• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seakeeping Prediction of SWATH with Three Dimensional Translating-pulsating Source Green Function

    2018-06-27 07:19:46SUNXiaoshuaiYAOChaobangYEQing
    船舶力學 2018年6期

    SUN Xiao-shuai,YAO Chao-bang,YE Qing

    (Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033,China)

    0 Introduction

    Small-Water-Plane-Area Twin Hull(SWATH)ships are innovative concept of vehicles and special configuration.They consist of submerged twin hulls,an above water superstructure,and connecting struts.While the major part of the displaced volume is concentrated well below the free surface,the more slender struts are actually piercing the free surface.In such a way there will be less wave influence,so the vessel becomes very stable,even at higher speeds and in rough sea conditions.SWATH configuration results in long natural periods in heave,pitch and roll.Unlike the conventional passenger catamarans,SWATH no long suffer from slamming and slam induced whipping and unpleasant coupled motions which can lead to fatigue damage and kinetosis[1-3].Nowadays,SWATH has been widely used to construct passenger ferries,cruise ships,oceanographic research and diving support vessels and patrol vessels with different variations and increasing sizes.

    Plenty of studies have been carried out on the seakeeping performance of the SWATHs.Lee[4-7]established a numerical method based on strip theory to evaluate the wave loads and motions of SWATH.The effect of the stabilizing fins was taken into consideration.The numerical results were in agreement with the experiment.Schellin[8]analyzed the influence of forward speed on the hydrodynamic interaction between the twin hulls.Murtedjo[9]calculated the motion of one SWATH by using two dimensional source distribution method.Due to the absence of viscous damping,the amplitude of roll was large when compared with experiment.

    Li[10],Dong[11-12],Liu[13],Chen[14]and Lin[15]respectively developed the numerical method based on strip theory to investigate the influence of some factors on the seakeeping performance of SWATH,such as the configuration of the submerged twin hulls,the shape of the struts and the stabilizing fins.Mao[16]pointed out that it is of great significance to take the effect of viscosity and non-linearity into account when study the hydrodynamic performance of SWATH.

    To the best of our knowledge,the majority of SWATH seakeeping simulations have been performed based on two dimensional strip theory.Though numerical methods based on three dimensional potential theory obtained remarkable achievements,only a few were applied to the seakeeping prediction of SWATH.Wu[17]utilized the commercial software Wasim to analyze the effect of speed,wave direction and slamming on the motion response of one SWATH.Qian[18]investigated a SWATH vehicle with inclined struts by 3D numerical simulations adopting a RANS method.

    In the present study,a numerical method based on the Three Dimensional Translatingpulsating Source Green Function(3DTP)was established to obtain the wave loads and motions of SWATH.Some factors that may have great influence on the results are included in the equations of motions such as the wave interaction between the twin hulls,the viscous damping and the effect of stabilizing fins.Numerical simulations were conducted with one SWATH model named as SWATH 6A to validate the present method by comparisons with the strip theory and experiment.It can be concluded that the present method based on 3DTP gives better results of the wave loads and motions of SWATH.

    1 Mathematical formulation

    1.1 Coordinate system

    Let o-xyz be the right-hand Cartesian coordinate system with xoy plane on the mean free surface and the x-axis is positive in the direction of the constant forward speed U of the SWATH.The z-axis is positive upward and crosses the center of gravity as shown in Fig.1.Dy is defined as the transverse distances between the centers of the twin hulls.

    1.2 Velocity potentials

    The regular incident wave is coming from a direction with an angle β,which is the angle between the positive x-axis and the incident wave direction.Thus 180°mean heading sea and the other wave directions can be found in Fig.1.The incident potential Φ0is given as below:

    Fig.1 Coordinate system

    whereis the wave number of the incident wave,ω0and ζ are the frequency and amplitude.ωeis the encounter frequency.The fluid is assumed ideal and incompressible of constant density.The irrotational flow is assumed throughout,and the surface tension effects are neglected.The velocity potential ΦT(x,y,z, t )is introduced and can be written as:

    where φsand Φ are the steady disturbance potential and unsteady potential,respectively.In the first order problem,all unsteady motions are assumed to be sinusoidal in time with the encounter frequency ωe,and by the linear decomposition,the unsteady potential Φ can be expressed in the form as below:

    here ΦRand Φ7are the radiation and diffraction potentials in the field,and φ7is the time-independent part of Φ7.φjis the radiated wave potential due to the per unit amplitude motion in the jth mode of the ship,and ηjis the complex amplitude in the jth mode motion of the ship,where the cases j=1,2,…,6 correspond to surge,sway,heave,roll,pitch and yaw,respectively.

    1.3 Boundary conditions

    The potentials φj(j=1~7)must satisfy the Laplace equation together with boundary conditions,

    where the generalized normal njis defined by (n1,n2,n3)=n and (n4,n5,n6)=r×n,with n is the outward unit normal vector on the hull surface and r is the position vector with respect to the center of the gravity of the ship.Neglecting the perturbation of the steady flow due to the presence of the SWATH,the mjcomponents of Eq.(5)can be simplified to mj=0 for j=1~4,m5=Un3and m6=-Un2.

    2 Numerical methods

    2.1 Boundary element integral equations and numerical solution

    The solution of the above potentials φj(j=1~7)can be constructed by means of the 3D translating-pulsating source Green function for the boundary integral equation,which is formed by the surface integral over the mean wetted body surface and the free-surface contour integral along the intersection curves C between the body surfaces and the undisturbed free surface.

    where G( p, q )is the translating-pulsating source Green function at the field point p ( x,y, z)due to a source of unknown strength σj(q )at the source point p ( ξ,η, ζ).

    At this point,the Bessho form translating-pulsating source Green function is employed due to the fact that integration of this Green function and its derivatives over an elementary panel or the waterline segment can be expressed analytically.Single expression of Bessho form translating-pulsating source Green function can be expressed as

    where,

    The analytical quadrature of this Green function over a panel and a waterline segment can be expressed as,

    With Qlvertices of panel(l=1…N)and Slarea of triangle

    Based on the variable substitution and the steepest descent integration method,a fast numerical calculation method for G,ISand ILcan be obtained[19].What should be pointed out is that the line integral in the second and third terms of Eq.(6)is of the form firstly introduced by Brard.It is derived from the linearized free surface condition,which includes the effect of the forward speed U on the x-directional component of the induced velocity by the source.

    2.2 Wave exciting forces and hydrodynamic coefficients

    Considering the unsteady state and omitting the high order terms and the static water pressure,the linear hydrodynamic pressure equation becomes

    where ρ is water density.

    After determining the velocity potential φjat any point on the mean wetted body surface of the ship,the radiation forces and moments in the j-th mode can be obtained by

    From the radiation forces and moments expressed in Eq.(11),added mass coefficients Aijand damping coefficients Bijare obtained as

    Wave exciting force and moments fwican be obtained by

    2.3 Motion equations

    Based on the rigid body dynamics,the motions in frequency domain for the SWATH can be obtained

    where Mijis the element of the generalized mass matrices for the SWATH.Cijand Cbijis the element of 6×6 restoring force coefficient matrices of the SWATH.

    2.4 Viscous damping coefficients

    The viscous damping is usually ignored in the prediction of motions of conventional monohull since the wave-making damping predominated.However,as for SWATH,the submerged twin hulls does not generate large surface waves since they are well below the free surface.Thus the wave-making damping of SWATH in the vertical-plane modes is relatively small when compared with that of conventional monohull and it becomes necessary to take the viscous damping into consideration to get more reasonable results.

    An empirical approach was employed to determine the viscous damping required to predict the motion.According to Lee[4],the vertical force of a harmonically oscillating body in regular waves with a constant forward speed will be assumed to be expressed as

    where w is the relative fluid velocity with respect to the body,and α is the angle of incidence of flow at a cross section of the body at x position.

    Under this assumption,the vertical force induced on the twin hulls can be obtained and the viscous damping coefficients can be derived.Details of expressions about the coefficients can be found in the work of Lee[4].

    2.5 Stabilizing fins coefficients

    The stabilizing fins installed on the inboard sides of the SWATH at certain longitudinal positions have been proved to improve the stability and considerably reduce the peak motion amplitude.However,it seems impossible to conduct an accurate evaluate of the lift generated by the fins since there are many hydrodynamic effects has to be taken into account,for instance,body-fin interaction,the blockage effect of the other hull,unsteady effect,the interaction of other fins,and so on.

    To simplify the problem,only the body-fin effect will be included in the hydrodynamic coefficient.An empirical approach was followed and the coefficients derived by Lee[4]will be utilized in the present method.

    3 Ship model

    To validate the present numerical method,a SWATH vehicle known as SWATH 6A was selected to conduct simulations.The main parameters of SWATH 6A are given in Tab.1.

    Tab.1 Main parameters of SWATH 6A

    The panel distribution and profile view for SWATH 6A are shown in Fig.2.The mean wetted surface of SWATH ships is discretized in 1 752 panels and the shape of transverse sections of SWATH-6A is circle.The struts of SWATH 6A is normal,vertical and continuous along the submerged hull.

    Fig.2 SWATH-6A

    The dimensions of the stabilizing fins on SWATH 6A are illustrated in Tab.2 with installation positions.

    Tab.2 Parameters of stabilizing fins

    4 Results and discussions

    Numerical simulations based on 3DTP were carried out at two different forward speed,namely Fn=0 and Fn=0.538.Comparisons of normalized wave loads and motions between the present method,strip theory formulation(STF)and experiment conducted by Lee[20]were made to validate the present method.

    4.1 Wave loads

    The results of wave loads and motions in regular head waves obtained from different methods are given in Fig.3 and Fig.4.It can be seen that the heave forces of both numerical methods are in good agreement with that of experiment at both Fn=0 and Fn=0.538.While the pitch moments of numerical methods indicate the same trend when compared with that of experiment,they seem to underestimate the pitch moments.

    Compared with the results of STF,the present method based on 3DTP gives almost the same values of heave force as the experiment at both zero speed and forward speed.As for pitch moment,the results of STF are well below that of the present method in moderate wavelength.

    Fig.3 Wave loads of SWATH-6A at Fn=0

    Fig.4 Wave loads of SWATH-6A at Fn=0.538

    4.2 Motions in the vertical plane

    The comparisons of heave and pitch responses from different methods are depicted in Fig.5 and Fig.6.Similar to the results of wave loads,the predictions of heave responses from numerical methods agree well with that of experiment.

    The discrepancies between numerical methods and experiment are much more pronounced at pitch motions.The results of STF show a growing trend with the increase of wave length,while STF seems to give poor evaluation at Fn=0 and overpredict the pitch motions compared to the experiment at Fn=0.538.3DTP gives an exact prediction of pitch responses at Fn=0,even the drop near λ/L=2 is captured.With the increase of wave length,the amplitude of pitch motion predicted by 3DTP reaches a peak near λ/L=8.5,which is hard to validate due to the lack of experimental results.As for Fn=0.538,the results of 3DTP depict the same trend compared with experiment,but 3DTP seems to overpredict the pitch responses slightly except one point at λ/L=7.8.

    Generally,it can be concluded that the motions are generally better predicted by the present method based on 3DTP than by the two dimensional strip theory,particularly for pitch motion.

    Fig.5 Heave and pitch motion of SWATH-6A at Fn=0

    Fig.6 Heave and pitch motion of SWATH-6A at Fn=0.538

    5 Conclusions

    A numerical method based on the Three Dimensional Translating-pulsating Source Green Function(3DTP)was established to predict the seakeeping performance of SWATH.Some factors which differ from conventional monohulls were included in the equation of motions,such as the wave interaction between the twin hulls,the viscous damping and the effect of stabilizing fins.Numerical simulations were carried out to analyze the wave loads and motions of one SWATH vehicle known as SWATH 6A.Comparisons had been made to validate the present method with strip theory and experiment.It can be concluded that the motions are generally better predicted by the present method based on 3DTP than by the two dimensional strip theory,particularly for pitch motion.

    [1]Kos S,Brcic D,Francic V.Comparative analysis of conventional and swath passenger catamaran[C]//Proceedings of 12th International Conference on Transport Science(ICTS).Portoro?,Slovenija,2009:1-11.

    [2]Lang T G,Sloggett J E.SWATH developments and performence comparisons with other craft[C]//International Conference on SWATH Ships and Advanced Multi-hulled Vessels.London,1985.

    [3]Yaakob O B,Mekanikal F K.Development of a semi-swath craft for malaysian waters[R].University of Technology,Malaysia,VOT74204,2006.

    [4]Lee C M.Theoretical prediction of motion of Small Waterplane Area,Twin-Hull(SWATH)ships in waves[R].DTNSRDC Report,SPD-76-0046,1976.

    [5]Lee C M,Curphey R M.Prediction of motion,stability,and wave load of Small Waterplane Area Twin-Hull ships[J].Trans.Soc.Naval Architects and Marine Engineers,1977,85:94-130.

    [6]Lee C M.Approximate evaluation of added mass and damping coefficients of two-dimensional SWATH sections[R].DTNSRDC Report,SPD-78/084,1978.

    [7]Lee C M,McCreight K K.Investigation of effects of activated fins on vertical motion of a SWATH ship in waves[R].DTNSRDC Report SPD-763-01,1977.

    [8]Schellin T E,Papanikolaou A.Prediction of seakeeping performance of a SWATH ship and comparison with measurements[C]//Proceedings of 1st international conference on fast sea transportation.Trondheim,Norway,1991:1-17.

    [9]Murtedjo M,Djatmiko E B.Prediction of motion characteristics on SWATH type floating structure using two-dimensional frank close-fit technique[J].Journal Mekanikal Bil,2004,18:46-65.

    [10]Li Xiangqun.A study on the seakeeping ability of SWATH[J].Journal of Shanghai Ship and Shipping Research Institute,1988,2:41-46.(in Chinese)

    [11]Dong Zushun,Dong Wencai.A simplified criterion and an analysis of some influence factors on longitudinal motion stability of Small Waterplane Area Twin-Hull ships[J].Shipbuilding of China,1994(4):36-48.(in Chinese)

    [12]Dong Zushun,Dong Wencai.Analysis of some influence factors on seakeeping of Small Waterplane Area Twin Hull Ships(SWATH)[J].Journal of Naval Academy of Engineering,1995,1:7-15.(in Chinese)

    [13]Liu Zhihua,Dong Wencai,Xiong Ying.Study on lines of lower hull of small-sized high-speed SWATH ship[J].Ship Engineering,2004,6:4-8.(in Chinese)

    [14]Chen Rui,Xie Wei.Prediction of SWATH ship seakeeping performance[J].Chinese Journal of Ship Research,2008,3(1):9-12.(in Chinese)

    [15]Lin Zheng.Research on the motions in wave and stability of the motions for Swath ship[D].Wuhan:Wuhan University of Technology,2009.(in Chinese)

    [16]Mao Xiaofei.Numerical study of the motion response prediction of SWATH ship in waves[J].Ship&Ocean Engineering,2006(4):13-15.(in Chinese)

    [17]Wu Jie,Gu Jiayang,Guan Yifeng,et al.Prediction of SWATH research ship seakeeping performance based on the Rankine source method[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2015,29(2):103-107.(in Chinese)

    [18]Qian P,Yi H,Li Y.Numerical and experimental studies on hydrodynamic performance of a small-waterplane-area-twinhull(SWATH)vehicle with inclined struts[J].Ocean Engineering,2015,96:181-191.

    [19]Yao C B,Dong W C.A fast integration method for translating-pulsating source Green function in Bessho form[J].Journal of Zhejiang University-A,2014,15(2):108-119.

    [20]Lee C M,Murray L O.Experimental investigation of hydrodynamic coefficients of a small-waterplane area,twin-hull model[R].NSRDC Report SPD 747-01,1977.

    天天躁夜夜躁狠狠躁躁| 国产亚洲一区二区精品| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 中文字幕另类日韩欧美亚洲嫩草| 99re6热这里在线精品视频| 久久国产精品男人的天堂亚洲| 狂野欧美激情性bbbbbb| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 韩国精品一区二区三区| 免费在线观看影片大全网站| 午夜精品国产一区二区电影| 亚洲三区欧美一区| 久久久久久人人人人人| 精品国产超薄肉色丝袜足j| 老熟妇仑乱视频hdxx| 成年av动漫网址| 少妇粗大呻吟视频| 三上悠亚av全集在线观看| 久久久久久久国产电影| 婷婷色av中文字幕| 一区二区三区激情视频| 国产亚洲av高清不卡| 亚洲五月色婷婷综合| 水蜜桃什么品种好| 无限看片的www在线观看| 亚洲成人手机| 精品国产国语对白av| 女人爽到高潮嗷嗷叫在线视频| 91精品伊人久久大香线蕉| 中文字幕高清在线视频| 亚洲情色 制服丝袜| 正在播放国产对白刺激| 久久久久精品国产欧美久久久 | 波多野结衣一区麻豆| 满18在线观看网站| 美女脱内裤让男人舔精品视频| 国内毛片毛片毛片毛片毛片| 在线观看人妻少妇| 黄网站色视频无遮挡免费观看| 国产亚洲av高清不卡| 高潮久久久久久久久久久不卡| 国产区一区二久久| 亚洲人成77777在线视频| 精品国产乱码久久久久久男人| 国产一区有黄有色的免费视频| 精品一区在线观看国产| 免费在线观看日本一区| 一级,二级,三级黄色视频| tocl精华| 91九色精品人成在线观看| 久久久精品区二区三区| 狂野欧美激情性bbbbbb| 国产精品99久久99久久久不卡| 黑人巨大精品欧美一区二区mp4| 国产视频一区二区在线看| 韩国高清视频一区二区三区| 久久久久国产精品人妻一区二区| 日韩一区二区三区影片| 久久久久久人人人人人| 亚洲专区中文字幕在线| 久久人人97超碰香蕉20202| 欧美日韩亚洲高清精品| 成人国产一区最新在线观看| 少妇精品久久久久久久| 亚洲成av片中文字幕在线观看| 亚洲精品国产精品久久久不卡| 欧美激情高清一区二区三区| 狠狠婷婷综合久久久久久88av| 日韩三级视频一区二区三区| 美女高潮喷水抽搐中文字幕| kizo精华| 亚洲中文av在线| 人妻 亚洲 视频| 人妻 亚洲 视频| 不卡一级毛片| 午夜日韩欧美国产| 午夜91福利影院| 一本综合久久免费| 男人爽女人下面视频在线观看| 国产老妇伦熟女老妇高清| 欧美性长视频在线观看| www日本在线高清视频| 水蜜桃什么品种好| 欧美成人午夜精品| 国产成人欧美| 国产在线一区二区三区精| 久久精品aⅴ一区二区三区四区| 精品一区二区三卡| 考比视频在线观看| 成年人免费黄色播放视频| 国产精品久久久人人做人人爽| 午夜福利乱码中文字幕| 韩国高清视频一区二区三区| 久久久久久人人人人人| 欧美+亚洲+日韩+国产| 欧美+亚洲+日韩+国产| 久久久国产欧美日韩av| 免费黄频网站在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区有黄有色的免费视频| 一个人免费看片子| 亚洲精品国产av蜜桃| 嫩草影视91久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品免费免费高清| 久久毛片免费看一区二区三区| 十八禁网站免费在线| 久久人妻熟女aⅴ| 亚洲精品久久久久久婷婷小说| 亚洲精品久久久久久婷婷小说| 日韩大码丰满熟妇| 桃红色精品国产亚洲av| 国产av又大| 极品人妻少妇av视频| 国产亚洲欧美精品永久| 久久久精品94久久精品| 免费在线观看日本一区| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 欧美av亚洲av综合av国产av| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久成人aⅴ小说| 少妇被粗大的猛进出69影院| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频 | 欧美国产精品一级二级三级| 午夜福利影视在线免费观看| 侵犯人妻中文字幕一二三四区| 嫩草影视91久久| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕2019免费版| 亚洲精品久久久久久婷婷小说| 老司机午夜福利在线观看视频 | av网站免费在线观看视频| 中文欧美无线码| 亚洲av男天堂| 亚洲五月婷婷丁香| 波多野结衣一区麻豆| 国产区一区二久久| av天堂久久9| 日韩免费高清中文字幕av| 秋霞在线观看毛片| 国产日韩欧美亚洲二区| 欧美黄色片欧美黄色片| 99国产综合亚洲精品| 91国产中文字幕| 极品人妻少妇av视频| 久久久久久久精品精品| 五月天丁香电影| 午夜视频精品福利| 丝袜喷水一区| 日韩,欧美,国产一区二区三区| 国产福利在线免费观看视频| 视频区图区小说| 亚洲欧美日韩高清在线视频 | 亚洲专区字幕在线| 国产精品一二三区在线看| 免费少妇av软件| 国产精品.久久久| 十八禁人妻一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产色婷婷电影| 精品久久久精品久久久| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 99re6热这里在线精品视频| 日韩人妻精品一区2区三区| 99热网站在线观看| 久久午夜综合久久蜜桃| 91九色精品人成在线观看| 中文字幕制服av| 在线观看免费视频网站a站| 日韩视频一区二区在线观看| 后天国语完整版免费观看| 久久久久视频综合| 丁香六月欧美| 亚洲五月色婷婷综合| 精品亚洲成国产av| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 欧美另类亚洲清纯唯美| 麻豆国产av国片精品| 首页视频小说图片口味搜索| 日本av手机在线免费观看| 亚洲一区中文字幕在线| 丁香六月天网| 亚洲国产日韩一区二区| 男女下面插进去视频免费观看| 两人在一起打扑克的视频| av天堂久久9| 欧美性长视频在线观看| 悠悠久久av| 午夜福利乱码中文字幕| 亚洲九九香蕉| 美女主播在线视频| 熟女少妇亚洲综合色aaa.| 午夜福利视频精品| 久久久精品区二区三区| 日韩视频在线欧美| 免费高清在线观看日韩| 日本一区二区免费在线视频| 亚洲av电影在线观看一区二区三区| 搡老熟女国产l中国老女人| 国产高清视频在线播放一区 | 日本撒尿小便嘘嘘汇集6| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三区在线| 欧美老熟妇乱子伦牲交| 久久99一区二区三区| 热99re8久久精品国产| 我的亚洲天堂| 亚洲精品第二区| 男女午夜视频在线观看| 黄片小视频在线播放| 纵有疾风起免费观看全集完整版| 精品一区二区三区四区五区乱码| 国产99久久九九免费精品| 亚洲欧美精品综合一区二区三区| 精品人妻一区二区三区麻豆| 深夜精品福利| 男女之事视频高清在线观看| 中文字幕人妻熟女乱码| 欧美大码av| 国产免费视频播放在线视频| 欧美精品啪啪一区二区三区 | 日韩制服丝袜自拍偷拍| 人妻 亚洲 视频| 日本黄色日本黄色录像| 国产伦人伦偷精品视频| 操出白浆在线播放| av网站在线播放免费| 亚洲中文日韩欧美视频| 国产精品免费视频内射| 人人妻,人人澡人人爽秒播| 精品少妇黑人巨大在线播放| 国产成人精品久久二区二区91| 久久久久久亚洲精品国产蜜桃av| 色播在线永久视频| 国产无遮挡羞羞视频在线观看| 深夜精品福利| 1024视频免费在线观看| 国产精品免费大片| 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 国产伦人伦偷精品视频| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 超碰97精品在线观看| 少妇被粗大的猛进出69影院| 欧美在线一区亚洲| 婷婷丁香在线五月| 一级a爱视频在线免费观看| 日本91视频免费播放| av视频免费观看在线观看| 最近最新免费中文字幕在线| www.精华液| av电影中文网址| 国产日韩欧美亚洲二区| 久久精品人人爽人人爽视色| 国产欧美日韩一区二区精品| 国产成人av教育| 亚洲欧美日韩高清在线视频 | 精品第一国产精品| 亚洲精品成人av观看孕妇| 美女中出高潮动态图| 精品久久久久久久毛片微露脸 | 午夜免费鲁丝| 建设人人有责人人尽责人人享有的| 亚洲成av片中文字幕在线观看| 国产黄色免费在线视频| 欧美国产精品一级二级三级| 下体分泌物呈黄色| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸 | 精品国内亚洲2022精品成人 | 国产亚洲欧美在线一区二区| 一区二区三区精品91| 男女高潮啪啪啪动态图| 老司机亚洲免费影院| 国产免费av片在线观看野外av| 欧美在线一区亚洲| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久成人av| 亚洲全国av大片| 人人妻人人爽人人添夜夜欢视频| 亚洲av国产av综合av卡| 男女高潮啪啪啪动态图| 黄色视频在线播放观看不卡| 久久狼人影院| 欧美在线一区亚洲| 亚洲avbb在线观看| 午夜激情av网站| 国产淫语在线视频| 人成视频在线观看免费观看| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 国产xxxxx性猛交| 永久免费av网站大全| 欧美精品av麻豆av| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 大香蕉久久成人网| 国产一区二区 视频在线| 性色av一级| 亚洲av日韩精品久久久久久密| 久久精品久久久久久噜噜老黄| 99久久综合免费| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| 亚洲国产欧美在线一区| www日本在线高清视频| h视频一区二区三区| 伊人亚洲综合成人网| 91大片在线观看| 12—13女人毛片做爰片一| 久久久国产精品麻豆| 性少妇av在线| 老司机亚洲免费影院| 他把我摸到了高潮在线观看 | 亚洲精品自拍成人| 9色porny在线观看| 欧美+亚洲+日韩+国产| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 久久久国产精品麻豆| 午夜激情久久久久久久| 精品少妇一区二区三区视频日本电影| 亚洲精品一二三| 免费在线观看黄色视频的| 美国免费a级毛片| 国产不卡av网站在线观看| a在线观看视频网站| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 久久热在线av| 精品人妻1区二区| 精品久久久久久久毛片微露脸 | 无限看片的www在线观看| 午夜免费观看性视频| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 一级黄色大片毛片| 欧美日韩中文字幕国产精品一区二区三区 | 俄罗斯特黄特色一大片| 午夜激情久久久久久久| 亚洲欧美激情在线| 久久久水蜜桃国产精品网| 亚洲伊人久久精品综合| 人人澡人人妻人| 老司机影院成人| 亚洲国产精品999| 亚洲天堂av无毛| 国产1区2区3区精品| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 一级片免费观看大全| 中文字幕色久视频| a级毛片黄视频| 深夜精品福利| 99国产精品一区二区三区| 新久久久久国产一级毛片| 欧美精品一区二区大全| 日日摸夜夜添夜夜添小说| 亚洲成人免费av在线播放| 色精品久久人妻99蜜桃| 色视频在线一区二区三区| 纯流量卡能插随身wifi吗| 51午夜福利影视在线观看| 91大片在线观看| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 日本猛色少妇xxxxx猛交久久| 黄网站色视频无遮挡免费观看| 国产一区二区激情短视频 | 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 亚洲欧美激情在线| 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 正在播放国产对白刺激| 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| 老司机福利观看| 欧美亚洲日本最大视频资源| 少妇裸体淫交视频免费看高清 | 精品乱码久久久久久99久播| 视频区图区小说| 欧美精品啪啪一区二区三区 | 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| av电影中文网址| 国产不卡av网站在线观看| 国产麻豆69| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 精品欧美一区二区三区在线| 亚洲成人免费电影在线观看| 黑丝袜美女国产一区| 久久ye,这里只有精品| 国产精品一二三区在线看| 老司机影院毛片| 高清在线国产一区| 乱人伦中国视频| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 国产成人欧美| 成年美女黄网站色视频大全免费| 国产精品免费大片| 成人av一区二区三区在线看 | 99九九在线精品视频| 精品乱码久久久久久99久播| 亚洲精品乱久久久久久| 动漫黄色视频在线观看| 国产成人精品在线电影| 欧美精品av麻豆av| 97在线人人人人妻| 亚洲精品一二三| 青草久久国产| 老司机影院成人| 精品人妻熟女毛片av久久网站| 亚洲精品国产一区二区精华液| 不卡一级毛片| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 国产精品麻豆人妻色哟哟久久| 久久久久国内视频| 天天躁日日躁夜夜躁夜夜| 欧美午夜高清在线| 爱豆传媒免费全集在线观看| 男人舔女人的私密视频| 午夜福利在线观看吧| 免费在线观看视频国产中文字幕亚洲 | 五月开心婷婷网| 久久热在线av| 少妇精品久久久久久久| 国产精品成人在线| 国产亚洲精品一区二区www | 丝袜美足系列| 人妻 亚洲 视频| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| 俄罗斯特黄特色一大片| 亚洲情色 制服丝袜| 精品亚洲乱码少妇综合久久| 久久性视频一级片| 欧美人与性动交α欧美软件| 亚洲视频免费观看视频| 亚洲国产欧美日韩在线播放| 搡老熟女国产l中国老女人| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 日韩视频一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 亚洲成人免费电影在线观看| 亚洲欧美精品自产自拍| 黑人操中国人逼视频| www.999成人在线观看| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 国产av又大| 一二三四在线观看免费中文在| 免费观看av网站的网址| 亚洲色图综合在线观看| 精品亚洲成a人片在线观看| 国产成人影院久久av| 国精品久久久久久国模美| 18禁国产床啪视频网站| 性少妇av在线| 蜜桃国产av成人99| 欧美xxⅹ黑人| 久久99热这里只频精品6学生| 午夜免费观看性视频| 可以免费在线观看a视频的电影网站| 一区二区三区激情视频| 欧美精品一区二区大全| 国产亚洲精品一区二区www | 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区 | 99香蕉大伊视频| 黄色毛片三级朝国网站| 深夜精品福利| 国产精品欧美亚洲77777| tube8黄色片| 一区二区av电影网| 老司机靠b影院| 两性夫妻黄色片| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕一二三四区 | 丰满少妇做爰视频| 亚洲精品美女久久av网站| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 久久久久久久国产电影| 青草久久国产| 一级a爱视频在线免费观看| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 久久久欧美国产精品| 欧美少妇被猛烈插入视频| 久久久国产欧美日韩av| 日韩制服骚丝袜av| 国产高清视频在线播放一区 | 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频| 免费日韩欧美在线观看| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 亚洲精品国产精品久久久不卡| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 国产一区二区 视频在线| 亚洲第一青青草原| 亚洲欧洲精品一区二区精品久久久| 少妇被粗大的猛进出69影院| 国产精品免费大片| 久久精品国产亚洲av香蕉五月 | 成年人免费黄色播放视频| 窝窝影院91人妻| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 天天影视国产精品| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| 亚洲免费av在线视频| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 一区在线观看完整版| 少妇粗大呻吟视频| 青草久久国产| 动漫黄色视频在线观看| a在线观看视频网站| 亚洲精品在线美女| 制服诱惑二区| 悠悠久久av| 成年人黄色毛片网站| 美女视频免费永久观看网站| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 成年av动漫网址| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 国产成人影院久久av| 日韩一区二区三区影片| 这个男人来自地球电影免费观看| 国产亚洲一区二区精品| 久久九九热精品免费| 国产一级毛片在线| 久久久国产成人免费| 乱人伦中国视频| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 成人三级做爰电影| 日本欧美视频一区| 成人国产av品久久久| 老熟妇乱子伦视频在线观看 | 亚洲国产av新网站| 亚洲伊人色综图| 亚洲成国产人片在线观看| 丝袜喷水一区| 久久久国产一区二区| 成年动漫av网址| 丰满人妻熟妇乱又伦精品不卡| 在线永久观看黄色视频| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 9色porny在线观看| 国产精品.久久久| 丁香六月欧美| 免费在线观看完整版高清| 青春草亚洲视频在线观看| 久久久水蜜桃国产精品网| 中文字幕av电影在线播放| 亚洲中文av在线| 日日摸夜夜添夜夜添小说| 国产一区二区三区在线臀色熟女 | 国产精品一二三区在线看| 桃红色精品国产亚洲av| 欧美亚洲日本最大视频资源| bbb黄色大片| 无遮挡黄片免费观看| 久久久国产一区二区| 亚洲国产精品999| 久久久久久久精品精品| 欧美日韩中文字幕国产精品一区二区三区 | 大陆偷拍与自拍| 国产1区2区3区精品| 日韩视频一区二区在线观看| 男人爽女人下面视频在线观看| 日韩大码丰满熟妇| 亚洲国产欧美日韩在线播放|