• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrical Properties of La Doped AgSnO2 Contact Materials

    2018-06-26 03:52:24,,,(,,)

    , , , ( , , )

    1 Introduction

    Because AgCdO electrical contact material contains toxic metal Cd, it has been banned in the use of household appliances and cars. It is very necessary to develop a new type of non-polluting and non-toxic electrical contact material as a substitution. AgSnO2, which has excellent resistance to arc erosion, wear resistance and good welding resistance, is used to replace the AgCdO. But the usage of AgSnO2material is limited by its shortcomings, such as the great contact resistance, the high temperature rise and so on. The main reason is that SnO2is a nearly insulated semiconductor with wide band gap, which makes the material resistance increase and the conductivity becomes poor[1-3]. Therefore, improving the conductivity of SnO2is a major problem which needs to be solved urgently[4-5].

    The recent study shows that the problem can be solved by doping element. Yu et al. studied the band structure by the first principle calculation[6]. Xie et al. studied the electronic structure of Ru doped SnO2semiconductor and the results proved that the conductivity of Ru doped SnO2can be greatly improved[7]. Shan et al. calculated the electronic structure and optical properties of Ce doped SnO2, and discovered that the doped SnO2had half-metallic property[8]. Wang et al. studied the density of states and band structure of n-layers transition metal Cr doped SnO2superlattice by using full potential linearized augmented plane wave method, and the results showed that doped SnO2were half-metallic[9]. Long et al. studied the electronic structure and optical properties of Sb-doped SnO2, which showed that Sb doped SnO2was still a direct band gap semiconductor, the conduction band moved to the lower energy side and the band gap became smaller[10]. Jia et al. calculated the electronic properties of different ratio of Ti doped SnO2, which pointed out that the band gap reduced gradually along with the increasing of doping ratio[11]. Yu et al. calculated the density of states and optical properties of V、Cr、Mn doped SnO2, and discovered that the V, Cr doped SnO2had the properties of half-metallic, but Mn doped SnO2didn’t[12]. However, the first principle calculations for La doped SnO2semiconductors have not been reported. La is a rare earth element, there is an electron on the 5d orbit but no electron on 4f orbit, which can be known by the Hund Rule. And the resistivity of La is higher than that of Al and Cu. La doped SnO2semiconductor is proved to be a good conductive material only in experiments[13]. Therefore, theoretical analysis of La doped AgSnO2contact material has a theoretical guidance for the optimization of performance.

    In this paper, the electronic property and structure of La doped SnO2based on density functional theory (DFT) are calculated. The lattice constant, band structure and density of states are contained in this calculation. Finally, the contact resistance and the arc energy with different doping ratios are measured by experiments. By theoretical and experimental analysis, the optimal doping ratio of La is obtained, which provides a theoretical basis for the research of contact materials.

    2 Lattice model and calculation method of La doped SnO2

    2.1 Model of the cell of SnO2

    The structure of SnO2is rutile, which belongs to 136 P4/MNM space group. In the calculation, the lattice constants are based on the experimental results (a=b=0.4737nm, c=0.3816nm, α=β=γ=90°). As shown in Fig.1, each unit cell contains two Sn atoms and four O atoms, the Sn atoms are located at the apex and the body core respectively[14].

    In this paper, atomic alternative method is used in the calculation process. Firstly, different model of supper cells are established, and then one La atom is used to replace one Sn atom. The correspondence relationship between doping ratio and super cell is shown in Table 1.

    Table 1 Correspondence relationship between doping ratio and super cell

    2.2 Method for calculation

    The CASTEP software module of Material Studio software package developed by Accelrys company was used. The calculations were based on the plane wave ultra soft pseudo potential method, which included two steps[15]: First, the structure of the super cells were optimized to find the most stable state of the semiconductor structure; Second, the energy band structure, density of states and other properties of the optimized super cell were calcu-lated. The energy cut-off of plane wave chose 340eV, while Monkhorst-Pack mesh of Brillouin-Zone sampling took 4×4×6, the convergence criterion for the interaction between atoms was 0.3eV/nm, and the self-consistent convergence of the total energy took 2×10-5eV/atom for both super cells. The parameters after optimized were all achieved as convergence criteria. The atomic configuration for O, Sn and La were 2s22p4, 5s25p2and 5p65d1respectively. All energy calculations were carried out in the reciprocal space[16].

    3 Calculation results and analysis of La doped SnO2

    3.1 crystal structure

    Firstly, the crystal structures of different doping ratios are optimized, and the parameters after optimized are shown in Table 2.

    Table 2 Crystal parameters of geometry optimization and experimentation

    The optimized data shows that the parameters of unit cells are consistent with the available experimental data, so the unit cell can be calculated in the next step. At low doping ratio, the volume expansion is small. With the increasing of doping ratio,the volume expansion becomes larger and larger. But in short, the volume is larger than it’s original. According to quantum chemistry theory, the radius of La3+ion (0.106nm) is larger than that of Sn4+ion (0.083nm[17]), La3+ion with larger ionic radius replaces the Sn4+ion leads to the volume of cell decreasing. And the bond length of the La-O (0.2417nm) is larger than that of the Sn-O (0.2081nm) also leads to the volume of cell decreasing. The calculated results are in accordance with the theoretical foundation.

    3.2 Band structure and density of state

    The energy band structures of the pure SnO2and La doped SnO2are shown in Fig.2.

    As shown in Fig.2, the highest point of the valence band and the lowest point of the conduction band are both in the Brillouin Zone G, which shows that the SnO2belongs to a direct band gap semiconductor material. The Fermi level is chosen to be zero of the energy scale. The calculated band gap value of SnO2is 1.580eV, and the result is similar to 1.4eV[18]and 1.258eV[19], which were calculated by Liu et al. and Jiang et al. respectively. The calculated band gaps are all lower than available experimental data (3.6eV[20]) mentioned in paper, and it is because GGA is ground state theory, but the energy-gap belongs to property of excited state. This does not affect the theoretical analysis of the electronic structure of SnO2. As for the La doped SnO2, there are more energy levels in both conduction band and valence band than pure SnO2, which is consistent with the rich energy levels of rare earth impurity. La doping enhances the interaction between atoms, and the band gap becomes smaller, which makes the metallic properties of the material enhance.

    Fig.2 Band structure of SnO2 (a) pure SnO2; (b) 16.67% La doped SnO2

    As shown in Fig.3 is the total density of state (TDOS) and partial density of states (PDOS) of pure SnO2and La doped SnO2.According to the Fig.3(a), The valence band, which is located at -15~-20eV regions is mainly dominated by O 2s orbitals and a little Sn 5sand Sn 5p orbitals for pure SnO2. Because of its far from Fermi level, the influence of it can be ignored. Near the band edge the valence band can be divided into three parts, the top valence band in a range of about 2.5eV is O 2p orbitals contribution, the bottom valence band in a range of about 3.3eV is O 2p and Sn 5s orbitals contribution, and the rest of the contribution is to O 2p and Sn 5p orbitals. The conduction band is composed by Sn 5s, 5p and O 2p orbitals, and the electron has a transition from Sn 5s to O 2p, which causes the density of states moves to the lower energy level. It is indicated that SnO2is an ionic bond crystal with some covalent properties[21-22].

    Fig.3 Density of states of SnO2 (a) pure SnO2; (b) 16.67% La doped SnO2

    According to the Fig.3(b), a new peak which is dominated by La 5d orbitals appears in the range of -14.53~-13.30eV. -8.3~0 eV region is dominated by Sn 5s, Sn 5p, and O 2p orbitals. At Fermi level, the valence band is mainly composed of O 2p orbitals, while the conduction band is mainly composed of Sn 5p orbitals. La 5p orbit enter into the part of the conduction band resulting in a narrower band gap, a little change in the top of the valence band and a movement to the lower energy side.

    The energy gap can be obtained from the band structure as shown in table 3. In general, doping makes the band gap smaller. With the increasing of doping ratio, the band gap decreases firstly and increases afterward. When the doping ratio is 16.67%, the band gap is the smallest. The band gap means that the carriers needs how much energy when they are excited from the valence band to the conduction band. So we can come to the conclusion that the conductivity is best at the doping ratio which has the minimum band gap.

    Table 3 Band gap parameters

    The density of states can be obtained after calculating as shown in Fig.4.With the doping ratio increasing, the conduction band of the density of states moves to the lower energy level firstly and then broadens, while the number of electrons near the Fermi level increases firstly and then decreases. From the figure we can see the conduction band moves to the lowest energy level at the doping ratio of 16.67%, meanwhile, the band gap is the smallest and the conductivity is the best.

    Fig.4 Comparison of the total density of States

    3.3 The experimental verification of La doped AgSnO2 contact materials

    3.3.1The measurement experiment of contact resistance The contact material with different doping ratio was prepared by powder metallurgy method. The composition and doping ratio of contact materials are shown in table 4. Contact processing process included mixing powder, initial pressing, initial burning, re-pressing, re-burning and polishing. Finally, the contact material was made and cut into a simple one which was 4.5mm in diameter and 3.5mm in thickness.

    Table 4 Doping ratio and the corresponding composition of the contact material

    The electrical contact performance was tested by using JF04C contact test system. The current of test system of 13A and the voltage of 24V were set. Before conducting a new round of performance measurement, the instrument must be adjusted firstly. The protection voltage of the system needed to set to ±40V, and the voltage was needed to correct to zero in the parameter setting system, which was used to ensure that the relative pressure of contact point was zero before the test. After the the experiment started, the contact pressure was regulated to 86cN by adjusting the closed drive voltage and the open drive voltage in the parameters setting system. All of the electric contact experiments were conducted at room temperature. Measured a contact resistance after each 100 times electric contact. The test data was arranged and analyzed at the end of the experiment.

    The results of the contact resistance test are shown in Fig 5.

    Fig.5 Contact resistance (a) Ag∶SnO2∶La2O3=88∶11∶1; (b) Ag∶SnO2∶La2O3=88∶10.5∶1.5; (c) Ag∶SnO2∶La2O3=88∶10∶2; (d) Ag∶SnO2∶La2O3=88∶9∶3; (e) Ag∶SnO2∶La2O3=88∶6∶6

    The testing data of the contact resistance of La doped AgSnO2is listed in table 5. When the ratios of material are Ag∶SnO2∶La2O3=88∶11∶1 and Ag∶SnO2∶La2O3=88∶6∶6, the variation of contact resistance is mainly between 0.3mΩ and 2mΩ, and the average contact resistance of the later reaches 1.096 mΩ. When the ratios of material are Ag∶SnO2∶La2O3=88∶10.5∶1.5, Ag∶SnO2∶La2O3=88∶10∶2, Ag∶SnO2∶La2O3=88∶9∶3, the variation of contact resistance is mainly between 0.2mΩ and 1.5mΩ, and the average of contact resistance is around 0.55mΩ.

    Table 5 Experimental data of contact resistance of La doped contact material

    3.3.2The measurement experiment of arc energy JF04C contacts test system can record the arc energy. The collected data was too big to analyze, so we averaged every 100 equal intervals from the 25000 collected data and then got a new set of data which can be chosen for the further analysis at the end of the experiment. The results of the arc energy of La doped contact material are shown in Fig 6.

    Fig.6 Arc energy (a) Ag∶SnO2∶La2O3=88∶11∶1; (b) Ag∶SnO2∶La2O3=88∶10.5∶1.5; (c) Ag∶SnO2∶La2O3=88∶10∶2; (d) Ag∶SnO2∶La2O3=88∶9∶3; (e) Ag∶SnO2∶La2O3=88∶6∶6

    The experimental data are shown in table 6. The table illustrates that when the ratios of contact material are Ag∶SnO2∶La2O3=88∶10∶2, Ag∶SnO2∶La2O3=88∶9∶3, Ag∶SnO2∶La2O3=88∶6∶6, the average arc energy is about 185mj. When the ratios of contact material are Ag∶SnO2∶La2O3=88∶11∶1 and Ag∶SnO2∶La2O3=88∶10.5∶1.5, the average arc energy is about 190mj.

    Table 6 Experimental data of the arc energy of La doped contact material

    As is well known, contact resistance and arc energy are important parameters for the electrical properties of contact material. The contact materials with excellent performance should have smaller contact resistance and arc energy. The results show that when the ratios of contact material are Ag∶SnO2∶La2O3=88∶10.5∶1.5, Ag∶SnO2∶La2O3=88∶10∶2, or Ag∶SnO2∶La2O3=88∶9∶3, the contact resistance is smaller, and when the ratios of contact material are Ag∶SnO2∶La2O3=88∶10∶2, Ag∶SnO2∶La2O3=88∶9∶3, the arc energy is minimum. After comprehensive analysis, we can conclude that the electrical properties of the material are the best when the ratio of contact material is Ag∶SnO2∶La2O3=88∶10∶2.

    4 Conclusion

    In conclusion, the electronic structures and properties of La doped SnO2by DFT are studied. La doping can induce the lattice distortion, but the band gap becomes narrow, making the material half metallic. The density of states are analyzed, which shows the energy needed for the electronic transition from valence band to conduction band. The analysis of lattice constant, energy band structures and density of states show that when the doping ratio of La doped SnO2is 16.67%, the conductivity of the material is the best. Finally, the best doping ratio is verified by the experiment of contact resistance and arc energy. It provides a theoretical method of the design of La doped AgSnO2contact material, which is simple and low cost.

    Reference

    [1] Liu ZY. Calculation and Study of Nano-doping AgSnO2Electrical Contact Materials[D]. Tianjin University, Zheng J, Tianjin, Tianjin University, 2007.06.

    [2] Li X, Deng R, Li YF, et al. Effect of Mg Doping on Optical and Electrical Properties of SnO2Thin Films: an Experiment and First-Principles Study[J]. Material And Design, 2015, 42(4): 5299~5303.

    [4] Lu Y, Wang JP, Zhang CW, et al. First-Principle Study on the Electronic and Optical Properties of Mn-Doped SnO2[J]. Physica B, 2011, 406(17):3137~3141.

    [5] Lai KG, Sun Y, Chen HM, et al. Effect of Oxygen Vacancy and Al-doping on the Electronic and Optical Properties In SnO2[J]. Physica B, 2013, 428(10):48~52.

    [6] Yu F, Wang PJ, Zhang CW. First-Principle Study of Optical and Electronic Properties of SnO2[J]. Journal of University of Ji Nan, 2009, 23(4): 414~417.

    [7] Xie XJ, Zhong LP, Liang ZH, et al. Electronic Structure of Ru-doped SnO2Semiconductor Solid Solutions[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(12): 2514~2520.

    [8] Shan LT, Ba DC, Lin YH, Li JC. Structure and Optical Properties of Ce Doped SnO2[J]. Vacuum, 2014, 51(1):25~28.

    [9] Wang J, Feng XY, Wang PJ. Study on Magnetics and Optical Properties of Transitionmetal Doped SnO2Superlattice[J]. Journal of Functional Materials, 2014, 45(3): 3070~3074.

    [10] Long M, Yan AY. Research on the Photoelectric Property of SnO2Doped Sb[J]. Journal of Southwest University for Nationalities, 2014, 40(5): 768~771.

    [11] Jia JQ, Xie XJ, Liang ZH, et al. First-principles Study of Ti-doped SnO2Semiconductor Solid Solutions[J]. Chemical Journal of Chinese Universities, 2012, 33(5): 1050~1056.

    [12] Yu L, Zheng G, He KH, et al. Electronic Structure and Magnetism of Transition Metal Doped SnO2[J]. Acta Physico-Chimica Sinica, 2010, 26(3): 763~768.

    [13] Zhu YC, Wang JQ, An LQ, Wang HT. Influence of Rare Earth Oxide on Anti-Welding Performance of Ag/SnO2Electrical Contact Materials[J]. Journal of Hebei University of Thechnology, 2014, 43(3): 16~20.

    [14] Godinho KG, Walsh A, Watson GW. Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2[J]. Journal of Physical Chemistry C, 2008, 113(1): 439~448.

    [15] Li YJ, Tian HM, Liu JF. First-Principle Study of Anatase TiO2by Al-Doping[J].Journal of Materials Science & Engineering, 2013, 31(2): 305~309.

    [16] Zhu ZG, Ramesh C D, Arunabhiram C, et al. Enhanced Gas-sensing Behaviour of Ru-doped SnO2Surface: Aperiodic Density Functional Approach[J]. Journal of Physics and Chemistry of Solids, 2009, 70(9):1248~1255.

    [17] Murakami Y, Ito M, Kaji H, Takasu Y. Surface Characterization of Ruthenium-Tin Oxide Electrodes[J]. Applied Surface Science, 1997, 121(6): 314~318.

    [18] Jiang L, Wang PJ, Zhang CW,et al. Electronic Structure and Optical Properties of Cr Doped SnO2Superlattice[J]. Acta Physica Sinica, 2011, 60(9): 227~232.

    [19] Liu YM, Yao SW, Liu YB. First-principles Study of the Electronic and Optical Properties of SnO2[J]. Journal of Henan Institute of Science and Technology, 2011, 39(1): 78~82.

    [20] Dolbec R, Khakani MAE, Serventia A M, et al. Microstructure and Physical Properties of Nanostructured Tin Oxide Thin Films Grown by Means of Pulsed Laser Deposition[J]. Thin Solid Films, 2002, 419(1~2): 230~236.

    [21] Barbarat Ph, Matar S F. First-principle Investigations of the Electronic, Optical and Chemical Bonding Properties of SnO2[J]. Journal of Materials Chemistry, 1997, 7(12): 2547~2550.

    [22] Sensato F R, Filho O T, Longo E, et al. Theoretical Analysis of the Energy Levels Induced by Oxygen Vacancies and the Doping Process (Co, Cu and Zn) on SnO2(110) Surface Models [J]. Journal of Molecular Structure Theochem, 2001, 541(1): 69~79.

    咕卡用的链子| 曰老女人黄片| 五月天丁香电影| 亚洲色图综合在线观看| 女同久久另类99精品国产91| cao死你这个sao货| 亚洲人成电影免费在线| 2018国产大陆天天弄谢| 国产97色在线日韩免费| 久久ye,这里只有精品| 久久久久久久久免费视频了| 国产免费视频播放在线视频| 另类精品久久| 日韩 欧美 亚洲 中文字幕| 日韩三级视频一区二区三区| 黄片大片在线免费观看| 日韩大片免费观看网站| 中文字幕人妻熟女乱码| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 在线 av 中文字幕| 一个人免费看片子| 免费高清在线观看日韩| 成人黄色视频免费在线看| 色尼玛亚洲综合影院| 丰满少妇做爰视频| 亚洲人成电影免费在线| 精品高清国产在线一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲第一av免费看| 国产成人精品在线电影| 男人操女人黄网站| 亚洲欧美日韩高清在线视频 | 国产欧美日韩一区二区三区在线| 人人妻,人人澡人人爽秒播| 一区福利在线观看| 国产男女超爽视频在线观看| 麻豆国产av国片精品| 老汉色av国产亚洲站长工具| 一二三四社区在线视频社区8| 18禁国产床啪视频网站| 日本av免费视频播放| 亚洲成国产人片在线观看| 国产一区二区 视频在线| 激情在线观看视频在线高清 | 日韩免费av在线播放| avwww免费| 男女无遮挡免费网站观看| 国产精品自产拍在线观看55亚洲 | 麻豆国产av国片精品| 大片电影免费在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 色在线成人网| 99精国产麻豆久久婷婷| 久久精品国产99精品国产亚洲性色 | 日韩视频一区二区在线观看| 国产精品成人在线| 91麻豆av在线| 成年人午夜在线观看视频| 欧美+亚洲+日韩+国产| 久久天堂一区二区三区四区| 肉色欧美久久久久久久蜜桃| av网站在线播放免费| 中文字幕高清在线视频| 黄网站色视频无遮挡免费观看| 欧美午夜高清在线| 少妇裸体淫交视频免费看高清 | 中文字幕色久视频| 成年女人毛片免费观看观看9 | www.999成人在线观看| 日韩人妻精品一区2区三区| 精品久久久久久电影网| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 国产高清国产精品国产三级| 成年版毛片免费区| 久久久国产欧美日韩av| 精品国产一区二区三区久久久樱花| 制服诱惑二区| 国产人伦9x9x在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 成年动漫av网址| 亚洲性夜色夜夜综合| 在线av久久热| 亚洲专区字幕在线| 日韩欧美国产一区二区入口| 国产精品久久久人人做人人爽| 天天操日日干夜夜撸| aaaaa片日本免费| 最新美女视频免费是黄的| 亚洲一区中文字幕在线| 日韩欧美三级三区| 十八禁人妻一区二区| 91麻豆av在线| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 黑丝袜美女国产一区| 亚洲色图 男人天堂 中文字幕| 我的亚洲天堂| 国产视频一区二区在线看| 日本欧美视频一区| 天天操日日干夜夜撸| 黄色丝袜av网址大全| 五月天丁香电影| 久久久国产欧美日韩av| 中国美女看黄片| 久久久国产一区二区| 成人永久免费在线观看视频 | 亚洲精品粉嫩美女一区| 桃红色精品国产亚洲av| 亚洲成人手机| 老熟妇仑乱视频hdxx| 午夜福利欧美成人| 久久天躁狠狠躁夜夜2o2o| 一本色道久久久久久精品综合| 午夜日韩欧美国产| 久久久国产欧美日韩av| 亚洲av日韩在线播放| aaaaa片日本免费| 欧美乱码精品一区二区三区| tube8黄色片| 午夜福利在线免费观看网站| 久久久国产成人免费| 精品少妇内射三级| 色在线成人网| 人成视频在线观看免费观看| 天堂8中文在线网| 精品久久蜜臀av无| 热99国产精品久久久久久7| 亚洲精品在线美女| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 午夜两性在线视频| 精品少妇黑人巨大在线播放| 操出白浆在线播放| 亚洲 欧美一区二区三区| 9热在线视频观看99| 欧美黑人精品巨大| 久久精品亚洲av国产电影网| 欧美大码av| 另类精品久久| 久久久水蜜桃国产精品网| 国产色视频综合| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 大香蕉久久网| 国产精品秋霞免费鲁丝片| 欧美人与性动交α欧美软件| 国产不卡一卡二| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 99九九在线精品视频| 欧美+亚洲+日韩+国产| 99re在线观看精品视频| 亚洲美女黄片视频| 波多野结衣一区麻豆| 久久久久视频综合| 人人妻人人添人人爽欧美一区卜| 在线 av 中文字幕| 日韩欧美国产一区二区入口| 国产伦理片在线播放av一区| 国产高清激情床上av| 岛国毛片在线播放| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说| 大香蕉久久成人网| 国产成人免费无遮挡视频| 日韩视频在线欧美| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看 | 老司机午夜福利在线观看视频 | 男人舔女人的私密视频| 大香蕉久久网| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 国产高清激情床上av| 国产黄频视频在线观看| 啦啦啦视频在线资源免费观看| 午夜福利欧美成人| 久久精品亚洲av国产电影网| 91精品国产国语对白视频| 国产在线观看jvid| av超薄肉色丝袜交足视频| √禁漫天堂资源中文www| av片东京热男人的天堂| 色94色欧美一区二区| 国产91精品成人一区二区三区 | 丁香六月天网| 国产成人系列免费观看| 亚洲男人天堂网一区| 国产精品成人在线| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 香蕉丝袜av| 一边摸一边抽搐一进一小说 | 日日夜夜操网爽| 国产亚洲av高清不卡| av视频免费观看在线观看| 十八禁人妻一区二区| 黄色a级毛片大全视频| 久久久久久久大尺度免费视频| 精品久久久久久久毛片微露脸| 女人精品久久久久毛片| 午夜激情av网站| 80岁老熟妇乱子伦牲交| 午夜老司机福利片| 国产精品99久久99久久久不卡| 飞空精品影院首页| 国产福利在线免费观看视频| 精品第一国产精品| 97在线人人人人妻| 国产成人影院久久av| 最近最新中文字幕大全电影3 | 午夜免费鲁丝| 老司机靠b影院| 国产三级黄色录像| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 精品免费久久久久久久清纯 | 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 午夜福利欧美成人| 午夜精品久久久久久毛片777| av一本久久久久| 自线自在国产av| 亚洲九九香蕉| 国产精品欧美亚洲77777| 在线观看免费视频日本深夜| 欧美老熟妇乱子伦牲交| aaaaa片日本免费| a级毛片黄视频| 宅男免费午夜| av网站在线播放免费| 欧美成人午夜精品| 91成年电影在线观看| 国产人伦9x9x在线观看| 十八禁高潮呻吟视频| 大型av网站在线播放| 国产成人啪精品午夜网站| 亚洲伊人色综图| 纵有疾风起免费观看全集完整版| 一本—道久久a久久精品蜜桃钙片| 成年版毛片免费区| 成人免费观看视频高清| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲综合一区二区三区_| 国产一区二区 视频在线| 欧美+亚洲+日韩+国产| 国产精品.久久久| 欧美黄色淫秽网站| 久久国产精品影院| 男女下面插进去视频免费观看| 欧美大码av| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 一边摸一边抽搐一进一小说 | 成人黄色视频免费在线看| 色视频在线一区二区三区| 怎么达到女性高潮| 久久久国产欧美日韩av| 超色免费av| 成年人午夜在线观看视频| 十八禁网站网址无遮挡| 人妻久久中文字幕网| 日本黄色视频三级网站网址 | 日本黄色日本黄色录像| 亚洲成国产人片在线观看| 黄色 视频免费看| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看 | 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 青青草视频在线视频观看| 午夜福利乱码中文字幕| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色 | 国产在线视频一区二区| 黄色视频不卡| 天天添夜夜摸| 国产免费福利视频在线观看| 交换朋友夫妻互换小说| 亚洲天堂av无毛| 亚洲成a人片在线一区二区| 精品国产乱码久久久久久小说| 一本—道久久a久久精品蜜桃钙片| 国产成人av激情在线播放| 无人区码免费观看不卡 | 亚洲情色 制服丝袜| 欧美久久黑人一区二区| 搡老熟女国产l中国老女人| 777久久人妻少妇嫩草av网站| 国产亚洲av高清不卡| 韩国精品一区二区三区| 亚洲国产看品久久| 男女床上黄色一级片免费看| 黄色视频,在线免费观看| 国产一区二区激情短视频| 久久国产精品大桥未久av| 亚洲av日韩在线播放| 最近最新免费中文字幕在线| 久久免费观看电影| 亚洲天堂av无毛| 日韩大片免费观看网站| 黄色丝袜av网址大全| 久久国产亚洲av麻豆专区| 日韩免费高清中文字幕av| 不卡av一区二区三区| 成年版毛片免费区| 99久久99久久久精品蜜桃| 国产精品国产高清国产av | 操美女的视频在线观看| 精品久久久久久电影网| 亚洲国产中文字幕在线视频| 多毛熟女@视频| 午夜免费鲁丝| 夜夜骑夜夜射夜夜干| 9热在线视频观看99| netflix在线观看网站| 亚洲欧美一区二区三区久久| 天堂8中文在线网| 热re99久久国产66热| 亚洲av成人一区二区三| 国产精品久久久久久精品电影小说| 女同久久另类99精品国产91| 在线观看免费视频日本深夜| 蜜桃国产av成人99| 一区福利在线观看| 亚洲av日韩精品久久久久久密| 欧美亚洲 丝袜 人妻 在线| 成人黄色视频免费在线看| 久久久国产一区二区| 久久国产亚洲av麻豆专区| 精品国内亚洲2022精品成人 | 99国产精品一区二区三区| 女同久久另类99精品国产91| 欧美日韩av久久| 亚洲中文字幕日韩| 精品一区二区三卡| 色在线成人网| 欧美黑人欧美精品刺激| 久久久久久久精品吃奶| 精品国产乱码久久久久久小说| 伦理电影免费视频| 一本大道久久a久久精品| 精品国产亚洲在线| 亚洲成人免费av在线播放| 999久久久精品免费观看国产| 在线观看www视频免费| 亚洲成人免费电影在线观看| 国产日韩欧美亚洲二区| 一二三四社区在线视频社区8| 久久天躁狠狠躁夜夜2o2o| 中文字幕色久视频| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区| 午夜福利一区二区在线看| 一个人免费在线观看的高清视频| 欧美成狂野欧美在线观看| 国精品久久久久久国模美| avwww免费| 色精品久久人妻99蜜桃| 欧美大码av| 精品国产亚洲在线| 精品视频人人做人人爽| 精品国产一区二区三区久久久樱花| 一区二区三区精品91| 亚洲一卡2卡3卡4卡5卡精品中文| 大码成人一级视频| 免费日韩欧美在线观看| 啦啦啦免费观看视频1| 19禁男女啪啪无遮挡网站| 亚洲av国产av综合av卡| 女人精品久久久久毛片| 成年人午夜在线观看视频| 人妻 亚洲 视频| 一区二区三区精品91| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 日韩欧美一区二区三区在线观看 | 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 日本撒尿小便嘘嘘汇集6| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 免费人妻精品一区二区三区视频| 脱女人内裤的视频| 亚洲欧美激情在线| 天堂动漫精品| 一进一出抽搐动态| 窝窝影院91人妻| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 男人操女人黄网站| 在线播放国产精品三级| 一区二区av电影网| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| videos熟女内射| 日韩视频一区二区在线观看| 三级毛片av免费| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 另类亚洲欧美激情| 国产精品久久久久久人妻精品电影 | 久久亚洲真实| 色综合欧美亚洲国产小说| 久久精品亚洲精品国产色婷小说| 嫩草影视91久久| 一二三四社区在线视频社区8| 中文欧美无线码| 亚洲色图 男人天堂 中文字幕| www.精华液| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 啦啦啦 在线观看视频| 欧美日韩视频精品一区| 制服人妻中文乱码| 亚洲熟女毛片儿| 大陆偷拍与自拍| 欧美另类亚洲清纯唯美| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 高清在线国产一区| 男人舔女人的私密视频| 久久中文字幕一级| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 嫁个100分男人电影在线观看| 少妇猛男粗大的猛烈进出视频| 国产xxxxx性猛交| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| 高清视频免费观看一区二区| 国产精品九九99| 五月开心婷婷网| 久久性视频一级片| 多毛熟女@视频| 又黄又粗又硬又大视频| 久久精品国产亚洲av香蕉五月 | 伦理电影免费视频| 欧美性长视频在线观看| 日本五十路高清| videosex国产| 国产精品美女特级片免费视频播放器 | 午夜福利影视在线免费观看| 久久久久久久大尺度免费视频| 天堂动漫精品| 国产熟女午夜一区二区三区| 久久人妻av系列| 亚洲欧美日韩另类电影网站| h视频一区二区三区| 国产亚洲精品久久久久5区| 久久久精品国产亚洲av高清涩受| 亚洲精品av麻豆狂野| 高清欧美精品videossex| 无遮挡黄片免费观看| 久久久国产精品麻豆| 久久99一区二区三区| 极品人妻少妇av视频| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 一进一出好大好爽视频| 十八禁人妻一区二区| 日日夜夜操网爽| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 如日韩欧美国产精品一区二区三区| 亚洲精品久久午夜乱码| www.自偷自拍.com| 日韩视频一区二区在线观看| bbb黄色大片| 精品久久久精品久久久| 国产精品亚洲一级av第二区| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 男女高潮啪啪啪动态图| 国产精品99久久99久久久不卡| 十八禁高潮呻吟视频| 国产精品久久久久久人妻精品电影 | 90打野战视频偷拍视频| 国产97色在线日韩免费| av电影中文网址| 亚洲第一av免费看| 国产福利在线免费观看视频| 亚洲成国产人片在线观看| 无限看片的www在线观看| 欧美+亚洲+日韩+国产| 中文字幕制服av| 久久中文字幕人妻熟女| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 久久狼人影院| a级毛片在线看网站| 50天的宝宝边吃奶边哭怎么回事| 飞空精品影院首页| 欧美精品高潮呻吟av久久| 51午夜福利影视在线观看| 久久久国产一区二区| 国产男靠女视频免费网站| 两性夫妻黄色片| 久久国产精品影院| 大型av网站在线播放| netflix在线观看网站| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 欧美日韩一级在线毛片| 9热在线视频观看99| 国产av精品麻豆| 精品国产乱子伦一区二区三区| 午夜福利一区二区在线看| 亚洲成a人片在线一区二区| 999久久久国产精品视频| 青草久久国产| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 久久久久视频综合| 国产亚洲精品第一综合不卡| av福利片在线| 黄色成人免费大全| 久久人妻福利社区极品人妻图片| 午夜福利视频精品| 国产欧美亚洲国产| 天堂8中文在线网| 亚洲成人国产一区在线观看| 777米奇影视久久| 日韩成人在线观看一区二区三区| 在线观看免费午夜福利视频| 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 成年版毛片免费区| 天堂中文最新版在线下载| 午夜91福利影院| 露出奶头的视频| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 久久人人爽av亚洲精品天堂| 1024香蕉在线观看| 欧美精品av麻豆av| 蜜桃在线观看..| 伦理电影免费视频| 另类亚洲欧美激情| 久久久精品94久久精品| 两个人免费观看高清视频| 亚洲综合色网址| 欧美在线黄色| 色综合欧美亚洲国产小说| 精品一区二区三卡| 欧美一级毛片孕妇| 国产xxxxx性猛交| 亚洲国产欧美在线一区| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频| aaaaa片日本免费| 女人高潮潮喷娇喘18禁视频| 国产成人av教育| 黄色视频在线播放观看不卡| 免费观看人在逋| 亚洲情色 制服丝袜| 色在线成人网| 极品教师在线免费播放| 91大片在线观看| 精品亚洲成国产av| 亚洲av日韩在线播放| 国产aⅴ精品一区二区三区波| 自线自在国产av| 免费久久久久久久精品成人欧美视频| 午夜两性在线视频| 国产精品自产拍在线观看55亚洲 | 999久久久精品免费观看国产| 午夜福利在线免费观看网站| 国产男女内射视频| 蜜桃国产av成人99| 视频区图区小说| 变态另类成人亚洲欧美熟女 | 国产精品久久电影中文字幕 | 欧美激情久久久久久爽电影 | 成年人免费黄色播放视频| 在线av久久热| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 日本黄色日本黄色录像| 久久 成人 亚洲| 99精国产麻豆久久婷婷| 精品人妻熟女毛片av久久网站| 日韩视频在线欧美| 欧美成人免费av一区二区三区 | 青草久久国产| 国产高清视频在线播放一区| 亚洲国产av影院在线观看| 欧美av亚洲av综合av国产av| 亚洲avbb在线观看| 18禁国产床啪视频网站| 最新美女视频免费是黄的|