• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-Cycle Dwell-Fatigue Life and Failure Mode of a Candidate Titanium Alloy Material TB19 for Full-Ocean-Depth Manned Cabin

    2018-06-27 07:19:48WANGFangJIANGZheCUIWeicheng
    船舶力學(xué) 2018年6期

    WANG Fang,JIANG Zhe,CUI Wei-cheng

    (Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China)

    0 Introduction

    Deep-sea manned submersible plays an important role in ocean scientific research at deep sea space.Up to now,several 4 500-7 000 m level deep-sea submersibles have already been used to carry out routine scientific research(Li et al,2015)[1].And more and more researchers pay attention to full-ocean-depth manned submersibles with stronger ability for further exploring the deep sea trenches,which are now to be designed in several research centers(Cui et al,2015)[2].Designers of full-ocean-depth manned submersibles have continually strived to reduce the structural weight,by adopting some new ideas on design of manned cabin to increase the achievable range/speed/payload(e.g.Hawkes,2009[3];Taylor and Lawson,2009[4]),and proper material selection is a pivotal aspect hereinto(Cui et al,2015)[5].

    Titanium alloy manned cabin is widely used for existing deep-sea manned submersibles.In the preliminary design stage of full-ocean-depth manned cabin conducted in Hadal Science and Technology Research Center of Shanghai Ocean University in China,the availability of high strength titanium alloys is considered as a top priority based on the successful application of Ti-6Al-4V ELI in other submersibles.However,due to the constraint of strength of Ti-6Al-4V ELI,if full-ocean-depth submersible is designed to have enough volume to take three occupants,manned cabin thickness will exceed current manufacture ability of most countries considering the thin-off amount and size of the sphere.Li et al(2015)[5]discussed the design of a full-ocean depth manned cabin with double intersecting spheres by finite element analysis and optimization theory.However,the connecting part of the two spheres may be difficult to construct for meeting all practical and theoretical requirements.Then the idea needs more investigation.Another choice is to use titanium alloy with higher strength level.The titanium alloy TB19 attracts designers’attention due to its extreme high strength of more than 1 200 MPa with other better performances such as relatively low density,corrosion resistance,high ductility,and ease of machining.It has been widely used in aerospace,marine,petrochemical and other engineering fields as an important structural material and functional material and its common properties have been introduced in literature(Liu et al,2010)[5].

    In this paper,the low-cycle dwell-fatigue life and failure mode of TB19 are investigated and compared with that of Ti-6Al-4V ELI which has been practically proved to be satisfactory and experimentally investigated(Wang and Cui,2015)[6].Related experiments on TB19 with a uniform circular cross section diameter of 6mm are conducted in laboratory environment when maximum stress of load cycles approximates to yield strength.The failure modes and associated fractographic features have also been examined in detail.The results can be referred for material evaluation of full-ocean depth manned cabin.

    1 Material and experimental procedure

    TB19 is a high strength titanium alloy with nominal composition of Ti-3Al-5Mo-5V-4Cr-2Zr(%),which synthesizes the advantages of two phase titanium alloy and beta-annealed titanium alloy and widely used in aerospace,ships,petrochemical and other industries(Liu et al,2010)[5].In order to obtain basic data of mechanical properties for the alloy,the tensile specimens from the same forged plate were machined along two directions.And the tests were conducted in lab air,at room temperature,using a closed-loop servo hydraulic test frame.The mechanical properties of TB19 tested in the current research are given in Tab.1.

    Tab.1 Mechanical properties of TB19

    In order to further examine the microstructure and the local texture of the material,the fractured face of tensile specimen is characterized by using the Electron Back Scattered Diffraction(EBSD)technique using a Quanta650FEG scanning electron microscope.The lowmagnification and higher-magnification SEM images of TB19 tensile specimen fracture surface are respectively shown in Fig.1(a)and(b).The low magnification image shows relatively coarse grain size.The higher-magnification image shows fine intercrystalline dimples and transgranular dimples respectively in intergranular regions and transgranular regions.

    Fig.1 SEM image of TB19 fracture surface for tensile specimen(a)Low-magnification image;(b)Higher-magnification image

    Fig.2 A schematic representation of dwell-fatigue load pattern in experiments

    A schematic representation of the dwell-fatigue load pattern used in the experiments is shown in Fig.2.A load ratio of 0 is applied in all the experiments.There will be a load held period at peak stress in each cycle,which is denoted by dwell time Th.This is for simulating the service time of the manned cabin in the predetermined location of deep sea.However,considering the cost of the experiments in laboratory,the dwell time in actual operation of several hours could not be realized in experiments.The present experiments only used for explanation analysis of the dwell-fatigue phenomenon.Dwell-fatigue tests were carried out in laboratory environment on two cylindrical smooth specimens(Kt=1)with 6 mm in diameter,and 46 mm in gauge length for hot-rolled thick plate specimens machined from the same forged plate,using a polished surface.The tests were conducted using a testing machine specially designed for dwell fatigue with a wide range of load ratios and frequencies.Other requirements for loading are in agreement with the standard practice for strain-controlled fatigue testing(ASTM).Each load cycle includes loading-dwell-unloading process with axial force in tension and a zero load ratio.The applied maximum stresses are equal to 0.975σyand 0.959σyrespectively.The dwell period is 10 min and the load/unload period is 0.5 s.The dwell-fatigue tests were conducted up to failure in a stress-controlled mode.The strain accumulations and rupture life are recorded.In order to evaluate the properties of TB19,the test results are compared with those of Ti-6Al-4V ELI,which were reported by the authors(Wang and Cui,2015)[6].Optical and fractographic aspects of the fractured surface will be used to analyze the failure mode.

    2 Test results and discussion

    The test conditions are further described in Tab.2 with the corresponding specimen num-bers,maximum stress level,and dwell time.And the rupture life of each specimen is recorded.The results of TB19 can be compared with those of Ti-6Al-4VELI under similar stress levels and dwell time,tested using the same specimen size and under the same condition,which are together listed in Tab.2.To illustrate the failure process,the strain accumulation with cycles for specimen No.1-1 is shown in Fig.3(a),which exhibits three stages with an initial nearly instantaneous occurrence of elastic and perhaps plastic strain,followed by the gradual accumulation of strain,and tertiary rupture stage.The strain accumulation should comprise those from cyclic and dwell periods.Fig.3(b)depicts the strain from dwell time.It can be noted that the strain due to the dwell time will decrease with loading process to a negligible level,however,it is a relatively small amount on the whole comparing to the total strain accumulation.

    Tab.2 Summary of test results on dwell fatigue life of TB19 and TC4 ELI(cycles to rupture)

    Fig.3 Strain versus cycles behavior(a)Total strain versus cycles during dwell-fatigue process showing three stages;(b)Strain due to dwell time in each cycle

    The comparison on strain versus cycle behavior between TB19 and Ti-6Al-4VELI can be seen in Fig.4.The comparison of results at two different peak stresses indicates that the rupture time of both candidate materials is lowered when the maximum loading stress is increased by just 2%.Both the strain accumulation rate during the whole deformation process of the TB19 specimen and total rupture strain are obviously lower than those of Ti-6Al-4VELI.The rupture time of TB19 is also more favorable,but it decreases more rapidly with increase of stress level.Fig.5 gives the comparison on rupture time of the total specimens for two materials.If linear tendency of stress-cycles curve for the two materials is assumed(which can be regarded as reasonable when the stress level is located in a relatively small region),TB19 will show a more advantageous property in the viewpoint of service life cycle comparing to Ti-6Al-4V ELI if they are chosen for deep-sea manned cabin materials.

    Fig.4 Comparison on strain versus cycles behavior(Th=10 min)between TB19 and Ti-6Al-4V ELI

    Fig.5 Comparison on normalized stress versus time to failure(Th=10 min)between TB19 and Ti-6Al-4V ELI

    SEM analysis for TB19 on fracture surfaces is performed according to standard SEM operation procedure by putting the sample into SEM vacuum chamber to magnify observations at room temperature 23℃±2℃ and relative humidity 23℃±5℃.The same analysis has been conducted for Ti-6Al-4V ELI in the former research.The SEM observation is used to characterize the crystallography of the fracture surface of the dwell-fatigue specimen,which will enable the investigation of the relation between the load pattern and the fatigue crack nucleation and propagation characteristics in viewpoint of morphological and microstructural features.

    The SEM images show similar fracture surface characteristics for all TB19 specimens.Taking the specimen failed under load condition of σmax=1 170 MPa and Th=10 min as an example,the low-magnification of specimen fracture surfaces(two parts denoted by A and B)is shown in Fig.6 comparing with those of Ti-6Al-4V ELI obtained under similar loading condition.In macroscopic observation,the fracture appearances of both materials are characterized by approximate brittle facets with very little necking.And three sub-surfaces can be separated from the fracture surface,which are origin area,extending area and fast fracture area,respectively representing the crack initiation,stable propagation and unstable propagation periods.However,the difference between the origin area and the extending area of TB19 is not as apparent as that of Ti-6Al-4V ELI.The crack is initiated from the specimen surface,which is not surprising considering the standard specimen treatment process.Under the high stress condition in the present experiments,the dwell-fatigue crack initiation sub-surface is relatively faceted with little ductility,while the evidence of cyclic growth with higher local plasticity characterized by wavy fatigue striation can be seen in stable crack growth period.The fracture surfaces of TB19 in the present study are different from those of other titanium alloys reported by some researchers when they study the difference between the dwell-fatigue and the nor-mal fatigue(e.g.Shen et al,2004[7];Sinha et al,2004[8]).It is not difficult to be understood as the fracture modes may be affected by many factors including load stress,load ratio,surface treatment process of the specimen and test condition.In the present work,the applied maximum stress in the dwell-fatigue load pattern is very high considering the stress concentration area in the manned cabin and relatively low cycle life design.

    Fig.6 Low-magnification SEM images of the specimen fracture surfaces(1)Ti-6Al-4V ELI(σmax/σy=0.975 42,Th=10 min)and(2)TB19(σmax/σy==0.976 47,Th=10 min)

    The high-magnification SEM images of fracture sub-surfaces of the investigated TB19 specimen are illustrated in Fig.7,which can be compared with those of Ti-6Al-4V ELI shown in Fig.8.The representing local areas in six sub-surfaces denoted by A1,A2,A3,B1,B2 and B3 for two material specimens are analyzed.Intergranular fracture together with dimples in crystal plane dominate in A1,A2,B1 and B2 regions of TB19 specimen,which combines brittle and ductile fracture characteristics,while A3 and B3 regions exhibit transgranular cleavage with dimples.Its high-magnification fracture surface image is different from that of Ti-6Al-4V ELI studied in previous research.The total surfaces of Ti-6Al-4V ELI specimen show mixed rupture with both ductile fracture characteristics with shear dimples in the observed regions of A1 and B1 sub-surfaces and brittle fracture characteristics with transgranular cleavage in the observed regions of A3 and B2 sub-surfaces.However,the ductile characteristic of the material is not significant under the test conditions with relatively small shear dimples.It should be noted that the slip bands and void can be observed in A2 and B2 of the stable crack growth area of Ti-6Al-4V ELI specimen,showing that it has transgranular creep fracture characteristics,which is quite different from that of normal fatigue.However,creep fracture characteristics of TB19 exist but are not very significant without obvious slip bands and voids observed.It can be used for explaining more satisfactory failure time tendency of TB19 than Ti-6Al-4V ELI.

    Then the SEM analysis of the specimen explains the unique feature of room temperature dwell-fatigue of the candidate materials,and supports the idea that the dwell time effect should be considered when estimating the service life of the manned cabin.However,in the present study,the comparisons of normal fatigue and dwell fatigue as well as normal creep conditions have not been conducted for TB19,which will be included in future’s work aiming at obtaining the rupture lives under three conditions to see if there will be life debit considering cyclic dwell time,how is the magnitude and if the crack initiation mode under dwell-fatigue condition is similar to that under normal creep condition or normal fatigue condition.

    Fig.7 High-magnification SEM image of the TB19 specimen fracture surface(σmax/σy=0.976 47,Th=10 min)

    Fig.8 High-magnification SEM image of the Ti-6Al-4V ELI specimen fracture surface(σmax/σy=0.975 42,Th=10 min)

    3 Summary and conclusions

    The low-cycle dwell-fatigue life and failure mode of candidate material for full-oceandepth manned submersible,TB19,are investigated by experiments,which are compared with those of Ti-6Al-4V ELI.Experimental results show that the rupture time of TB19 specimen under dwell-fatigue condition is lowered when the maximum loading stress is increased by just 2%in high stress region.Both the strain accumulation rate during the whole deformation process of the TB19 specimen and total rupture strain are obviously lower than those of Ti-6Al-4VELI.The rupture time of TB19 is also more favorable,but it decreases more rapidly with increase of stress level.TB19 will show a more advantageous property in the viewpoint of service life cycle comparing to Ti-6Al-4V ELI if they are chosen for deep-sea manned cabin materials.

    SEM analysis for TB19 on fracture surfaces is performed to characterize the crystallography of the fracture surface of the dwell-fatigue specimen and compared with those of Ti-6Al-4V ELI.In macroscopic observation,the fracture appearances are characterized by approximate brittle facets with very little necking and can be separated by three sub-surfaces.The high-magnification SEM images of fracture sub-surfaces show mixed rupture with both ductile fracture characteristics with shear dimples.It has creep fracture characteristics which are quite different from that of normal fatigue,but not so significant as Ti-6Al-4V ELI.

    It appears that the candidate material,TB19,shows a better anti-creep property under the test condition but the cyclic damage mode should be differentiated from normal fatigue damage.However,most of current service life assessment methods for deep-sea manned cabin are based on normal low-cycle fatigue calculation.Further research should be conducted to obtain the life debit considering cyclic dwell time effect and design working stress.

    The studies can provide material evaluation foundation for full-ocean-depth manned cabin.

    Acknowledgments

    This work is supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004)and the General Program of National Natural Science Foundation of China‘Study on the Design and Life Calculation Method for the Maraging Steel Sphere of Fullocean-depth Manned Submersible’(Grant No.51679133).

    [1]Li H,Wang F,Cui W C.Exploration on structural design of double intersecting spheres pressure hull of full ocean depth manned submersible[J].Journal of Ship Mechanics,2017,21(9):1160-1169.

    [2]Cui W C,Wang F,Pan B B,Hu Y,Du Q H.Chapter 1 Issues to be solved in the design,manufacture and maintenance of a full ocean depth manned cabin,in advances in engineering research[M].Volume 11,Editors:Petrova V M,Nova Science Publishers,2015.

    [3]Hawkes G.The old arguments of manned versus unmanned systems are about to become irrelevant:New technologies are game changers[J].Marine Technology Society Journal,2009,43(5):164-168.

    [4]Taylor L,Lawson T.Project deepsearch:An innovative solution for accessing the oceans[J].Marine Technology Society Journal,2009,43(5):169-177.

    [5]Liu X L,Yang R,Yan Y Y,Wang N Y,Song D J.Structural properties of TB19 heavy plate welded by electron beam welding[J].Chinese Journal of Nonferrous Metals,2010,20(s1):748-752.

    [6]Wang F,Cui W.Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin[J].Materials Science&Engineering A,2015,642(905):136-141.

    [7]Shen W,Soboyejo W O,Soboyejo A B O.An investigation on fatigue and dwell-fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J].Mechanics of Materials,2004,36(s1-2):117-140.

    [8]Sinha V,Mills M J,Williams J C.Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha Titanium Alloy[J].Metallurgical&Materials Transactions A,2004,35(35):3141-3148.

    美女福利国产在线 | 欧美成人午夜免费资源| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 亚洲精品,欧美精品| 久久久成人免费电影| 成人特级av手机在线观看| 王馨瑶露胸无遮挡在线观看| 免费黄网站久久成人精品| 97超碰精品成人国产| 成年美女黄网站色视频大全免费 | 欧美精品一区二区大全| 成人国产av品久久久| 亚洲伊人久久精品综合| 亚洲,一卡二卡三卡| 午夜激情福利司机影院| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| av又黄又爽大尺度在线免费看| 91精品伊人久久大香线蕉| 欧美3d第一页| 人人妻人人爽人人添夜夜欢视频 | 这个男人来自地球电影免费观看 | 久久久成人免费电影| 嫩草影院新地址| 少妇人妻精品综合一区二区| 大又大粗又爽又黄少妇毛片口| av天堂中文字幕网| 草草在线视频免费看| 在线观看美女被高潮喷水网站| 欧美精品亚洲一区二区| 亚洲人成网站高清观看| 国产熟女欧美一区二区| 亚洲av.av天堂| 一区二区三区四区激情视频| 国产一级毛片在线| 亚洲在久久综合| 日日啪夜夜撸| 久久影院123| 简卡轻食公司| 成人午夜精彩视频在线观看| 中文字幕av成人在线电影| 一本—道久久a久久精品蜜桃钙片| 免费观看无遮挡的男女| 九九爱精品视频在线观看| 在线精品无人区一区二区三 | 久久久久久久国产电影| 国产一区二区三区综合在线观看 | 最近最新中文字幕大全电影3| 看免费成人av毛片| 国产 一区精品| 久久影院123| 免费在线观看成人毛片| 亚洲性久久影院| 男女啪啪激烈高潮av片| 中国国产av一级| 亚洲人与动物交配视频| 久久毛片免费看一区二区三区| 午夜福利在线观看免费完整高清在| 日本wwww免费看| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 国产精品福利在线免费观看| 日韩成人av中文字幕在线观看| 久久久久性生活片| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 激情五月婷婷亚洲| 51国产日韩欧美| 亚洲丝袜综合中文字幕| 午夜福利高清视频| 国国产精品蜜臀av免费| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 在线观看免费视频网站a站| 大话2 男鬼变身卡| 97在线视频观看| 欧美xxxx性猛交bbbb| 日韩欧美一区视频在线观看 | 在线观看免费高清a一片| 成人二区视频| 黄色配什么色好看| 久久精品久久久久久噜噜老黄| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 国产黄频视频在线观看| 久久6这里有精品| 99热这里只有精品一区| 午夜视频国产福利| 不卡视频在线观看欧美| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 国产黄色免费在线视频| 亚洲欧美精品专区久久| 日本色播在线视频| 亚洲精品国产色婷婷电影| av不卡在线播放| 亚洲精品中文字幕在线视频 | 最黄视频免费看| 亚洲国产欧美在线一区| 亚洲自偷自拍三级| 国产精品一及| 国产精品国产三级国产av玫瑰| 综合色丁香网| 女人十人毛片免费观看3o分钟| 久久久久精品性色| 夜夜骑夜夜射夜夜干| 2021少妇久久久久久久久久久| 涩涩av久久男人的天堂| 又黄又爽又刺激的免费视频.| 亚洲国产日韩一区二区| 三级国产精品欧美在线观看| 久久99精品国语久久久| 国产成人免费观看mmmm| 97超视频在线观看视频| 日韩成人av中文字幕在线观看| 大香蕉97超碰在线| 99热这里只有是精品在线观看| 亚洲精品国产av蜜桃| 免费少妇av软件| 大陆偷拍与自拍| 亚洲天堂av无毛| 亚洲国产欧美在线一区| 美女cb高潮喷水在线观看| 免费看日本二区| 人妻 亚洲 视频| 亚洲国产高清在线一区二区三| 日本vs欧美在线观看视频 | 欧美成人a在线观看| 欧美xxxx黑人xx丫x性爽| 啦啦啦中文免费视频观看日本| 少妇熟女欧美另类| 国产在线男女| 男女边摸边吃奶| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 2021少妇久久久久久久久久久| 欧美日韩国产mv在线观看视频 | 黄色日韩在线| 欧美区成人在线视频| 国产精品一区二区性色av| 三级国产精品欧美在线观看| 婷婷色综合大香蕉| 美女国产视频在线观看| 五月玫瑰六月丁香| 国产亚洲欧美精品永久| 国产综合精华液| av不卡在线播放| 亚洲av成人精品一区久久| 在线看a的网站| 黑人猛操日本美女一级片| a级毛色黄片| 九草在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91 | 成人一区二区视频在线观看| 国产一区二区三区av在线| 亚洲成人手机| 久热这里只有精品99| 国产精品国产三级专区第一集| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产欧美人成| 纯流量卡能插随身wifi吗| 欧美日韩综合久久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产无遮挡羞羞视频在线观看| 九草在线视频观看| 国产精品国产三级国产av玫瑰| 最近2019中文字幕mv第一页| 久久国产精品大桥未久av | 久久精品夜色国产| 国产有黄有色有爽视频| 丰满乱子伦码专区| 97在线人人人人妻| 国产黄频视频在线观看| 麻豆成人午夜福利视频| 国产精品.久久久| 国产亚洲欧美精品永久| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 国产国拍精品亚洲av在线观看| 精品人妻熟女av久视频| 黄色一级大片看看| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 中文欧美无线码| 男男h啪啪无遮挡| 中文字幕亚洲精品专区| 97在线人人人人妻| 纵有疾风起免费观看全集完整版| 一级二级三级毛片免费看| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕| 五月玫瑰六月丁香| 亚洲va在线va天堂va国产| 男人狂女人下面高潮的视频| 免费看不卡的av| 男女边摸边吃奶| 免费av中文字幕在线| 国产久久久一区二区三区| 久久久久久久久久久免费av| 久久久久视频综合| 51国产日韩欧美| 亚洲成色77777| 久久久成人免费电影| 亚洲精品国产av成人精品| 国产高清三级在线| 寂寞人妻少妇视频99o| 爱豆传媒免费全集在线观看| 亚洲不卡免费看| .国产精品久久| 久久久久久久久大av| 免费观看的影片在线观看| 免费看av在线观看网站| 高清视频免费观看一区二区| 哪个播放器可以免费观看大片| 久久 成人 亚洲| 久久精品国产亚洲av天美| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 成人二区视频| 插逼视频在线观看| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 国内精品宾馆在线| 国产又色又爽无遮挡免| 九九久久精品国产亚洲av麻豆| 亚洲综合精品二区| 男女无遮挡免费网站观看| 在线观看av片永久免费下载| 少妇裸体淫交视频免费看高清| 久热久热在线精品观看| 久久国产精品大桥未久av | 国产欧美另类精品又又久久亚洲欧美| 老司机影院成人| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 久久精品久久精品一区二区三区| 在线观看人妻少妇| av福利片在线观看| 色视频在线一区二区三区| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 欧美97在线视频| 亚洲精品乱码久久久久久按摩| 日韩免费高清中文字幕av| 亚洲第一av免费看| 免费观看在线日韩| 亚洲欧美日韩卡通动漫| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 亚洲精品国产成人久久av| 一级av片app| 边亲边吃奶的免费视频| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 国产伦精品一区二区三区视频9| 简卡轻食公司| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 在线观看人妻少妇| www.色视频.com| 水蜜桃什么品种好| av.在线天堂| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 91久久精品电影网| 最近中文字幕高清免费大全6| 性色av一级| 寂寞人妻少妇视频99o| 免费久久久久久久精品成人欧美视频 | 久久6这里有精品| 精品久久久噜噜| 成人国产麻豆网| 国产淫片久久久久久久久| 亚洲人成网站在线观看播放| 久久精品久久久久久噜噜老黄| 国产亚洲最大av| 国产成人精品一,二区| 亚洲精品,欧美精品| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 只有这里有精品99| 亚洲四区av| .国产精品久久| 欧美少妇被猛烈插入视频| 直男gayav资源| 肉色欧美久久久久久久蜜桃| 国产av国产精品国产| 日韩视频在线欧美| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 三级经典国产精品| 亚洲欧美日韩卡通动漫| 赤兔流量卡办理| 2018国产大陆天天弄谢| 嘟嘟电影网在线观看| 婷婷色麻豆天堂久久| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 日本wwww免费看| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 亚洲精品国产色婷婷电影| 久久精品夜色国产| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 国产黄片美女视频| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 日韩三级伦理在线观看| 国产精品久久久久久久久免| 美女主播在线视频| 熟女人妻精品中文字幕| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区三区| 亚洲丝袜综合中文字幕| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 日韩欧美 国产精品| 国产成人免费无遮挡视频| 成人一区二区视频在线观看| 视频区图区小说| 一区二区三区免费毛片| 国产精品一区二区在线观看99| 免费av中文字幕在线| 最近最新中文字幕大全电影3| 一区二区三区精品91| 大香蕉97超碰在线| 日韩成人伦理影院| 欧美精品国产亚洲| 国产高清三级在线| 成人黄色视频免费在线看| a级毛色黄片| 你懂的网址亚洲精品在线观看| 毛片一级片免费看久久久久| 熟女av电影| 久久久久精品久久久久真实原创| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 毛片女人毛片| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 高清视频免费观看一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久人妻| 欧美精品一区二区大全| 在现免费观看毛片| 久久女婷五月综合色啪小说| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 这个男人来自地球电影免费观看 | 精品酒店卫生间| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 高清欧美精品videossex| 国产在线免费精品| 丰满迷人的少妇在线观看| 中文资源天堂在线| 日韩中文字幕视频在线看片 | 亚洲欧美精品专区久久| 国产老妇伦熟女老妇高清| 亚洲av二区三区四区| 久久久精品94久久精品| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| av国产精品久久久久影院| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片 | 国产精品人妻久久久影院| 亚洲av综合色区一区| 日韩欧美 国产精品| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产精品av视频在线免费观看| 三级国产精品片| 久久久久久久久久人人人人人人| 国模一区二区三区四区视频| 亚洲国产日韩一区二区| 亚洲国产精品一区三区| 亚洲最大成人中文| 成人18禁高潮啪啪吃奶动态图 | 观看美女的网站| 亚洲av不卡在线观看| 22中文网久久字幕| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 中文欧美无线码| a 毛片基地| 伊人久久精品亚洲午夜| 国产免费一区二区三区四区乱码| 色综合色国产| 偷拍熟女少妇极品色| 日本黄色日本黄色录像| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 色视频在线一区二区三区| av专区在线播放| 亚州av有码| 国产v大片淫在线免费观看| 黄片wwwwww| 成年免费大片在线观看| 日韩av不卡免费在线播放| 国产精品一二三区在线看| 国产高潮美女av| 中文字幕精品免费在线观看视频 | 精品久久国产蜜桃| 国产精品不卡视频一区二区| 嫩草影院新地址| 亚洲精品一二三| 综合色丁香网| 亚洲国产精品国产精品| 免费久久久久久久精品成人欧美视频 | 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影小说 | 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 国产成人91sexporn| 直男gayav资源| 少妇丰满av| 中文字幕精品免费在线观看视频 | 日韩大片免费观看网站| 极品教师在线视频| 国产黄频视频在线观看| 内地一区二区视频在线| 久久久久精品久久久久真实原创| 亚洲人与动物交配视频| 一区在线观看完整版| 麻豆精品久久久久久蜜桃| 哪个播放器可以免费观看大片| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 欧美日韩视频精品一区| 久久97久久精品| 色网站视频免费| 在线免费十八禁| 久久久久久久久久人人人人人人| 国产高清有码在线观看视频| 国产在线免费精品| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 亚洲高清免费不卡视频| 在线看a的网站| 丰满少妇做爰视频| 久久久亚洲精品成人影院| 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看 | 在线观看一区二区三区| 亚洲精品中文字幕在线视频 | 亚洲欧美精品自产自拍| 毛片女人毛片| 日日啪夜夜撸| 麻豆乱淫一区二区| 亚洲欧美成人综合另类久久久| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 国产视频首页在线观看| 高清视频免费观看一区二区| 欧美xxxx黑人xx丫x性爽| 性高湖久久久久久久久免费观看| 高清欧美精品videossex| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 99国产精品免费福利视频| 毛片一级片免费看久久久久| 1000部很黄的大片| 久久久久网色| av国产免费在线观看| 老师上课跳d突然被开到最大视频| 国产欧美另类精品又又久久亚洲欧美| 91精品一卡2卡3卡4卡| 成人特级av手机在线观看| 亚洲中文av在线| 久久97久久精品| 大话2 男鬼变身卡| 国产人妻一区二区三区在| 深夜a级毛片| 欧美成人精品欧美一级黄| 成人国产av品久久久| 黄色配什么色好看| 一二三四中文在线观看免费高清| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 国产黄色免费在线视频| 久久人人爽人人片av| 看非洲黑人一级黄片| 纯流量卡能插随身wifi吗| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 一级二级三级毛片免费看| 亚洲在久久综合| 一区二区三区免费毛片| 免费观看在线日韩| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 国产大屁股一区二区在线视频| 最近最新中文字幕免费大全7| 欧美老熟妇乱子伦牲交| 一级毛片久久久久久久久女| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 久久热精品热| 99热全是精品| 十分钟在线观看高清视频www | 中文在线观看免费www的网站| 激情五月婷婷亚洲| 美女中出高潮动态图| 天美传媒精品一区二区| 亚洲国产精品999| 丰满少妇做爰视频| 亚洲国产高清在线一区二区三| 美女高潮的动态| 男人舔奶头视频| 久久精品国产a三级三级三级| 精华霜和精华液先用哪个| 精品久久久噜噜| 中文精品一卡2卡3卡4更新| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| 少妇高潮的动态图| 国产高清有码在线观看视频| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲高清精品| 草草在线视频免费看| 午夜免费观看性视频| 狂野欧美激情性xxxx在线观看| 亚洲色图av天堂| 午夜老司机福利剧场| 免费观看av网站的网址| 热re99久久精品国产66热6| 观看av在线不卡| 国产乱人偷精品视频| 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 日韩一区二区视频免费看| 久久青草综合色| 欧美激情极品国产一区二区三区 | 久久毛片免费看一区二区三区| 欧美性感艳星| 高清黄色对白视频在线免费看 | 少妇被粗大猛烈的视频| av视频免费观看在线观看| 国产亚洲最大av| 日韩,欧美,国产一区二区三区| 国产 精品1| 国产极品天堂在线| av在线老鸭窝| a级毛片免费高清观看在线播放| 99国产精品免费福利视频| 一级毛片我不卡| 91久久精品电影网| 国产一级毛片在线| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 久久ye,这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 美女视频免费永久观看网站| 美女国产视频在线观看| 伊人久久精品亚洲午夜| 简卡轻食公司| 91aial.com中文字幕在线观看| 亚洲三级黄色毛片| 欧美一区二区亚洲| 在线看a的网站| 国产精品一二三区在线看| 国产成人91sexporn| 精品少妇黑人巨大在线播放| 午夜福利视频精品| 亚洲真实伦在线观看| 欧美成人精品欧美一级黄| 伦理电影免费视频| 亚洲电影在线观看av| 国产精品一区www在线观看| 婷婷色综合大香蕉| 免费黄频网站在线观看国产| 七月丁香在线播放| a级一级毛片免费在线观看| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放|