• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure, and DNA Binding of a Platinum(II) Complex Based on the 3,4,5-Trimethoxy-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline①

    2018-06-20 12:00:28LIXioLUOXuJinYANGYnMALiWANGShuLongLUOZhiHuiLIURongJunLIANGWeiJing
    結(jié)構(gòu)化學(xué) 2018年5期

    LI Xio LUO Xu-Jin YANG Yn MA Li WANG Shu-Long LUO Zhi-Hui LIU Rong-Jun LIANG Wei-Jing

    ?

    Synthesis, Structure, and DNA Binding of a Platinum(II) Complex Based on the 3,4,5-Trimethoxy-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline①

    LI Xiaoa, bLUO Xu-JianbYANG Yanb②MA Lia②WANG Shu-LongbLUO Zhi-HuibLIU Rong-JunbLIANG Wei-Jiangb

    a(400030)b(537000)

    A new platinum(II) complex of [Pt(chda)(3,4,5-triopip)]Cl·2H2O (1) based on3,4,5-trimethoxy-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (3,4,5-triopip) has been synthesized by hydrothermalmethodsand its consequences are characterized by elemental analysis, IR, single-crystal X-ray diffraction, UV-Vis absorption and fluorescent spectrum. The UV-Vis absorption studies reveal that the molecule undergoes considerable interaction with the nucleic acid. In this mononuclear structure, the platinum adopts a four-coordinated square planar geometry, which may favor the intercalation between the neighboring bases of the G-quadruplex (G4) DNA.

    platinum complex, DNA interaction, UV-Vis absorption;

    1 INTRODUCTION

    Recently, the development of molecular sensors for biomacromolecules has received considerable attention due to their potential applications in clinical diagnosis and therapeutic advances[1]. In particular, the fluorescent sensors for detecting nucleic acids that are associated with certain disease have attracted much interest for their high sensitivity and selecti- vity[2]. To date, several types of fluorescent sensors have been reported to be able to detect nucleic acid sequences, including single-walled carbon nanotu- bes[3-5], graphene oxides[6,7], carbon and Au nano- particles[8-20]. Although these materials function well to assay nucleic acid, their preparations are often laborious and/or require high-cost instrumentation. As a consequence, it is still of urgent need to develop novel sensing platforms based on the readily ob- tained materials.

    Metal-organic frameworks (MOFs), readily con- structed from metal ions/clusters and organic linkers with one-, two-, or three-dimensional (1D, 2D, 3D) extended coordination networks, have captured widespread interest due to their intriguing structural topologies and potential applications as functional materials in a wide range of fields[21, 22]. In particular, MOFs have been demonstrated to be powerful as fluorescent sensors for the detection of various cations[23-25], anions[26], vapors[27, 28]and other small molecules[29]. However, it is known that the organic linkers in MOFs usually have special functional groups and may offer a source for possiblestac-king, hydrogen bonding, and electrostatic interac- tions with negatively charged nucleic acid sequen- ces[30-36].

    Recently, the interaction of polypyridyl metal complexes with DNA has been a hot topic due to the potential usage as DNA probes or other labels[37-39], as the chelate ligand partially intercalated between the adjacent base pairs of DNA. In addition, some experimental and theoretical studies of the DNA binding and related properties of Ru(II) polypyridyl complexes have been reported[40-42]. In this paper, we designed and synthesized a new chiral platinum(II) complex, and studied their interaction with G4-DNA and the complex with high DNA-binding affinity.

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All reagents were brought from commercial sources and used without further purification. IR spectra were recorded in the range of 4000~400 cm-1on a Perkin-Elmer Spectrum One FT/IR spec- trometer using a KBr pellet. Elemental analysis (C, H, N) was performed on a Perkin-Elemer 2400II CHN elemental analyzer.UV-vis absorption titration was performed on a Cary 100 Conc. UV-visible spectro- photometer (Agilent Technologies, Australia).Fluorescence study was performed on a Shimadzu RF-5301/PC spectrofluorometer (Tianmei Technolo- gies, Japan). The crystal structure was determined by a Bruker APEX area-detector diffractometer (Bruker, Germany) and employing the SHELDRICK crys- tallographic software. Calf thymus DNA (ct-DNA), ds26 DNA and G4-DNA (hTel, hTel-1) were purchased from Sigma. Buffer (5mM tris(hydroxyl- methyl)aminomethane(tris)hydrochloride, 50 mM·NaCl, pH = 7.35) was used for UV-Vis absorption and FID assays. Assumed a molar absorption is 6600 M-1cm-1(260 nm)[43], the con-centration of ct-DNA was spectrophotometrically determined. In the presence of a buffer containing 1% DMSO, the UV-Vis absorption titration of complex 1was performed by using a fixed complex concentration to which increments of the DNA stock solution were added ([DNA]/[complex] ranging from 0 to 10). In DNA interaction studies, the complex was dissolved in DMSO for the preparation of stock solution at 2.0 × 10-6M. Before the UV-Vis absorption spectrum was recorded, complex-DNA solutions were allowed to incubate for 10 min. FID measurements were performed as described pre- viously[44].

    2. 2 Synthesis of complex 1

    K2PtCl4(8.0 mmol) was ?rst dissolved in DMSO & PEI mixed solution (10 mL, volume ratio 10: 1) and heated to near boiling. This hot solution was added to a hot solution of 3,4,5-trimethoxy-phenyl- 1H-imidazo[4,5-f][1,10]phenanthroline (5.0 mmol) in DMSO (5 mL). Finally, (1, 2)-diaminocyclo- hexane (5.0 mmol) in 30 mL MeOH/MeCN (20:1) was added to the hot solution, and the mixture was stirred at re?ux for 24 h, and finally cooled to room temperature. After ?ltration, the ?ltrate was allowed to stand at room temperature for about ten days, and red crystals were obtained(yield 40% based on 3,4,5-triopip). Anal. Calcd. (%) for [Pt(chda)(3,4,5- triopip)]Cl·2H2O (1): C, 44.01; H, 4.32; N, 10. 99. Found (%): C, 44.08; H, 4.29; N, 11.04. Selected IR data (KBr, cm-1): 3329, 1570, 1489, 1445, 1381, 1354, 1346, 1297, 1176, 1156, 1119, 1094, 1034, 1000, 936, 858, 823, 795, 756, 712, 629.

    2. 3 Structure determination

    A colorless single crystal of the title compound with dimensions of 0.22mm × 0.20mm × 0.18mm was mounted on a glass fiber. X-ray diffraction intensity data were collected on a Bruker APEX area-detector equipped with a graphite-monochro- matized Mo-radiation (= 0.71073 ?) by using an-2scan mode in the range of 3.05≤≤25.40o at 293(2) K. A total of 12881 reflections were measured, of which 5393 were unique (int= 0.0367) and 4011 were observed (> 2()) and used in the subsequent structure determination and full-matrix least-square refinements. Absorption correction was performed by the SADABS program[45].The struc- ture was solved by direct methods and subsequent difference Fourier syntheses, revealing the positions of all non-hydrogen atoms. The hydrogen atoms were located geometrically. All non-hydrogen atoms were refined anisotropically. All calculations were performed by using the SHELXTL package[46]. The final= 0.1436 and0.3624 (= 1/[2(F2) + (0.1588)2+ 246.7108], where= (F2+ 2F2)/3) for 4011 observed reflections with> 2(),= 1.086, (Δ/)max= 0.558, (Δ)max= 8.227 and (Δ)min= –16.715 e·?-3. The selected bond lengths and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Fig. 1. View of the coordination environment of the Pt(II) center in complex 1

    3 RESULTS AND DISCUSSION

    3. 1 Structure

    The single-crystal X-ray diffraction analysis (Fig. 1) demonstrates that complex 1 belongs to monoclinic crystal system with21/space group. And its asym- metric unit consists of one discrete [Pt(chda)(3,4,5- triopip)]Cl·2H2O, two dissociative water molecules and one Cl ion. Each Pt(II) center is four-coordinated by four N atoms from one 3,4,5-triopipand onecyclohexanediamine. The Pt–N bond lengths are in the range of 2.006(8)~2.061(8) ?, which are within the normal range. The whole molecule retains the planar mononuclear structure, which may favor the intercalation between the neighboring bases of G4-DNA. Each molecule is interlinked by weak interaction between the chloride and the N atom of hexamethylene diamine of Cl-H···N and N-H···Cl hydrogen bonds, forming a supramolecular structure. In addition, there are also weak hydrogen bonds such as O-H···N (between solvent H2O and 3,4,5- trimethoxy-phenyl-1H-imidazo-[4,5-f][1,10]phenanthroline N atoms or cyclohexanediamine N atoms). Moreover, two lattice water molecules providing hydrogen bonding interactions to strengthen the crystalline stability are included.

    3. 2 DNA-binding studies

    3. 2. 1 UV-vis absorption titrations

    Absorption titration is the most common method for investigating the interaction of transition metal complexes with DNA. In general, transition metal complexes exhibit hypochromism and red shift in their electronic spectra when bound to DNA. The degree of hypochromism depends on the binding mode and affinity. The DNA sample was sequentially added in aliquots to the complex solutions, and the absorbance spectra were recorded after each addition. Based on previous studies[47], the UV-vis spectra of complex 1of absorption bands at= 235-290 nm are assigned to intraligand n-* and* transitions (LC) perturbed bycomplexation to the M(II) metal. The moderately intenseabsorptions around 280 nm for complex 1can be attributed to spin-allowed metal- to-ligand chargetransfer MLCT (dM-π*) transition in analogy to assemblemetal complexes containing phen ligand[48]. As shown in Figs. 2~4, the hypo- chromisms of MLCT bands of complex 1 for ct- DNA, hTel and hTel-1 were calculated to be appro- ximately 31.91%, 32.02% and 34.73%, respectively. Their standard deviation is 3.56%. The addition of the G rich sequence to the solutions of complex 1 led to the red shifts of 2, 3 and 4 nm of the band at 279, 288 and 289 nm, respectively with their standard deviation to be 2.89. These experimental data indicated that complex 1 preferred to bind with the G4-DNA.

    Fig. 2. UV-Vis absorption spectrum of complex 1 with increasing concentrations of ct-DNA (The concentration of the complex is 1.0 × 10-6M, [DNA]/[complex] ranged from 0 to 10)

    Fig. 3. UV-Vis absorption spectrum of complex 1 with increasing concentrations of hTel (The concentration of the complex is 1.0 × 10-6M. [DNA]/[complex] ranged from 0 to 10)

    Fig. 4. UV-Vis absorption spectrum of complex 1 with increasing concentrations of hTel-1 (The concentration of the complex is 1.0 × 10-6M, [DNA]/[complex] ranged from 0 to 10)

    When the complex is added into DNA solution, it is probably penetrated into adenine base stacks in DNA helix, causing the changes of base hydrophobic interaction and van der Waals forces and affecting the stability of DNA conformation and unwinding the double-helical structure of DNA. It can be considered that interaction of the complexes with the DNA base pairs may destroy DNA helix, stimulate DNA cleavage and increase the UV-Vis absorption of purine and pyrimidine bases and then hypochromic effect occurs[49]. According to literature[50], the inter- calation of complex into DNA base pairs is accompanied by bathochromism and hypochromism, while groove binding or electrostatic interaction shows no (or minor) change in the UV-Vis absorption spectra. In conclusion, complex1 may bind to ct-DNA, hTel and hTel-1 via an intercalative mode.The intrinsic binding constantKof complex 1 with DNA by UV-Vis absorption spectral analysis was calculated by the following equation[51]:

    [DNA]/(εa– εf) = [DNA]/(εb–εf) + 1/[b(εb–εf)]

    where [DNA] is the concentration of DNA per nucleotide in base pairs, εaindicates the extinction coefficient of complexes at a given DNA con- centration, and εf, εbrepresent the extinction coeffi- cients of complexes free in solution and those fully bound to DNA, respectively, andKis the equili- brium binding constant. In the plot of [DNA]/(εa– εf) versus [DNA],Kthe intrinsic binding constants,can be given by the ratio of the slope to intercept.Kvalues, the binding constants of complex 1 for ct-DNA, hTel and hTel-1, are 5.63 × 103, 1.27 × 106and 3.87 × 106M-1, respectively.Their standard deviation is 1.19 × 105.

    3. 2. 2 Fluorescence studies

    As the primary pharmacological target of many antitumour drugs, DNA and DNA binding activities of metal complexes provide important insight for the development of effective metal-based chemothera- peutic drugs. To determine whether the induced apo- ptosis is mediated through the intrinsic apoptotic pathway, the binding af?nities of complex 1 with G4-DNA (hTel and hTel-1) compared to double helix DNA (ds26 DNA) were studied using a FID assay[44](Fig. 5). As shown in Fig. 5, complex 1 is approved to be effective G4-DNA binders (1.32 μΜ 26DC50= 2.68 μΜ ).

    4 CONCLUSION

    A new platinum(II) complex of [Pt(chda)(3,4,5- triopip)]Cl·2H2O (1) based on3,4,5-trimethoxy- phenyl-1H-imidazo[4,5-f][1,10]phenanthroline(3,4,5-triopip) has been synthesized by hydrothermalmethods. The single-crystal X-ray diffraction analy- sis demonstrates that complex 1 belongs to mono- clinic crystal system with21/space group. And its asymmetric unit consists of one discrete [Pt(chda)(3,4,5-Triopip)]Cl·2H2O, two dissociative water molecules and one Cl ion. Each Pt(II) center is four-coordinated by four N atoms from one 3,4,5- triopipand onecyclohexanediamine. UV-vis absorp- tion titrations revealed complex 1 preferred to bind with the G4-DNA. The FID assay suggested that complex 1 exhibits better binding affinity of complex 1 with G4-DNA (hTel and hTel-1) compared to double helix DNA (ds26 DNA).

    Fig. 5. FID assay for complex 1 bound with different types of DNA, includingds 26, hTel and hTel-1

    (1) Sassolas, A.; Leca-Bouvier, B. D.; Blum, L. J. DNA biosensors and microarrays.2008, 108, 109–139.

    (2) Esquela-Kerscher, A.; Slack, F. J.; Oncomirs-microRNAs with a role in cancer.2006, 6, 259–269.

    (3) Liu, Z.; Li, X. L.; Tabakman, S. M.; Jiang, K. L.; Fan, S. S.; Dai, H. J. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes.2008, 130, 13540–13541.

    (4) Chen, Y.; Liu, H. P.; Ye, T.; Kim, J.; Mao, C. D. DNA-directed assembly of single-wall carbon nanotubes.2007, 129, 8696–8697.

    (5) Yang, R. H.; Jin, J. Y.; Chen, Y.; Shao, N.; Kang, H. Z.; Xiao, Z. Y.; Tang, Z. W.; Wu, Y. R.; Zhu, Z.; Tan, W. H. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization.2008, 130, 8351–8358.

    (6) Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules.. 2009, 121, 4785–4787.

    (7) Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection.. 2010, 22, 2206–2210.

    (8) Song, S. P.; Liang, Z. Q.; Zhang, J.; Wang, L. H.; Li, G. X.; Fan, C. H. Gold-nanoparticle based multicolor nanobeacons for sequence-specific DNA analysis.. 2009, 48, 8670–8674.

    (9) Song, S. P.; Qin, Y.; He, Y.; Huang, Q.; Fan, C. H.; Chen, H. Y. Functional nanoprobes for ultrasensitive detection of biomolecules.2010, 39, 4234–4243.

    (10) Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C. Gold nanoparticles for biology and medicine.. 2010, 49, 3280–3294.

    (11) Li, H. L.; Luo, Y. L.; Sun, X. P. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.2011, 27, 167–171.

    (12) Tian, J. Q.; Liu, Q.; Shi, J. L.; Hu, J. M.; Asiri, A. M.; Sun, X. P.; He, Y. Q. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal organic framework nanorods: synergies of the metal center and organic linker.2015, 71, 1–6.

    (13) Zhang, Y. W.; Sun, X. P. A novel fluorescent aptasensor for thrombin detection: using poly (m-phenylenediamine) rods as an effective sensing platform.. 2011, 47, 3927–3929.

    (14) Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Xing, W.; Sun, X. P. Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light.. 2015, 54, 5493–5497.

    (15) Lei, W.; Li, H. L.; Luo, Y. L.; Zhang, Y. W.; Tian, J. Q.; Sun, X. P. Detection of single stranded nucleic acids by hybridization of probe oligonucleotides on polystyrene nanospheres and subsequent release and recovery of fluorescence.. 2011, 1, 1318–1323.

    (16) Zhang, Y. W.; Wang, L.; Tian, J. Q.; Li, H. L.; Luo, Y. L.; Sun, X. P. Ag@poly (-phenylenediamine) core_shell nanoparticles for highly selective, multiple nucleic acid detection.2011, 27, 2170–2175.

    (17) Tan, C. L.; Yu, P.; Hu, Y. L.; Chen, J. Z.; Huang, Y.; Cai, Y. Q.; Luo, Z. M.; Li, B.; Lu, Q. P.; Wang, L. H.; Liu, Z.; Zhang, H. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors.. 2015, 137, 10430–10436.

    (18) Li, H. L.; Zhang, Y. W.; Luo, Y. L.; Sun, X. P. Nano-C60: a novel, effective, fluorescent sensing platform for biomolecular detection.2011, 7, 1562–1568.

    (19) Wang, L.; Zhang, Y. W.; Tian, J. Q.; Li, H. L.; Sun, X. P. Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection.. 2011, 39, 37–37.

    (20) Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H.; Zhao, Y. L.; Zhang, H. Ultrathin 2D metal-organic framework nanosheets.2015, 27, 7372–7378.

    (21) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks.2013, 341, 1230444.

    (22) Zhu, Q. L.; Xu, Q. Metal-organic framework composites.2014, 43, 5468–5512.

    (23) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal organic framework materials as chemical sensors.2012, 112, 1105–1125.

    (24) Liu, W. S.; Jiao, T. Q.; Li, Y. Z.; Liu, Q. Z.; Tan, M. Y.; Wang, H.; Wang, L. F. Lanthanide coordination polymers and their Agt-modulated fluorescence.2004, 126, 2280–2281.

    (25) Liu, B.; Wu, W. P.; Hou, L.; Wang, Y. Y. Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu2t ions and selective CO2capture.2014, 50, 8731–8734.

    (26) Ngo, H. T.; Liu, X. J.; Jolliffe, K. A. Anion recognition and sensing with Zn(II)-dipicolylamine complexes.2012, 41, 4928–4965.

    (27) Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives.2009,48, 2334–2338.

    (28) Lu, G.; Hupp, J. T. Metal organic frameworks as sensors: a ZIF-8 based Fabry_P_erot device as a selective sensor for chemical vapors and gases.2010, 132, 7832–7833.

    (29) Chen, Q.; Chang, Z.; Song, W. C.; Song, H.; Song, H. B.; Hu, T. L.; Bu, X. H. A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations.2013, 52, 11550–11553.

    (30) Zhang, H. T.; Zhang, J. W.; Huang, G.; Du, Z. Y.; Jiang, H. L. An amine-functionalized metal organic framework as a sensing platform for DNA detection.2014, 50, 12069–12072.

    (31) Zhu, X.; Zheng, H. Y.; Wei, X. F.; Lin, Z. Y.; Guo, L. H.; Qiua, B.; Chen, G. N. Metal organic framework (MOF): a novel sensing platform for biomolecules.2013, 49, 1276–1278.

    (32) Wang, G. Y.; Song, C.; Kong, D. M.; Ruan, W. J.; Chang, Z.; Li, Y. Two luminescent metal organic frameworks for the sensing of nitroaromatic explosives and DNA strands.2014, A2, 2213–2220.

    (33) Chen, L. F.; Zheng, H. Y.; Zhu, X.; Lin, Z. Y.; Guo, L. H.; Qiu, B.; Chen, G. N.; Chen, Z. N. Metal organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA.2013,138, 3490–3493.

    (34) Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates.2014,136, 7261–7264.

    (35) Wei, X. F.; Zheng, L. Y.; Luo, F.; Lin, Z. Y.; Guo, L. H.; Chen, G. N. Fluorescence biosensor for the H5N1 antibody based on a metal organic framework platform.2013, B1, 1812–1817.

    (36) Wu, Y. F.; Han, J. Y.; Xue, P.; Xu, R.; Kang, Y. J. Nano metal organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells.2015, 7, 1753–1759.

    (37) Si?ani, A. S.; Long, E. C.; Pyle, A. M.; Barton, J. K. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): shape-selective recognition and reaction.1992, 114, 2303–2312.

    (38) Motmans, K.; Raus, J.; Vandevyver, C.; Immunol, J. Quantification of cytokine messenger RNA in transfected human T cells by RT-PCR and an automated electrochemiluminescence-based post-PCR detection system.1996, 190, 107–116.

    (39) Baker, A. D.; Morgan, R. J.; Strekas, T. C. Enantiomeric resolution of ruthenium complexes Ru(phen)32+and Ru(bpy)2ppz2+on a DNA-hydroxylapatite column.1991, 113, 1411–1412.

    (40) Shi, S.; Liu, J.; Li, J.; Zheng, K. C.; Tan, C. P.; Chen, L. M.; Ji, L. N. J. Electronic effect of different positions of the–NO2group on the DNA-intercalator of chiral complexes (Ru (bpy)2L)2+(L =-npip,-npip and-npip). Chem. Soc.2005, 2038–2046.

    (41) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gorelsky, S. I.; Lever, A. B. P.; Gratzel, M. Synthesis, spectroscopic and a ZINDO study ofand-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine) ruthenium(II) complexes (X = Cl?, H2O, NCS?).2000, 208, 213–225.

    (42) Cio?ni, I.; Laine, P. P.; Bedioui, F.; Adamo, C. Photoinduced intramolecular electron transfer in ruthenium and osmium polyads: insights from theory.2004, 126, 10763–10777.

    (43) Arounaguiry, A.; Bhaskar, M. G. Ruthenium(II) complexes of redox-related, modified dipyridophenazine ligands: synthesis, characterization, and DNA interaction.2000, 39, 4256–4263.

    (44) Monchaud, D.; Allain, C.; Teulade-Fichou, M. P. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands.2006, 18, 4842–4845.

    (45) Sheldrick, G. M.University of G?ttingen, Germany 1997.

    (46) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (47) Tam, A. Y. Y.; Lam, W. H.; Wong, K. M. C.; Zhu, N. Y.; Yam, V. W. W. Luminescent alkynylplatinum(II) complexes of 2,6-bis (N-alkylbenzimidazol-2′-yl) pyridine-type ligands with ready tunability of the nature of the emissive states by solvent and electronic property modulation.2008, 14, 4562–4576.

    (48) C?rcu, V.; Ilie, M.; Ili?, M.; Dumitra?cu, F.; Neagoe, I.; P?sculescu, S. Luminescent cyclometallated platinum(II) complexes with N-benzoyl thiourea derivatives as ancillary ligands.2009, 28, 3739–3746.

    (49) Reichmann, E. M.; Rice, S. A.; Thomas, C. A.; Doty, P. A further examination of the molecular weight and size of desoxypentose nucleic acid.1954, 76, 3047–3053.

    (50) Zheng, S. L.; Tong, M. L.; Fu, R. W.; Chen, X. M.; Ng, S. W. Toward designed assembly of microporous coordination networks constructed from silver (I)-hexamethylenetetramine layers.2001, 40, 3562–3569.

    (51) Wu, S. S.; Zhang, Y. F.; Du, J. F.; Zhang, Q.; Yuan, W. B.; Gu, H. B. Synthesis of sulfur-contained D (+)-glucosamine metal complexes and interaction with DNA and serum albumin.2008, 28, 374–379.

    23 August 2017;

    16 April 2018 (CCDC 1472979)

    ① Financially supported by the National Natural Science Foundation of China (Nos: 51463023 and 21461028), Guangxi key lab of agricultural resources chemistry and biotechnology and Guangxi Colleges and Universities Program of Innovative Research Team and Outstanding Talent

    E-mails:mlsys607@126.com and yy135175@163.com

    10.14102/j.cnki.0254-5861.2011-1812

    激情在线观看视频在线高清| 亚洲一码二码三码区别大吗| 国产精品二区激情视频| a级毛片a级免费在线| 国产91精品成人一区二区三区| 91麻豆精品激情在线观看国产| 国产精品久久久人人做人人爽| 在线观看一区二区三区| 亚洲精品色激情综合| 99在线人妻在线中文字幕| 在线天堂中文资源库| 在线免费观看的www视频| 久久婷婷人人爽人人干人人爱| www日本黄色视频网| 国产免费av片在线观看野外av| 免费高清视频大片| 亚洲av第一区精品v没综合| 日韩高清综合在线| 国产亚洲欧美98| 黄色片一级片一级黄色片| 精品乱码久久久久久99久播| 亚洲午夜精品一区,二区,三区| 看片在线看免费视频| 国产视频内射| 俄罗斯特黄特色一大片| 精品卡一卡二卡四卡免费| 亚洲aⅴ乱码一区二区在线播放 | 国产熟女xx| 国产精品av久久久久免费| 国产男靠女视频免费网站| 黄片播放在线免费| 搡老岳熟女国产| 国产成+人综合+亚洲专区| 欧美另类亚洲清纯唯美| 日本免费a在线| 变态另类丝袜制服| 国产真人三级小视频在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲精品国产一区二区精华液| 男女视频在线观看网站免费 | 九色国产91popny在线| 成在线人永久免费视频| 亚洲男人天堂网一区| 亚洲国产毛片av蜜桃av| 亚洲成人免费电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看日本一区| 日本三级黄在线观看| 亚洲人成伊人成综合网2020| 91国产中文字幕| 一级片免费观看大全| 99国产综合亚洲精品| 成人三级黄色视频| 久久亚洲精品不卡| 美女高潮喷水抽搐中文字幕| 日韩高清综合在线| 欧美另类亚洲清纯唯美| 看免费av毛片| 欧美乱色亚洲激情| 亚洲国产精品sss在线观看| 欧美午夜高清在线| 亚洲一码二码三码区别大吗| 一进一出抽搐动态| 久久国产亚洲av麻豆专区| www日本在线高清视频| 动漫黄色视频在线观看| 久久久久久久久久黄片| 男女视频在线观看网站免费 | 亚洲精品久久国产高清桃花| 日本一区二区免费在线视频| 欧美丝袜亚洲另类 | 欧美成人午夜精品| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 亚洲精品中文字幕一二三四区| 午夜福利视频1000在线观看| 亚洲avbb在线观看| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| 国产成年人精品一区二区| 51午夜福利影视在线观看| 黄片大片在线免费观看| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 久久人人精品亚洲av| 香蕉av资源在线| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 久久伊人香网站| 人人妻人人看人人澡| 757午夜福利合集在线观看| 亚洲国产毛片av蜜桃av| 叶爱在线成人免费视频播放| 日本一区二区免费在线视频| 黑人欧美特级aaaaaa片| 日本免费一区二区三区高清不卡| 国产精品久久久人人做人人爽| 久久久国产精品麻豆| 后天国语完整版免费观看| 亚洲国产中文字幕在线视频| 一本大道久久a久久精品| 亚洲精品国产区一区二| av在线播放免费不卡| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 国产精品 欧美亚洲| 精品卡一卡二卡四卡免费| 少妇熟女aⅴ在线视频| 亚洲真实伦在线观看| 国产欧美日韩一区二区三| 90打野战视频偷拍视频| 一本一本综合久久| 丁香六月欧美| 亚洲电影在线观看av| 波多野结衣av一区二区av| 国产精品久久久人人做人人爽| 成人免费观看视频高清| 人人妻人人澡人人看| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看 | 这个男人来自地球电影免费观看| 亚洲第一欧美日韩一区二区三区| 国产伦在线观看视频一区| 欧美三级亚洲精品| 国产又色又爽无遮挡免费看| 亚洲精华国产精华精| 成年免费大片在线观看| 亚洲国产欧美网| 亚洲国产高清在线一区二区三 | 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 在线免费观看的www视频| 午夜福利在线观看吧| 伦理电影免费视频| 日本一本二区三区精品| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 久久久精品欧美日韩精品| 久久九九热精品免费| 精品午夜福利视频在线观看一区| 日本熟妇午夜| 国产在线观看jvid| 色精品久久人妻99蜜桃| 丰满人妻熟妇乱又伦精品不卡| 中文资源天堂在线| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| av在线天堂中文字幕| 久9热在线精品视频| 女人被狂操c到高潮| 不卡av一区二区三区| 91字幕亚洲| 香蕉av资源在线| 久久中文字幕一级| 伦理电影免费视频| 精品不卡国产一区二区三区| 中文字幕人成人乱码亚洲影| 在线观看午夜福利视频| 亚洲第一电影网av| 国语自产精品视频在线第100页| 在线视频色国产色| 亚洲精品中文字幕一二三四区| 午夜激情福利司机影院| 国产1区2区3区精品| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| 久久草成人影院| 亚洲国产欧美网| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| www国产在线视频色| 人人妻人人看人人澡| 精品国产国语对白av| 成人三级黄色视频| 香蕉丝袜av| 亚洲成a人片在线一区二区| 久久 成人 亚洲| 97碰自拍视频| 国产一区二区激情短视频| tocl精华| 怎么达到女性高潮| 久热爱精品视频在线9| 哪里可以看免费的av片| av福利片在线| 久久久久久久久中文| 亚洲成人久久性| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 可以免费在线观看a视频的电影网站| 免费一级毛片在线播放高清视频| 999久久久国产精品视频| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 人妻丰满熟妇av一区二区三区| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 禁无遮挡网站| 在线十欧美十亚洲十日本专区| 日韩成人在线观看一区二区三区| 欧美性猛交黑人性爽| 久久中文字幕一级| 久久热在线av| 国内少妇人妻偷人精品xxx网站 | 岛国在线观看网站| 亚洲精品一区av在线观看| 精品国产一区二区三区四区第35| 久久人妻福利社区极品人妻图片| 久久久国产成人免费| svipshipincom国产片| 熟妇人妻久久中文字幕3abv| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 国产人伦9x9x在线观看| 欧美绝顶高潮抽搐喷水| 国产精品久久久av美女十八| cao死你这个sao货| 国产久久久一区二区三区| 窝窝影院91人妻| 国产不卡一卡二| 黄色视频,在线免费观看| 好男人在线观看高清免费视频 | 亚洲久久久国产精品| 日韩av在线大香蕉| 一级毛片精品| 日韩欧美国产一区二区入口| 91av网站免费观看| 亚洲人成网站高清观看| www.自偷自拍.com| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 欧美午夜高清在线| 日本 欧美在线| 久久久久久久久中文| 成人国产一区最新在线观看| 精品久久久久久久末码| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 人成视频在线观看免费观看| 高潮久久久久久久久久久不卡| 欧美日韩黄片免| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品二区激情视频| 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3 | 免费在线观看完整版高清| 男女视频在线观看网站免费 | 国产久久久一区二区三区| 日韩精品中文字幕看吧| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 国产精品野战在线观看| 午夜免费成人在线视频| 人人妻,人人澡人人爽秒播| 69av精品久久久久久| 国产1区2区3区精品| 一区二区日韩欧美中文字幕| 少妇裸体淫交视频免费看高清 | 日本精品一区二区三区蜜桃| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 男女午夜视频在线观看| 满18在线观看网站| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 国产一区二区三区在线臀色熟女| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 国产成人av激情在线播放| 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 亚洲 欧美 日韩 在线 免费| 90打野战视频偷拍视频| 成人国语在线视频| 少妇粗大呻吟视频| 亚洲七黄色美女视频| 久久这里只有精品19| 女同久久另类99精品国产91| 欧美激情极品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 久热爱精品视频在线9| 欧美黑人欧美精品刺激| aaaaa片日本免费| 欧美精品亚洲一区二区| 黄色视频不卡| 日韩有码中文字幕| 一二三四在线观看免费中文在| 在线永久观看黄色视频| 黄片大片在线免费观看| 欧美日韩精品网址| 亚洲精品色激情综合| 女警被强在线播放| 亚洲五月色婷婷综合| 天堂动漫精品| 免费在线观看黄色视频的| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 成人国语在线视频| 最好的美女福利视频网| 亚洲国产精品成人综合色| 色综合婷婷激情| 亚洲精品一区av在线观看| 免费女性裸体啪啪无遮挡网站| 脱女人内裤的视频| 久久欧美精品欧美久久欧美| av视频在线观看入口| 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 人成视频在线观看免费观看| 一级毛片女人18水好多| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 亚洲精品av麻豆狂野| www.自偷自拍.com| 两个人视频免费观看高清| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 在线观看午夜福利视频| 一级毛片精品| 精品久久久久久,| 日本 欧美在线| 国内精品久久久久精免费| 午夜视频精品福利| 久久中文字幕人妻熟女| www.熟女人妻精品国产| 国产爱豆传媒在线观看 | 国产成人影院久久av| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 国产视频一区二区在线看| 最近最新免费中文字幕在线| 女同久久另类99精品国产91| 桃红色精品国产亚洲av| 欧美日韩黄片免| 成人手机av| 黄色成人免费大全| 十八禁网站免费在线| 在线播放国产精品三级| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 精品国产亚洲在线| 在线天堂中文资源库| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播 | 国产又爽黄色视频| 国产色视频综合| 在线国产一区二区在线| 美女大奶头视频| 免费女性裸体啪啪无遮挡网站| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人一区二区免费高清观看 | 嫩草影视91久久| 黑丝袜美女国产一区| 欧美乱妇无乱码| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 亚洲专区中文字幕在线| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 久久性视频一级片| 99热这里只有精品一区 | avwww免费| 国产精品免费一区二区三区在线| 又大又爽又粗| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 欧美国产日韩亚洲一区| 色综合婷婷激情| 黄网站色视频无遮挡免费观看| 久久久久亚洲av毛片大全| 欧美黄色片欧美黄色片| 18禁美女被吸乳视频| 很黄的视频免费| 国产成人啪精品午夜网站| 精品高清国产在线一区| 在线视频色国产色| 国产精品av久久久久免费| 最近在线观看免费完整版| 久久人妻av系列| 午夜激情av网站| 99国产极品粉嫩在线观看| 天堂动漫精品| 欧美在线一区亚洲| 亚洲第一电影网av| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 成年免费大片在线观看| 国产精品98久久久久久宅男小说| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 中文资源天堂在线| 天堂动漫精品| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 精品高清国产在线一区| 国产精品久久久久久精品电影 | 搞女人的毛片| 波多野结衣高清作品| 两人在一起打扑克的视频| 欧美日韩精品网址| 午夜福利免费观看在线| 久久伊人香网站| 悠悠久久av| 国产亚洲精品久久久久5区| 中文字幕最新亚洲高清| 午夜福利18| 中亚洲国语对白在线视频| 成人精品一区二区免费| 在线永久观看黄色视频| 日韩一卡2卡3卡4卡2021年| 中文资源天堂在线| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 久久久久久人人人人人| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费| 国产在线观看jvid| 久久性视频一级片| 亚洲一区二区三区不卡视频| 久久人人精品亚洲av| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 久久中文字幕一级| 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 99riav亚洲国产免费| 热re99久久国产66热| 黄色女人牲交| 精品久久蜜臀av无| 黄色 视频免费看| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 精品国产乱子伦一区二区三区| 免费看a级黄色片| 男人操女人黄网站| 一本综合久久免费| 国产精品一区二区三区四区久久 | 国产伦在线观看视频一区| 在线视频色国产色| 俺也久久电影网| 韩国av一区二区三区四区| 免费电影在线观看免费观看| 久久久久久亚洲精品国产蜜桃av| 日本成人三级电影网站| 99国产综合亚洲精品| 一本精品99久久精品77| 国产三级在线视频| 久久九九热精品免费| 亚洲成人久久性| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区| 欧美黄色淫秽网站| 亚洲精品国产区一区二| 亚洲精品久久国产高清桃花| 不卡av一区二区三区| 天堂√8在线中文| √禁漫天堂资源中文www| 国产爱豆传媒在线观看 | 亚洲精品色激情综合| 久久性视频一级片| 中文字幕高清在线视频| 免费在线观看视频国产中文字幕亚洲| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 日本一区二区免费在线视频| 欧美三级亚洲精品| 嫁个100分男人电影在线观看| 一级a爱视频在线免费观看| 日本免费a在线| 亚洲国产精品合色在线| 色综合站精品国产| 日本三级黄在线观看| 欧美午夜高清在线| 久久热在线av| 长腿黑丝高跟| 看黄色毛片网站| www.999成人在线观看| 久久人妻av系列| 宅男免费午夜| 黑人欧美特级aaaaaa片| 亚洲av美国av| 一本精品99久久精品77| 丰满的人妻完整版| 成人18禁在线播放| 波多野结衣av一区二区av| 国产激情久久老熟女| 国产av一区二区精品久久| 老司机午夜福利在线观看视频| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| 神马国产精品三级电影在线观看 | 亚洲精品粉嫩美女一区| 国产精品野战在线观看| 色综合站精品国产| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 国产在线精品亚洲第一网站| 国产成年人精品一区二区| xxx96com| 亚洲熟妇中文字幕五十中出| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 国产精品野战在线观看| or卡值多少钱| 国产1区2区3区精品| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 色综合站精品国产| 香蕉久久夜色| 亚洲九九香蕉| 国产黄片美女视频| 久久九九热精品免费| 国产一级毛片七仙女欲春2 | 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 禁无遮挡网站| 999精品在线视频| 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 久久亚洲精品不卡| 91大片在线观看| 国产精品日韩av在线免费观看| 91九色精品人成在线观看| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 亚洲精品一区av在线观看| xxxwww97欧美| 丁香欧美五月| www国产在线视频色| 亚洲片人在线观看| 精品久久久久久久久久免费视频| 90打野战视频偷拍视频| 欧美绝顶高潮抽搐喷水| 一级片免费观看大全| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 一区福利在线观看| 怎么达到女性高潮| 露出奶头的视频| 欧美性长视频在线观看| 国产高清有码在线观看视频 | 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 国产伦一二天堂av在线观看| cao死你这个sao货| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 精品国产一区二区三区四区第35| 伦理电影免费视频| 国产精品一区二区三区四区久久 | 国产成年人精品一区二区| 麻豆成人午夜福利视频| 国产亚洲av高清不卡| 国产高清有码在线观看视频 | 麻豆av在线久日| 亚洲av五月六月丁香网| 中文字幕人妻熟女乱码| 两个人免费观看高清视频| 黑人操中国人逼视频| 99riav亚洲国产免费| 亚洲自拍偷在线| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 男人舔女人的私密视频| 级片在线观看| 免费女性裸体啪啪无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| svipshipincom国产片| 露出奶头的视频| 亚洲电影在线观看av| 精品日产1卡2卡| 淫秽高清视频在线观看| 国产视频一区二区在线看| 免费看日本二区| 亚洲熟妇熟女久久| 亚洲欧美精品综合一区二区三区| 成年免费大片在线观看| 久久久水蜜桃国产精品网| 一级a爱视频在线免费观看| 最新在线观看一区二区三区| 十八禁网站免费在线| 国产精品99久久99久久久不卡| 国产免费男女视频| 在线观看免费午夜福利视频| 亚洲激情在线av| 欧美乱色亚洲激情| 麻豆成人午夜福利视频|