• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Probability Distribution Model for SCFs in Multi-planar Circular Hollow Section DT-joints Subjected to Axial Loading

    2018-06-27 07:19:50YUANKuilinJIANGYongyiYANGHitinHONGMing
    船舶力學(xué) 2018年6期

    YUAN Kui-lin,JIANG Yong-yi,YANG Hi-tin,HONG Ming

    (a.State Key Lab of Structural Analysis for Industrial Equipment,School of Naval Architecture Engineering;b.Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China)

    0 Introduction

    Circular hollow section(CHS)joints are widely used in the offshore jacket-type platform structures.Due to the complex shape of CHS joints,nearby the weld toe region the high stress locally appears,which is usually quantified by stress concentration factor(SCF).Considering the different types and geometric dimensions of tubular joints,the SCF is supposed be a random variable,of which the probability distribution greatly affects the accuracy of fatigue reliability assessment for offshore structures.

    Using the probabilistic fracture mechanics method,Kirkemo[1]performed the fatigue reliability analysis for a certain tubular joint of the jacket structure located in shallow water.The SCFs are assumed to follow a log-normal distribution with the coefficient of variation(COV)equals to 0.15 and the mean value of 2.75 and 2.50 for axial loading and in-plane bending,respectively.Rajasankar et al[2]analyzed the reliability of a cracked tubular T-joint subjected to axial loading,based on a log-normal distribution of SCFs with the mean of 10.118 and the standard deviation of 2.024.Lotfollahi-Yaghin et al[3-4]calculated the SCFs of the central brace by finite element(FE)analysis and then carried out the reliability analysis for bi-planar tubular DKT-joints under axial loading based on fracture mechanics and S-N approaches,respectively.Although the accuracy of log-normal distribution is considered to be acceptable and the corresponding parameters have been calculated in many studies,sometimes,it seems not the best fitted probability model.Ahmadi and Lotfollahi-Yaghin[5]investigated the probability models for the maximum SCFs along the weld toe of bi-planar tubular DKT-joints under axial loads.The Birnbaum-Saunders probability density distribution(PDF)with parameters β0of 22.6 and γ0of 0.74 was found to be best fitted to the FE-based sample.Ahmadi et al[6-8]showed the maximum SCFs at the weld toe of tubular KT-joints reinforced with internal ring stiffeners follow Inverse Gaussian distribution,Gamma distribution and Generalized Extreme Value distribution for axial,in-plane bending and out-plane bending(IPB)loads,respectively.

    For practical structural design and decision on damage detection,it is of great importance to assess the region with maximum SCFs in advance,which is always firstly vulnerable to fatigue.Although few studies like Refs.[3-5]paid attention to multi-planar tubular joints,the probability distributions of the maximum SCFs on the chord and the brace sides had not been systematically investigated.

    In this study,the aim is to present the appropriate probability distribution functions for the maximum SCFs of multi-planar DT-joints under axial loadings.Totally 352 finite element models of the multi-planar DT-joints with different geometric parameters have been generated with solid elements,and the maximum SCFs along the chord-brace intersection are analyzed.The results are categorized into four groups of samples,according to the position on the chord or brace side under two kinds of axial loading,i.e.single axial loading or balanced axial loading,respectively.Several commonly used probability models,in which the parameter values are obtained by maximum likelihood(ML)method,are fitted to the density histograms.Based on the chi-squared goodness-of-fit test,a new set of probability density functions(PDFs)for the maximum SCFs in multi-planar DT-joints are proposed for the further fatigue reliability analysis.

    1 Preparation of the SCF sample database by FE method

    Due to the complex geometry of multi-planar DT-joints,it is impractical to calculate the SCFs along the chord-brace intersection by analytical method.Finite element(FE)method and the experimental measurement can be used for evaluating the SCFs of tubular joints.The former is more efficient and convenient than the latter.Hence,the finite element method is used to prepare sample database in this study.

    1.1 Geometrical parameters of DT-joints

    A typical shape and geometrical parameters of multi-planar CHS DT-joint are illustrated in Fig.1.In this research,two braces are assumed to be identical and perpendicular to the chord.The axes of the two braces intersect at the midpoint of the chord axis.The SCFs along the chord-brace intersection of the multi-planar DT-joint are related to the parameters including α (the ratio of chord length and chord outer radius,2L/D),β (the ratio of brace outer diameter and chord outer diameter,d/D),γ(the ratio of chord outer radius and chord thickness,D/2T),τ(the ratio of brace thickness and chord thickness,t/T),φ (polar angle)and ω(out-of-plane angle).The parameters of α,β,γ and τ have been commonly used in the existing parameter equations to consider the geometric characteristics of tubular joints.Out-ofplane angle ω is a specific parameter for multi-planar joints.Gap angle ωinsideis not an independent parameter,which is related to ω and β as the following equation[9].

    Fig.1 Geometrical parameters of a multi-planar tubular DT-joint

    To prepare a sample database for the SCFs in multi-planar DT-joints subjected to axial loading,352 models were generated and analyzed by using ANSYS.Different values assigned for each geometrical parameter have been presented in Tab.1.These values cover the practical ranges of the dimensionless parameters typically found in multi-planar tubular joints of offshore jacket structures.

    1.2 FE model generation method

    As 3D brick elements can be used to model the entire joint including the weld region and it will provide more accurate and detailed stress distribution than a simple 2D shell analysis.3D brick element named as SOLID186 in ANSYS code,which is a higher order three-dimensional 20-node brick element that exhibits quadratic displacement behavior,was utilized in the finite element models.Appropriate approach to model weld region is essential for calculating the SCF along the weld toe,so the generated weld profiles were referred to AWS Code[10].

    In order to guarantee good quality and appropriate quantity of FE meshes,a method of sub-zone mesh generation is used here.In this method,the entire structure is divided into several different zones regarding the computational requirements,as shown in Fig.2.On the other respect,the number of zones should be as few as possible to simplify the modeling process.Mesh sensitivity analysis was also carried out to determine the optimum mesh size in advance.The generated mesh around the chord-brace intersection is shown in Fig.3.Moreover,the Young’s modulus and Poisson’s ratio of the material are set as 206 GPa and 0.3,respectively.

    Fig.2 A typical geometrical model

    1.3 Defined boundary conditions

    The boundary condition of chord end may range from ‘a(chǎn)lmost fixed’ to ‘a(chǎn)lmost pinned’.The length of chord greater than six times of chord diameters(i.e.α≥12)can be used to ensure that the stress distribution in the brace-chord intersection not influenced by the end condition[11].According to Morgan and Lee[12],the effect of chord end boundary conditions is only important for joints with α<8 together with high values of β and γ.The influence of αB(ratio of brace length/diameter)and the boundary condition of brace end on SCFs are also considered.Chang and Dover[13]show αBhas little effect on the SCFs along the chord-brace intersection when αBis greater than a critical value of 6.Therefore, α=15 and αB=14 are prescribed for each FE model and the chord ends are fully fixed.

    In practice,two braces of the multi-planar DT-joint are often subjected to balanced axial loading with the same amplitude as shown in Fig.4(b).In some cases,a multi-planar CHS DT-joint may be subjected to axial loading as Fig.4(a),that one of the braces is bearing load and the other one can be treated as fixed end[14].Hence,these two kinds of axial loading are both taken into account.

    1.4 Analysis and extraction of SCFs

    Fig.4 Boundary conditions at the brace ends

    As the orientation of the maximum principal stress is usually normal to the weld toe,the stresses normal to the weld toe are used to perform line extrapolations for obtaining the hot spot stress.The zone so-called‘extrapolation region’depends on the geometrical parameters of joints and the position around the intersection,as shown in Fig.5.The extrapolated stress at the weld toe position which is perpendicular to the weld toe is calculated by the following equation:

    where σ1and σ2are the stress at the first and second extrapolation points at the distance of 0.4T and 1.4T from the weld toe,in which T represents the thickness of tube,respectively.

    Fig.5 Extrapolation of the hot spot stress[15]

    Then,the SCF at the weld toe is obtained as

    here σnis the nominal stress of the loaded brace which is calculated as follows:

    where F is the applied axial force.

    1.5 Verification of the FE results

    The results of the finite element analysis are better to be verified with experiments in order to make them more convincing.To the best knowledge of the authors,there is no reliable experimental data about the SCFs distribution along the chord-brace intersection of steel multi-planar DT-joints in the existing literatures.With the same modeling procedure as above mentioned,an alternative FE-based SCFs analysis for axial loaded T-joints was performed here and verified with the experimental results in Ref.[16].The results are summarized in Tab.2,showing a fairly good agreement with each other.The divergence between FE results and the mean of experimental results is within-17.59%which is acceptable for engineering application considering the uncertainty of welding quality[17].

    Tab.2 FE results compared with experiments published[16](D=914 mm,τ=0.5,β=0.5,γ=14.3,α=5.0)

    Ch.sad.is the location at saddle of chord.Ch.cro.is the location at crown of chord.Br.sad.is the location at saddle of brace.Br.cro.is the location at crown of brace.Mean and standard deviations are calculated for experimental results.Relative error is defined as the difference between FE result and the mean of experimental results.

    1.6 Organization of the sample database

    In this study,the probability distribution of maximum SCFs in the multi-planar DT-joints is emphasized.The SCFs extracted from the FE analysis of 352 models were organized as four samples for further statistical and probabilistic analysis.The first and second samples include the maximum SCFs along the weld on the chord and the brace side under single axial loading,respectively.Similarly,the third and fourth samples include the maximum SCFs on the chord and the brace side under balanced axial loading,respectively.

    2 Probability density function fitting for the maximum SCFs

    2.1 Generation of the density histograms

    The density histogram is utilized to describe the distribution of the samples.A density histogram is generated by the following equation[18]:

    where Hidenotes the height of the i-th bar,νirepresents the number of data points that fall into the i-th bin,k is the total number of bins,n is the sample size and d represents the uniform width of the bins.Insufficient number of bins may lead to omission of some important features of the distribution.In addition,the number of bins will affect the accuracy of the chi-squared goodness-of-fit test(section 2.3).Considering the following chi-squared test,the following equation is adopted to determine the value of k[18].

    where ε is the significance level,z1-εis the value which a standard normal variable Z exceeds with probability ε as follows:

    The density histograms of generated samples for ε=0.05 are shown in Fig.6.

    Fig.6 Density histograms generated for maximum SCF samples(a)Chord side under single axial loading;(b)Brace side under single axial loading;(c)Chord side under balanced axial loading;(d)Brace side under balanced axial loading.

    2.2 PDF fitting based on ML method

    In order to compare the degree of fitting of various probability distributions to the sample data,nine different PDFs were fitted to the density histograms,as Fig.7.In each case,distribution parameters were estimated by the maximum likelihood(ML)method.

    A maximum likelihood estimator is the value of the parameters that maximize the likelihood function of the sample.For a random variable X with a known PDF,fX()x,and the observed values x1,x2,…,xn,in a random sample of size n,the likelihood function can be expressed as a joint probability density function:

    where θ represents the vector of unknown parameters.

    Fig.7 PDFs fitted to the generated histograms(a)Chord_single axial loading SCFs;(b)Brace_single axial loading SCFs;(c)Chord_balanced axial loading SCFs;(d)Brace_balanced axial loading SCFs

    The objective is to maximize L()θfor the given data set.It can be solved by taking r partial derivatives of L()θ,where r is the number of unknown parameters,and equating them to zero.Then the maximum likelihood estimators of the parameter set θ can be found from the solution of the equations.Thus,the distribution parameters of each candidate probability distribution estimated by ML method are listed in Tab.3.

    Tab.3 The values of parameters in the PDFs calibrated by maximum likelihood estimation

    Continue

    2.3 Assessment of the goodness-of-fit

    The chi-squared test is performed to check the goodness-of-fit of each probability distribution,based on the chi-squared statistic[18].To test whether the differences between the observed and expected frequencies are significant,the following statistic is employed:

    where k is the number of bins,n is the sample size,fiis the frequency of the observed sample in the i-th bins andis probability within the i-th bins estimated by expected probability distribution.If n is greater than 50 andis not less than 5 in practical applications,the adjacent bins could be merged appropriately.

    If the chi-squared statistic is greater than a critical value,it indicates a poor fit.So,the critical value(k-r- 1 )is defined as the chi-squared variable X exceeds with probability ε,i.e.

    where r is the number of distribution parameters in the probability model.The results of chisquared test for four prepared samples are given in Tabs.4-7.The CV0.05and CV0.01represent the critical value of Chi-squared statistic with significance level ε=0.05 and ε=0.01,respectively.And CD0.05and CD0.01are the corresponding difference between the test statistic of sample and the critical values.The negative value of CD0.05and CD0.01indicates that the expected probability distribution is acceptable at the desired significance level and the bigger absolute value is better.Therefore,it can be found that the Birnbaum-Saunders probability distribution has the smallest values of the test statistic,indicating it best fitting to the generated samples on the chord side under single axial loading,chord and brace sides under balanced axial loading.On the other hand,the Gamma distribution is the best fitted distribution for the sample on the brace side under single axial loading.

    Tab.4 Results of the goodness-of-fit test for the SCF sample on the chord side under single axial loading

    Tab.5 Results of the goodness-of-fit test for the SCF sample on the brace side under single axial loading

    Tab.6 Results of the goodness-of-fit test for the SCF sample on the chord side under balance axial loading

    Continue

    Tab.7 Results of the goodness-of-fit test for the SCF sample on the brace side under balance axial loading

    3 Proposed probability models for the maximum SCFs

    The best-case scenario is that a single probability model can be proposed for all SCF samples in such a way that each sample has its specific values estimated parameters.According to the discussion in the previous section on chi-squared goodness-of-fit test,the Birnbaum-Saunders distribution is not the best probability model for SCFs on the brace side under single axial loading,but it is yet quite acceptable.The reason is that the value of the test statistic for the Birnbaum-Saunders distribution is also well below the critical value.Therefore,the Birnbaum-Saunders distribution is proposed to describe the maximum SCFs along chordbrace intersection of multi-planar DT-joints under axial loading,for the further fatigue reliability analysis of the offshore jacket structures.

    The PDF of the Birnbaum-Saunders distribution is formulated as:

    where the estimated values of parameters β0and γ0could be referred to the Tab.3.The corresponding PDFs for each sample are given as follows:

    for SCFs on the chord side under single axial loading.

    for SCFs on the brace side under single axial loading.

    for SCFs on the chord side under balanced axial loading.

    for SCFs on the brace side under balanced axial loading.

    [1]Kirkemo F.Applications of probabilistic fracture mechanics to offshore structures[J].Appl.Mech.Rev.,1988,41:61-84.

    [2]Rajasankar J,Iyer N R,Appa Rao T V S R.Structural integrity assessment of offshore tubular joints based on reliability analysis[J].Int J Fatigue,2003,25:609-619.

    [3]Lotfollahi-Yaghin M A,Ahmadi H,Aminfar M H.Effect of stress concentration factors on the structural integrity assessment of multi-planar offshore tubular DKT-joints based on the fracture mechanics fatigue reliability approach[J].Ocean Eng.,2011,38:1883-1893.

    [4]Lotfollahi-Yaghin M A,Ahmadi H.Effect of SCFs on S-N based fatigue reliability of multi-planar tubular DKT-joints of offshore jacket-type structures[J].Ships Offshore Struct.,2013,8:55-72.

    [5]Ahmadi H,Lotfollahi-Yaghin M A.A probability distribution model for stress concentration factors in multi-planar tubular DKT-joints of steel offshore structures[J].Appl.Ocean Res.,2012,34:21-32.

    [6]Ahmadi H,Mohammadi A H,Yeganeh A.Probability density functions of SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to axial loading[J].Thin-Walled Struct.,2015,94:485-499.

    [7]Ahmadi H,Yeganeh A,Mohammadi A H,Zavvar E.Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads[J].Thin-Walled Struct.,2016,99:58-75.

    [8]Ahmadi H.A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads[J].Ocean Eng.,2016,116:184-199.

    [9]Karamanos S A,Romeijn A,Wardenier J.Stress concentrations in tubular DT-joints for fatigue design[J].J Struct.Eng.,2000,126:1320-1330.

    [10]American Welding Society(AWS).Structural Welding-Structural welding code-steel[S].2010.

    [11]Lotfollahi-Yaghin M A,Ahmadi H.Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads[J].Int J Fatigue,2010,32:703-719.

    [12]Morgan M R,Lee M M K.Prediction of stress concentrations and degrees of bending in axially loaded tubular K-joints[J].J Constr.Steel Res.,1998,45:67-97.

    [13]Chang E,Dover W D.Stress concentration factor parametric equations for tubular X and DT joints[J].Int J Fatigue,1996,18:363-387.

    [14]Li T,Lie S T,Shao Y B.Fatigue and fracture strength of a multi-planar circular hollow section TT-joint[J].J Constr.Steel Res.,2017,129:101-110.

    [15]Zhao X L,Packer J A.Fatigue design procedure for welded hollow section joints[M].Woodhead Publishing,2000.

    [16]Lloyd’s Register of Shipping.Stress concentration factors for simple tubular joints[S].1997.

    [17]Shao Y B.Geometrical effect on the stress distribution along weld toe for tubular T-and K-joints under axial loading[J].J Constr.Steel Res.,2007,63:1351-1360.

    [18]Martinez W L,Martinez A R.Computational statistics handbook with MATLAB[M].CRC Press,2013.

    久久午夜综合久久蜜桃| 久久精品夜色国产| 9色porny在线观看| 搡女人真爽免费视频火全软件| 超色免费av| 久久女婷五月综合色啪小说| 国产又色又爽无遮挡免| 亚洲少妇的诱惑av| 欧美亚洲日本最大视频资源| 在线 av 中文字幕| 精品少妇内射三级| 丰满乱子伦码专区| 一本色道久久久久久精品综合| 国产 一区精品| freevideosex欧美| 夫妻性生交免费视频一级片| 伦精品一区二区三区| 久久久精品免费免费高清| 99热这里只有精品一区| 飞空精品影院首页| 水蜜桃什么品种好| 一本大道久久a久久精品| 久久国产亚洲av麻豆专区| 青青草视频在线视频观看| 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放 | 一级a做视频免费观看| 纵有疾风起免费观看全集完整版| 国产成人精品在线电影| 国产成人freesex在线| 久久狼人影院| 欧美精品高潮呻吟av久久| 中文字幕免费在线视频6| 蜜桃国产av成人99| 99热这里只有精品一区| 香蕉精品网在线| 女性被躁到高潮视频| 国产老妇伦熟女老妇高清| 一级毛片我不卡| 久久精品久久精品一区二区三区| 黑人欧美特级aaaaaa片| 夫妻午夜视频| 2018国产大陆天天弄谢| 免费不卡的大黄色大毛片视频在线观看| 99久久中文字幕三级久久日本| 久久久久久久久大av| 亚洲欧洲国产日韩| 日本wwww免费看| 99热国产这里只有精品6| 国产午夜精品久久久久久一区二区三区| 亚洲精品亚洲一区二区| 18在线观看网站| 91午夜精品亚洲一区二区三区| 国产永久视频网站| 在线天堂最新版资源| 国产av码专区亚洲av| 国产av精品麻豆| 国产在线免费精品| 亚洲国产日韩一区二区| 成年人免费黄色播放视频| 亚洲精品美女久久av网站| 九草在线视频观看| 女性生殖器流出的白浆| 亚洲国产日韩一区二区| 久久久久国产网址| 岛国毛片在线播放| 成人亚洲精品一区在线观看| 国产精品一区二区在线观看99| 国产在线免费精品| 久久久国产精品麻豆| 伦精品一区二区三区| 久久精品国产亚洲av涩爱| 国产在线免费精品| 色网站视频免费| 亚洲第一区二区三区不卡| 亚洲欧美精品自产自拍| 高清黄色对白视频在线免费看| 亚洲精品aⅴ在线观看| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 男的添女的下面高潮视频| 人成视频在线观看免费观看| 男女免费视频国产| 国产成人精品久久久久久| 三级国产精品欧美在线观看| 国产成人精品久久久久久| 国产成人精品无人区| 寂寞人妻少妇视频99o| 边亲边吃奶的免费视频| 91久久精品电影网| 国产黄频视频在线观看| 午夜av观看不卡| 久久精品国产自在天天线| 国产一区二区在线观看av| 亚洲国产av新网站| 美女国产视频在线观看| 国产男人的电影天堂91| 一级a做视频免费观看| 免费av中文字幕在线| 欧美少妇被猛烈插入视频| av天堂久久9| 美女xxoo啪啪120秒动态图| 色视频在线一区二区三区| 久久青草综合色| 黄片播放在线免费| 少妇猛男粗大的猛烈进出视频| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 一二三四中文在线观看免费高清| 久久人人爽av亚洲精品天堂| 国产成人av激情在线播放 | av国产久精品久网站免费入址| 国精品久久久久久国模美| 精品少妇内射三级| 国产免费视频播放在线视频| 卡戴珊不雅视频在线播放| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 女性被躁到高潮视频| 少妇熟女欧美另类| 热re99久久精品国产66热6| 久热久热在线精品观看| 精品99又大又爽又粗少妇毛片| 国产欧美日韩一区二区三区在线 | av.在线天堂| 欧美精品一区二区大全| 一本大道久久a久久精品| 男男h啪啪无遮挡| 热99国产精品久久久久久7| 国产成人aa在线观看| 另类精品久久| 国产爽快片一区二区三区| 老熟女久久久| 乱人伦中国视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 极品少妇高潮喷水抽搐| 97在线人人人人妻| 蜜桃在线观看..| 欧美人与善性xxx| 免费av不卡在线播放| 国产av精品麻豆| 久久久久久久久久久久大奶| 久久热精品热| av免费观看日本| 如日韩欧美国产精品一区二区三区 | 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 18禁观看日本| 男人添女人高潮全过程视频| 免费少妇av软件| 久热这里只有精品99| 国产精品不卡视频一区二区| 女人久久www免费人成看片| 成年美女黄网站色视频大全免费 | 一区二区三区乱码不卡18| 日韩亚洲欧美综合| 婷婷成人精品国产| 午夜福利视频在线观看免费| 久久久精品免费免费高清| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片 | 人妻系列 视频| 丝瓜视频免费看黄片| 国产免费又黄又爽又色| 亚洲欧美成人精品一区二区| 大香蕉久久网| 欧美xxⅹ黑人| 中文欧美无线码| 日本vs欧美在线观看视频| 国产亚洲最大av| 一区二区三区乱码不卡18| 最近2019中文字幕mv第一页| 国产欧美日韩一区二区三区在线 | 七月丁香在线播放| √禁漫天堂资源中文www| 国产av国产精品国产| 男人爽女人下面视频在线观看| 精品少妇久久久久久888优播| 中文字幕av电影在线播放| 国产精品免费大片| 久久人人爽av亚洲精品天堂| 亚洲欧美清纯卡通| 国产亚洲一区二区精品| 国产高清三级在线| 日韩成人伦理影院| 欧美最新免费一区二区三区| 久久久久久久久久久久大奶| 少妇丰满av| 国产精品人妻久久久影院| 欧美性感艳星| 夜夜骑夜夜射夜夜干| 999精品在线视频| 精品久久久噜噜| 欧美人与善性xxx| 三级国产精品欧美在线观看| 国产 一区精品| 国产国拍精品亚洲av在线观看| 天堂8中文在线网| 人妻人人澡人人爽人人| 青春草国产在线视频| 亚洲精品国产av蜜桃| 午夜免费男女啪啪视频观看| 欧美日韩综合久久久久久| 日本与韩国留学比较| 高清av免费在线| 国产精品久久久久久av不卡| 少妇熟女欧美另类| 欧美97在线视频| 在线精品无人区一区二区三| 我的老师免费观看完整版| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 国产成人免费无遮挡视频| 久久精品国产亚洲网站| 中文字幕人妻熟人妻熟丝袜美| 在线播放无遮挡| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 国产精品欧美亚洲77777| 美女福利国产在线| 久久久精品区二区三区| 成人综合一区亚洲| 精品人妻熟女毛片av久久网站| 午夜福利网站1000一区二区三区| 久久精品久久久久久噜噜老黄| 欧美少妇被猛烈插入视频| 夜夜骑夜夜射夜夜干| 久久久久久久国产电影| 中文字幕人妻熟人妻熟丝袜美| 国产片内射在线| 成人综合一区亚洲| 亚洲精品久久久久久婷婷小说| 亚洲av免费高清在线观看| 亚洲av男天堂| 777米奇影视久久| 国产精品一区二区在线不卡| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区蜜桃 | 如何舔出高潮| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 日韩av不卡免费在线播放| 亚洲av.av天堂| 免费观看性生交大片5| 性色avwww在线观看| 日韩一区二区三区影片| 在线观看一区二区三区激情| 岛国毛片在线播放| freevideosex欧美| 国产精品国产三级国产av玫瑰| 91在线精品国自产拍蜜月| 美女福利国产在线| 99久久精品国产国产毛片| 国产乱人偷精品视频| 亚洲精品一二三| 亚洲欧美一区二区三区黑人 | 国产成人aa在线观看| 在线观看一区二区三区激情| videosex国产| 国产熟女午夜一区二区三区 | 午夜视频国产福利| 欧美三级亚洲精品| 亚洲怡红院男人天堂| 观看美女的网站| 天堂俺去俺来也www色官网| 亚洲精华国产精华液的使用体验| 亚洲成色77777| 国产 一区精品| 91久久精品国产一区二区三区| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 亚洲人成77777在线视频| 69精品国产乱码久久久| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻一区二区| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 大话2 男鬼变身卡| 人人妻人人澡人人看| 中文字幕av电影在线播放| 秋霞在线观看毛片| 国产色爽女视频免费观看| 色网站视频免费| 少妇被粗大猛烈的视频| 亚洲av电影在线观看一区二区三区| 我要看黄色一级片免费的| 亚洲精品中文字幕在线视频| 午夜视频国产福利| 欧美xxⅹ黑人| 亚洲av男天堂| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美 | 最近最新中文字幕免费大全7| 国产av国产精品国产| 啦啦啦啦在线视频资源| 亚洲三级黄色毛片| 亚洲欧美一区二区三区黑人 | 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 另类精品久久| 欧美激情国产日韩精品一区| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 国产亚洲精品久久久com| av在线老鸭窝| 成年美女黄网站色视频大全免费 | 精品人妻一区二区三区麻豆| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 亚洲,一卡二卡三卡| 国产精品蜜桃在线观看| 欧美激情极品国产一区二区三区 | 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 一区在线观看完整版| 国产高清有码在线观看视频| 久热久热在线精品观看| www.av在线官网国产| 人人妻人人澡人人看| 男男h啪啪无遮挡| 亚洲不卡免费看| 欧美最新免费一区二区三区| 精品国产一区二区久久| 国产免费视频播放在线视频| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 亚洲四区av| 人妻 亚洲 视频| a级毛片在线看网站| 国产亚洲最大av| 啦啦啦啦在线视频资源| 精品人妻熟女毛片av久久网站| 99热国产这里只有精品6| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| 成人亚洲欧美一区二区av| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 五月开心婷婷网| 国产一区二区在线观看av| 性色avwww在线观看| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 高清av免费在线| 青春草国产在线视频| 大香蕉久久网| 我的女老师完整版在线观看| 亚洲国产精品成人久久小说| h视频一区二区三区| 两个人的视频大全免费| 国产亚洲午夜精品一区二区久久| 最近的中文字幕免费完整| 久久久久久久久久成人| 亚洲欧美成人综合另类久久久| 大片免费播放器 马上看| tube8黄色片| 最新的欧美精品一区二区| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频 | 国产在线视频一区二区| 欧美日韩在线观看h| 亚洲成人手机| 美女中出高潮动态图| 亚洲精品乱码久久久久久按摩| av一本久久久久| 国产精品久久久久久精品古装| 岛国毛片在线播放| 亚洲一级一片aⅴ在线观看| av不卡在线播放| 精品人妻在线不人妻| 欧美日韩成人在线一区二区| 免费观看无遮挡的男女| av黄色大香蕉| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久 | 中文字幕亚洲精品专区| 看十八女毛片水多多多| 女人精品久久久久毛片| 在线 av 中文字幕| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 亚洲性久久影院| 亚洲av成人精品一二三区| 春色校园在线视频观看| h视频一区二区三区| 亚洲色图 男人天堂 中文字幕 | 亚洲欧美成人综合另类久久久| 久久国内精品自在自线图片| 尾随美女入室| 少妇丰满av| 老司机亚洲免费影院| 国产精品99久久久久久久久| 亚洲av.av天堂| 久久人人爽人人片av| 国产在线免费精品| 日韩三级伦理在线观看| 久久久久国产精品人妻一区二区| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 久久精品夜色国产| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 国产无遮挡羞羞视频在线观看| 免费高清在线观看日韩| 黑人猛操日本美女一级片| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 欧美少妇被猛烈插入视频| 蜜桃国产av成人99| 狠狠婷婷综合久久久久久88av| 狂野欧美激情性xxxx在线观看| 18禁观看日本| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 久久热精品热| 少妇猛男粗大的猛烈进出视频| 精品视频人人做人人爽| 哪个播放器可以免费观看大片| 美女内射精品一级片tv| av视频免费观看在线观看| 美女主播在线视频| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 色吧在线观看| 丝袜脚勾引网站| 亚洲,欧美,日韩| 少妇的逼好多水| 老熟女久久久| 婷婷色麻豆天堂久久| 高清av免费在线| 大片电影免费在线观看免费| 国产日韩欧美视频二区| 熟女电影av网| xxxhd国产人妻xxx| 免费人成在线观看视频色| 69精品国产乱码久久久| 免费观看的影片在线观看| kizo精华| 亚洲精品乱久久久久久| 欧美亚洲日本最大视频资源| 在线天堂最新版资源| 欧美日韩视频高清一区二区三区二| 在线观看一区二区三区激情| 国产一区二区三区av在线| 亚洲欧美中文字幕日韩二区| 欧美激情极品国产一区二区三区 | 男人爽女人下面视频在线观看| 亚洲中文av在线| xxxhd国产人妻xxx| 亚洲国产精品999| 久久影院123| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂| 国产极品粉嫩免费观看在线 | 涩涩av久久男人的天堂| 超色免费av| 高清欧美精品videossex| 十八禁网站网址无遮挡| 一级a做视频免费观看| 午夜影院在线不卡| 国产成人91sexporn| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 亚州av有码| 丝瓜视频免费看黄片| 黄片无遮挡物在线观看| 国语对白做爰xxxⅹ性视频网站| 人妻一区二区av| 精品久久久久久久久av| 亚洲不卡免费看| 国产精品成人在线| 人妻人人澡人人爽人人| 国产成人freesex在线| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 免费少妇av软件| 日本vs欧美在线观看视频| 国产视频内射| 寂寞人妻少妇视频99o| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 亚洲不卡免费看| 男人操女人黄网站| 少妇人妻精品综合一区二区| 高清午夜精品一区二区三区| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 国产极品天堂在线| a级毛片黄视频| 国产av码专区亚洲av| 黄色毛片三级朝国网站| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 日产精品乱码卡一卡2卡三| 成年人午夜在线观看视频| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 久久久久视频综合| 亚洲第一av免费看| 九色成人免费人妻av| 秋霞伦理黄片| 99九九线精品视频在线观看视频| 少妇的逼水好多| 精品久久久久久久久av| 少妇精品久久久久久久| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| av在线观看视频网站免费| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 亚洲成人手机| 人人妻人人爽人人添夜夜欢视频| 精品一区在线观看国产| 亚洲精品久久成人aⅴ小说 | 能在线免费看毛片的网站| 久久鲁丝午夜福利片| 一区二区三区四区激情视频| 人人妻人人爽人人添夜夜欢视频| 在线观看国产h片| 另类亚洲欧美激情| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 亚洲精品乱久久久久久| 97在线人人人人妻| av免费在线看不卡| 精品人妻一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 欧美人与性动交α欧美精品济南到 | 中文字幕av电影在线播放| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久小说| 亚洲欧美日韩另类电影网站| 看十八女毛片水多多多| 青青草视频在线视频观看| 国产精品不卡视频一区二区| 成人漫画全彩无遮挡| 在线播放无遮挡| 国产高清国产精品国产三级| 日韩在线高清观看一区二区三区| 欧美性感艳星| 色5月婷婷丁香| 9色porny在线观看| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 色视频在线一区二区三区| 五月开心婷婷网| 丰满少妇做爰视频| 我的老师免费观看完整版| 99热全是精品| 国产熟女午夜一区二区三区 | 一级,二级,三级黄色视频| 在线免费观看不下载黄p国产| 伊人亚洲综合成人网| 国产精品一区www在线观看| 久久久久久久久久久久大奶| 欧美日韩av久久| 国产精品 国内视频| 最近2019中文字幕mv第一页| 国产永久视频网站| 欧美精品亚洲一区二区| 亚洲av中文av极速乱| 水蜜桃什么品种好| 亚洲精品日韩在线中文字幕| 少妇熟女欧美另类| 国产精品无大码| 18禁动态无遮挡网站| 最新中文字幕久久久久| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| av在线老鸭窝| 啦啦啦在线观看免费高清www| 男女无遮挡免费网站观看| 久久久精品94久久精品| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 久久青草综合色| 久久国产精品大桥未久av| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 22中文网久久字幕| 久久99热6这里只有精品| 免费观看a级毛片全部| 内地一区二区视频在线| 亚州av有码| 赤兔流量卡办理| 日本爱情动作片www.在线观看|