久久久网色| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 色播在线永久视频| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 99热网站在线观看| 91九色精品人成在线观看| 99久久人妻综合| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| 国产成人精品无人区| 一级片'在线观看视频| 免费日韩欧美在线观看| 两个人免费观看高清视频| 人成视频在线观看免费观看| 最新美女视频免费是黄的| 国产亚洲一区二区精品| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 三级毛片av免费| 国产成人精品久久二区二区免费| 国产在线一区二区三区精| 国产三级黄色录像| 老鸭窝网址在线观看| 欧美亚洲 丝袜 人妻 在线| av福利片在线| 久久ye,这里只有精品| 成人精品一区二区免费| 一本综合久久免费| 欧美日韩av久久| 老司机靠b影院| 国产精品麻豆人妻色哟哟久久| 中文字幕另类日韩欧美亚洲嫩草| svipshipincom国产片| 又紧又爽又黄一区二区| 精品少妇黑人巨大在线播放| 亚洲国产av新网站| 色婷婷久久久亚洲欧美| 亚洲成人国产一区在线观看| 黄色片一级片一级黄色片| 亚洲欧美一区二区三区久久| 热99久久久久精品小说推荐| 最黄视频免费看| 真人做人爱边吃奶动态| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 午夜久久久在线观看| 九色亚洲精品在线播放| 黄色视频不卡| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 午夜福利乱码中文字幕| 国产精品成人在线| 黄色a级毛片大全视频| 婷婷成人精品国产| 久久中文字幕一级| 久久久国产一区二区| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 一边摸一边抽搐一进一出视频| 另类亚洲欧美激情| 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 久热爱精品视频在线9| 国产伦理片在线播放av一区| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| 国产激情久久老熟女| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 成年女人毛片免费观看观看9 | 国产亚洲一区二区精品| 国产有黄有色有爽视频| 国产aⅴ精品一区二区三区波| 热re99久久精品国产66热6| 捣出白浆h1v1| 极品人妻少妇av视频| 亚洲一区中文字幕在线| 国产欧美日韩精品亚洲av| 黄色片一级片一级黄色片| 日日夜夜操网爽| 国产精品99久久99久久久不卡| 91字幕亚洲| 午夜福利乱码中文字幕| 女性生殖器流出的白浆| 国产免费福利视频在线观看| tocl精华| 色综合欧美亚洲国产小说| 法律面前人人平等表现在哪些方面| 国产免费视频播放在线视频| 一级黄色大片毛片| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲综合一区二区三区_| 首页视频小说图片口味搜索| 亚洲欧美一区二区三区久久| 婷婷成人精品国产| 国产91精品成人一区二区三区 | 日本av手机在线免费观看| 久久久久网色| 男女午夜视频在线观看| 19禁男女啪啪无遮挡网站| 超色免费av| 多毛熟女@视频| 天天躁日日躁夜夜躁夜夜| 极品少妇高潮喷水抽搐| 91国产中文字幕| 中文字幕高清在线视频| 国产精品国产av在线观看| av福利片在线| 天堂8中文在线网| 曰老女人黄片| 纯流量卡能插随身wifi吗| 久久狼人影院| av有码第一页| 欧美乱妇无乱码| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 91成人精品电影| 午夜福利在线免费观看网站| 女警被强在线播放| 夜夜骑夜夜射夜夜干| 国产不卡av网站在线观看| 人人妻人人澡人人看| 国产精品国产高清国产av | 十八禁人妻一区二区| 美女福利国产在线| 亚洲视频免费观看视频| 99久久精品国产亚洲精品| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 久久影院123| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 最新美女视频免费是黄的| av天堂在线播放| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区激情| bbb黄色大片| 手机成人av网站| 欧美日本中文国产一区发布| 黄色丝袜av网址大全| 18禁观看日本| 在线观看免费日韩欧美大片| 曰老女人黄片| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 丝袜在线中文字幕| 久久久久久久精品吃奶| 欧美日韩国产mv在线观看视频| 两个人免费观看高清视频| 午夜老司机福利片| 黄色成人免费大全| 男女之事视频高清在线观看| 国产1区2区3区精品| av在线播放免费不卡| 美女主播在线视频| 亚洲欧美激情在线| 精品福利永久在线观看| 午夜91福利影院| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 午夜福利欧美成人| 亚洲国产精品一区二区三区在线| 国产精品亚洲av一区麻豆| 在线观看免费高清a一片| 丝瓜视频免费看黄片| 黑人巨大精品欧美一区二区mp4| 日本欧美视频一区| videosex国产| 无人区码免费观看不卡 | 高清视频免费观看一区二区| 丝袜人妻中文字幕| av一本久久久久| 女同久久另类99精品国产91| 亚洲视频免费观看视频| 中文欧美无线码| 脱女人内裤的视频| tube8黄色片| 成年人黄色毛片网站| 夜夜骑夜夜射夜夜干| www.999成人在线观看| 狂野欧美激情性xxxx| 国产高清视频在线播放一区| 亚洲人成电影观看| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 亚洲色图综合在线观看| 日韩欧美三级三区| 在线播放国产精品三级| 精品国产一区二区三区四区第35| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址 | 人妻久久中文字幕网| 久久人人97超碰香蕉20202| 亚洲av国产av综合av卡| 激情在线观看视频在线高清 | 菩萨蛮人人尽说江南好唐韦庄| 女同久久另类99精品国产91| 狠狠婷婷综合久久久久久88av| 国产精品一区二区免费欧美| 热99久久久久精品小说推荐| 免费久久久久久久精品成人欧美视频| 国产深夜福利视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看66精品国产| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 少妇被粗大的猛进出69影院| 色综合欧美亚洲国产小说| 韩国精品一区二区三区| 成人黄色视频免费在线看| 亚洲色图av天堂| 亚洲人成77777在线视频| 精品一区二区三区av网在线观看 | 成人国产av品久久久| 国产精品偷伦视频观看了| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 国产高清激情床上av| 夜夜夜夜夜久久久久| 少妇粗大呻吟视频| 成人手机av| av免费在线观看网站| 狠狠婷婷综合久久久久久88av| 国产免费视频播放在线视频| 亚洲精品粉嫩美女一区| 国产99久久九九免费精品| 国产欧美日韩一区二区三| 91麻豆av在线| 国产在线观看jvid| 国产成人av教育| 999久久久精品免费观看国产| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 午夜激情av网站| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 成人精品一区二区免费| 成人av一区二区三区在线看| 99re6热这里在线精品视频| 免费在线观看黄色视频的| 成人永久免费在线观看视频 | 久久ye,这里只有精品| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 亚洲专区中文字幕在线| 波多野结衣一区麻豆| 麻豆成人av在线观看| 啦啦啦 在线观看视频| 性少妇av在线| 国产精品久久久久久精品电影小说| 亚洲男人天堂网一区| 精品国产一区二区久久| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 18禁美女被吸乳视频| 久久久久精品国产欧美久久久| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 免费观看人在逋| 99精品在免费线老司机午夜| av欧美777| 国产黄频视频在线观看| 伦理电影免费视频| 亚洲精品在线美女| 成人免费观看视频高清| 国产精品一区二区在线不卡| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 久久av网站| 高清在线国产一区| 久久亚洲精品不卡| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| e午夜精品久久久久久久| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 午夜福利视频在线观看免费| 国产区一区二久久| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 国产又爽黄色视频| 午夜激情久久久久久久| 精品视频人人做人人爽| 夫妻午夜视频| 18禁国产床啪视频网站| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 91大片在线观看| av视频免费观看在线观看| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 国产亚洲午夜精品一区二区久久| 久热这里只有精品99| 夫妻午夜视频| a级片在线免费高清观看视频| 国产人伦9x9x在线观看| 国产精品二区激情视频| 亚洲色图综合在线观看| 国产成人精品在线电影| 成人永久免费在线观看视频 | 国产精品99久久99久久久不卡| 欧美精品人与动牲交sv欧美| 女同久久另类99精品国产91| 两性夫妻黄色片| 亚洲精品国产区一区二| 国产欧美日韩综合在线一区二区| 老熟女久久久| 久久久久视频综合| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 久久久精品免费免费高清| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 女性被躁到高潮视频| 亚洲黑人精品在线| 中文亚洲av片在线观看爽 | 黄色怎么调成土黄色| 天堂动漫精品| 少妇猛男粗大的猛烈进出视频| 国产野战对白在线观看| 首页视频小说图片口味搜索| 国产不卡一卡二| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 叶爱在线成人免费视频播放| 国产在线精品亚洲第一网站| 久久精品国产a三级三级三级| 中文欧美无线码| 一级a爱视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 国产男女内射视频| 亚洲国产成人一精品久久久| 满18在线观看网站| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 首页视频小说图片口味搜索| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 午夜福利乱码中文字幕| 久久国产精品人妻蜜桃| 国产精品九九99| 黑人操中国人逼视频| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影 | 亚洲国产成人一精品久久久| e午夜精品久久久久久久| 亚洲全国av大片| 精品熟女少妇八av免费久了| 丁香六月天网| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 两个人看的免费小视频| 国产精品国产av在线观看| 777米奇影视久久| 久久亚洲精品不卡| 成人18禁在线播放| 午夜福利欧美成人| 欧美成人免费av一区二区三区 | 黄色视频不卡| 成人永久免费在线观看视频 | 老司机靠b影院| 国产精品秋霞免费鲁丝片| 新久久久久国产一级毛片| 精品午夜福利视频在线观看一区 | 亚洲国产欧美在线一区| 1024香蕉在线观看| 在线观看免费高清a一片| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| 纯流量卡能插随身wifi吗| av片东京热男人的天堂| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 高清视频免费观看一区二区| 亚洲国产欧美网| 狠狠婷婷综合久久久久久88av| 97人妻天天添夜夜摸| 一区二区三区精品91| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频 | 91麻豆av在线| 免费在线观看完整版高清| 免费一级毛片在线播放高清视频 | 亚洲熟女毛片儿| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| 成年女人毛片免费观看观看9 | 久久久国产精品麻豆| 99国产精品一区二区三区| 视频在线观看一区二区三区| 日韩免费av在线播放| 久久精品国产99精品国产亚洲性色 | 久久久久久久精品吃奶| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 女同久久另类99精品国产91| 精品国产一区二区三区久久久樱花| 淫妇啪啪啪对白视频| 国产淫语在线视频| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 日韩中文字幕欧美一区二区| 免费在线观看黄色视频的| 在线观看一区二区三区激情| 成人国产av品久久久| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 午夜精品久久久久久毛片777| 97人妻天天添夜夜摸| 国产精品九九99| 日日摸夜夜添夜夜添小说| 国产精品九九99| 国产一区二区 视频在线| 精品视频人人做人人爽| 日韩有码中文字幕| 少妇 在线观看| 久久中文字幕一级| 亚洲欧美日韩高清在线视频 | 久9热在线精品视频| 成年人午夜在线观看视频| 欧美在线一区亚洲| 欧美人与性动交α欧美软件| 性高湖久久久久久久久免费观看| 亚洲情色 制服丝袜| 亚洲第一青青草原| 伦理电影免费视频| 两个人免费观看高清视频| 成人国语在线视频| 新久久久久国产一级毛片| 夜夜夜夜夜久久久久| 精品亚洲乱码少妇综合久久| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 69av精品久久久久久 | 天堂中文最新版在线下载| 搡老熟女国产l中国老女人| 欧美激情高清一区二区三区| 美国免费a级毛片| 极品少妇高潮喷水抽搐| 99精品欧美一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av日韩在线播放| 在线观看免费高清a一片| 欧美日韩中文字幕国产精品一区二区三区 | 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三| 亚洲午夜理论影院| a在线观看视频网站| videos熟女内射| 最新美女视频免费是黄的| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲av美国av| 老司机亚洲免费影院| 久久香蕉激情| 国产主播在线观看一区二区| 色综合婷婷激情| 最新的欧美精品一区二区| 精品亚洲成a人片在线观看| 精品第一国产精品| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 国产精品二区激情视频| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 欧美黄色片欧美黄色片| 亚洲色图综合在线观看| 一二三四社区在线视频社区8| 黄色成人免费大全| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品中文字幕一二三四区 | www.999成人在线观看| 国产1区2区3区精品| 免费女性裸体啪啪无遮挡网站| 不卡av一区二区三区| 丝袜人妻中文字幕| 丝袜喷水一区| 午夜免费鲁丝| 夜夜爽天天搞| 免费看a级黄色片| 高潮久久久久久久久久久不卡| 日本a在线网址| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 男女之事视频高清在线观看| 国产欧美日韩一区二区三区在线| av一本久久久久| 免费观看人在逋| 悠悠久久av| 法律面前人人平等表现在哪些方面| 午夜福利在线免费观看网站| 精品国产亚洲在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 久久精品亚洲精品国产色婷小说| 男女下面插进去视频免费观看| 欧美日韩精品网址| 中国美女看黄片| 亚洲熟女毛片儿| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 在线av久久热| av视频免费观看在线观看| 50天的宝宝边吃奶边哭怎么回事| 90打野战视频偷拍视频| 女性被躁到高潮视频| 一区二区三区精品91| 自线自在国产av| 可以免费在线观看a视频的电影网站| 久久久精品免费免费高清| 亚洲 欧美一区二区三区| 视频在线观看一区二区三区| 国产精品久久久av美女十八| 99国产精品99久久久久| 国产成人影院久久av| 国产xxxxx性猛交| 99久久99久久久精品蜜桃|