• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure and Photocatalytic Activity of Two 4-(2,6-Di(pyrazin-2-yl)pyridin-4-yl)benzoate-Based Chain Complexes①

    2018-06-20 12:00:36WANGZhiHongHAORuiZHUShuangZHAOXiaoJun
    結(jié)構(gòu)化學(xué) 2018年5期

    WANG Zhi-Hong HAO Rui ZHU Shuang ZHAO Xiao-Jun

    ?

    Synthesis, Structure and Photocatalytic Activity of Two 4-(2,6-Di(pyrazin-2-yl)pyridin-4-yl)benzoate-Based Chain Complexes①

    WANG Zhi-Hong HAO Rui ZHU Shuang ZHAO Xiao-Jun②

    (300387)

    4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate, photocatalytic activity,crystal structure,coordination polymer;

    1 INTRODUCTION

    Recently, rapid developments of printing, cosme- tics, plastics, rubber, and paper industry have dis- charged high level of hazardous colored dyestuffs. Over 10000 kinds of dyes with a total yearly production over 7×105tons worldwide are repor- ted to be commercially available and approximately 10% of dyestuffs are lost in the industrial effluents[1, 2]. The entering of these dye effluents into the receiving water body has already caused serious damage to aquatic organisms and humans by mutagenic and carcinogenic effects.Moreover, lots ofdyes are stable and have a large degree of aromaticity, which is difficult to degrade by conventional biological techniques.Thus, it is of great significance and importance to search effective and economical methods and/or techniques to efficiently degrade these organic dyes[3].

    Acting as typically crystalline materials, coor- dination polymers (CPs) built from metal ions and/or metal-containing clusters and organic bri- dging connectors have exhibited excellent photoca- talyticproperties on the degradation of organic dyes (such as methyl orange, rhodamine B (RhB), me- thylene blue (MB) and so on) under the irradiations of UV, visible, and/or UV-vis lights due to their adjustable semiconductor nature and unsaturated metallic binding sites[4-6]. To date, lots of Cu(I/II)-, Co(II/III)-, Fe(II)/Fe(III)-, Zn(II)-, and Cd(II)-based CPs with diverse structures and intriguing topology have been prepared and used as photocatalysts to evaluate the degradation performance of organic pollutants in wastewater[7-12]. These interesting investigations have revealed that the-electron localization skeleton, binding group, andthe metal center of CPs can essentially dominate the strength and range of the illumination energy and the elec- tronic band gap of photocatalyst, which can domi- nate the photo-generated hole-electron separation process responsible for the enhanced catalytic activity. Herein, as continuous explorations on the effects of metal ion and coordination environment on the photocatalytic performance for degradation of organic pollutants, a bulky-conjugated organic ligand 4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate (L-) was selected as a functional connector to self-assemble with transition metal ion and auxiliary 1,4-benzenedicarboxylate ligand (BDC). As a result, two approximately linear chains incorporated respectively with CuIIand ZnIIions were solvother- mally obtained. Their crystal structures, band gaps and photocatalytic performances towards the degradation of RhB and MB were reported.

    2 EXPERIMENTAL

    2. 1 Reagents and instruments

    All initial chemicals were commercially purchased from either J&K Scientific or Tianjin Chemical Reagent Factory and used as received without further purification. Organic ligand 4-(2,6- di(pyrazin-2-yl)pyridin-4-yl)benzoic acid (HL) was prepared by a slightly modified method[13].Ele- mental analyses for C, H, and N were carried out with a CE-440 (Leeman-Labs) analyzer. Fourier transform (FT) IR spectra (KBr pellets) were taken on an Avatar-370 (Nicolet) spectrometer in the range of 4000~400 cm–1. Thermogravimetric analyses (TGA) were performed on a Shimadzu simultaneous DTG-60A compositional analysis instrument from room temperature to 800℃ under a N2atmosphere at a heating rate of 5℃×min–1. Powder X-ray diffraction (PXRD) patterns were obtained using a Rigaku D/max-2500 diffractometer at 60 kV and 300 mA for Curadiation (= 1.5406 ?), with a scan speed of 0.2o·min–1and a step size of 0.02oin 2. The simulated PXRD pattern was calculated using single-crystal X-ray diffraction data and processed by using the free Mercury v1.4 program provided by the Cambridge Crystallographic Data Center. UV/Vis diffuse reflectance spectra (DRS) were carried out on a U-4100 spectrophotometer (Shimadzu) equipped with an integrating sphere assembly. UV-vis absorp- tion spectra of the reaction mixture were recorded using a UV-2700 spectrophotometer (Shimadzu) in the range of 200~800 nm.Electrochemical impe- dance spectroscopy (EIS) was measured on an AMETEK Princeton Applied Research (Versa STAT 4) electrochemical workstation with 1/FTO or 2/FTO as the working electrode, a platinum foil as the counter electrode, and a saturated Ag/AgCl/KCl as the reference electrode. The working electrode was prepared by dropping 50L of suspension containing photocatalyst 1 or 2 (3.0 mg), ethanol (1.0 mL) and Nafion (20L) directly onto a FTO plate. The surface area of the working electrode exposed to the electrolyte was about 0.64 cm2. The EIS measurements were performed in 0.2 M Na2SO4aqueous solution (pH = 7) with a bias of 0 V under irradiation of 300W Xe lamp (≥ 350 nm).

    2. 2 Synthesis of {[Cu(L)(BDC)0.5]·3.5H2O}n (1)

    A mixture containing CuSO4·5H2O (50.0 mg, 0.2 mmol), HL (17.7 mg, 0.05 mmol), 1,4-benzenedi- carboxylic acid (H2BDC, 28.2 mg, 0.17 mmol), doubly deionized water (5.0 mL), and DMF (5.0 mL) was sealed in a Teflon-lined stainless-steel vessel (23.0 mL) and heated at 120 ℃ for 72 h under autogenous pressure. After the mixture was cooled to room temperature at a rate of 2℃·h-1, green block-shaped crystals suitable for X-ray analysis were obtained directly, washed with cold water, and dried in air. Yield: 36% based on L-ligand. Calcd. for C48H42Cu2N10O15: C, 51.20; H, 3.76; N, 12.44%. Found: C, 51.23; H, 3.77; N, 12.48%. FT-IR (KBr pellet, cm-1): 3434 (br), 1611 (m), 1560 (s), 1458 (w), 1381 (s), 1176(w), 1150 (w), 1075 (w), 1039 (w), 1011 (w), 861(w), 823 (w), 789 (w), 745 (w), 591 (w), 516 (w), 466(w).

    2. 3 Synthesis of {[Zn(L)(BDC)0.5]·H2O}n (2)

    A mixture of ZnSO4·7H2O (57.5 mg, 0.2 mmol), HL (17.7 mg, 0.05 mmol), H2BDC (16.6 mg, 0.1 mmol), and H2O (10.0 mL) was stirred for 3.0 h in air. Then, the mixture was transferred into a 23.0 mL Teflon-lined stainless-steel vessel, and heated at 170℃ for 4 days. After the mixture was cooled slowly to room temperature, yellow block-shaped crystals of 2 were directly obtained. Yield: 46% based on L-ligand. Calcd. for C24H16N5O5Zn: C, 55.46; H, 3.10; N, 13.47%. Found: C, 55.35; H, 3.30; N, 13.57%. FT-IR (KBr pellet, cm-1): 3332 (br), 1642 (s), 1611 (m), 1582 (s), 1382(s), 1335 (s), 1179 (m), 1139 (w), 1034(m), 1010(w), 855 (m), 819 (m), 787 (m), 745 (m), 689 (w), 649(w), 590(w) 490(w), 462(w).

    2. 4 Structure determination

    Diffraction intensities of 1 (0.22mm′0.20mm′0.19mm) and 2 (0.22mm′0.21mm′0.18mm) were collected on a Bruker APEX-II CCD diffractometer equipped with graphite-monochro- mated Moradiation with radiation wavelength 0.71073 ? by using the-scan technique at 296 K, respectively. There was no evidence of crystal decay during data collection. Semi-empirical multi- scan absorption corrections were applied by SADABS[14]and the program SAINT was used for integration of the diffraction profiles. A total of 7622 reflections with 4781 unique ones (int= 0.0369) were measured in the range of 1.779≤≤26.499o, of which3704 were observed with> 2() for 1, and a total of 11673 reflections with 4278 unique ones (int= 0.0542) were measured in the range of 2.086≤≤26.494o, of which 2944 were observed with> 2() for 2.The structures were solved by direct methods and refined with full-matrix least-squares technique using the SHELXS-97 and SHELXL-97 pro- grams[15, 16]. Anisotropic thermal parameters were assigned to all non-H atoms. The organic H atoms were generated geometrically. The final= 0.0575,= 0.1386 (= 1/[2(F2) + (0.0634)2+ 0.8562], where= (F2+ 2F2)/3),= 1.078, (D)max= 0.598, (D)min=-0.661 and (D/)max= 0.001 for 1, and the final= 0.0487,= 0.0907 (= 1/[2(F2) + (0.0386)2], where= (F2+ 2F2)/3),= 1.083, (D)max= 0.835, (D)min=-0.524and (D/)max= 0.001for 2. The selected bond lengths and bond angles for 1 and 2 are shown in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry codes for 1: a: 2-,-, 1-; 2: a:-,, 1/2-

    2. 5 Photocatalytic experiment

    Typical procedure for photocatalytic reaction was as follows: a suspension containing photocatalyst 1 or 2 (3.0 mg), 30.0 mL aqueous RhB/MB (20.0/12.0 mg·L-1) solution and 30% H2O2(50L for RhB and 10L for MB) was stirred in the dark for about 30 min to ensure the absorption-desorption equili- brium. Then, the mixture was exposed to a visible light source (500 W xenon arc lamp) for irradiation. At different time intervals, 3.0 mL sample was withdrawn from the reaction mixture and the dispersed powder in the mixture was removed by centrifugation. The absorption of the as-resulted solutions was analyzed by UV-vis spectroscopy, in which the characteristic absorption bands around 553 nm for RhB and 664 nm for MB were employed to evaluate the degradation process. The catalyst after the first run was filtered, washed several times with water, dried at room temperature, and then dropped into the next reaction.

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure of 1

    As shown in Fig. 1b, the adjacent CuIIions of 1 are alternately bridged by a pair of L-and a cen- trosymmetric BDC2-connector, leading to an appro- ximately linear chain with the intrachain CuII···CuIIseparations of 11.4137(11) and 10.9307(1) ?, respectively. The angle of three neighboring CuIIions is 168.189(1)o. The neighboring 1chains of 1 are further packed into 2and 3supramolecular networks through interchain weak C-H···O and C-H···N hydrogen bonding interactions between aromatic ring and carboxylate O or pyrazinyl N acceptors (Table S1 and Fig. S1).

    Fig. 1. (a) Local coordination environments of CuΙΙion in 1 (H atoms were omitted for clarity. Symmetry code: A = 2-,-, 1-). (b) 1D chain of 1 extended by the mixed ligands

    3. 2 Crystal structure of 2

    Similar to 1, 2 also features a 1chain with pentacoordinate ZnIIions periodically expanded by centrosymmetric BDC2-and pairs of L-connectors. Besides the replacement of CuIIion by the ZnIIsite, a quite distinction between 1 and 2 can be detected by careful checking their crystal structures. Much different from 1, 2 crystallizes in the monoclinic2/space group. The highly symmetric space group of 2 can result inthree aspects different from 1. Firstly, the coordination polyhedron of ZnIIion is more distorted (0.12, Fig. 2a). Secondly, the conjugated extent of L-ligand in 2 is much better than that in 1, and the dihedralangles between phenyl ring and polypyridyl plane are 4.8° and 45.8° for 1 and 2. Thirdly, chain structure of 2 is more bent and the angle of three adjacent ZnIIions is 16.558(2)o(Fig. 2b). Additionally, the weak interchain C-H···N hydrogen bonding interaction was absent during the crystal stacking process of 2 (Table S1 and Fig. S2).

    Fig. 2. (a) Local coordination environments of ZnΙΙion in 2 (H atoms were omitted for clarity. Symmetry code: A =-,, 0.5-). (b) 1D chain of 2 extended by L-and BDC2-connectors

    3. 3 PXRD, TGA, and FT-IR spectra

    Powder X-ray diffraction (PXRD) patterns of the as-synthesized samples were in good agreement with the simulated ones (Fig. S3), suggestingthe phase purity and the structural consistency between the as-prepared sample and the single-crystal structures.

    Both 1 and 2 display two separate weight-loss stages (Fig. S4). The first one that began at room temperature and ended at 155℃ for 1 should be ascribed to the removal of lattice water molecules (obsd. 11.8%, calcd. 11.2%). The breakof the chain of 1 began at 284℃, which was not completely finished till 800℃. The thermal stability of 2 is much higher than that of 1.The removal of lattice water molecule in 2 was between room temperature and 293℃ (obsd. 4.1%, calcd. 3.5%). The collapse of the chain structure of 2 occurred at 431℃. Similar to 1, the framework collapse of 2 was not completely finished at the highest temperature.

    As compared with the free organic ligand, an absence of a strong band at 1679cm-1in the FT-IR spectra confirmed the complete deprotonation of H2BDC in both 1 and 2[18].Multiple strong bands corresponding to the asymmetric and symmetric stretching vibrations of carboxylate group appeared at 1611, 1560, and 1458, 1381 cm-1for 1 and at 1642, 1582, 1382, 133cm-1for 2.

    3. 4 Optical properties

    Complex 1 exhibits three strong absorption bands centered at 286, 368 and 699 nm (Fig. 3), respec- tively, which can be ascribed to intraligand→* transition, ligand-to-metal charge transfer (LMCT), andspin-allowed transition of CuIIion. By contrast, only two absorptions are observed for 2 at 275 and 358 nm, which correspond to the intra- ligand→* transition and LMCT of 2.Energy band gaps (Eg) for 1 and 2 are 2.04 and 2.81 eV obtained from the intersection point between the energy axis and the line extrapolated from the linear portion of the absorption edge in a plot of Kubelka- Munk function (Fig. 3 inset), indicating that the CPs have semiconductor nature and can be potentially used as photocatalysts.

    Fig. 3. UV-Vis absorption spectra of HL, H2BDC, 1, and 2 (Inset: Diffuse reflectance UV-vis spectra of K-M function. energy of 1 and 2)

    3. 5 Photocatalytic properties

    Catalytic performance of the as-synthesized sample as a photocatalyst was evaluated by photo- degradation of RhB and MB in aqueous solution. As shown in Fig. 4, in the presence of 1, the charac- teristic absorptions of RhB (664 nm) and MB (553 nm) decreased remarkably with the extension of the irradiation time, suggesting a detectable degradation of RhB and MB with the aid of 1. The photoca- talytic efficiency of RhB and MB by 190% and 95% after 150 min reaction. By contrast, the degradation efficiency of the organic dyes by 2 was 53% and 60% for RhB and MB, respectively. Under the same experimental conditions, the degradation efficiency of RhB and MB without a photocatalyst was only 28% and 32%. Thus, both 1 and 2 can exhibit good photocatalytic activities upon the photodegradation of organic dyes, in which 1 has a much higher catalytic performance than that of 2. Herein, the lower photodegradation efficiency of 2 than 1 is significantly due to the large band gap and the weak response of 2 to visible irradiation. Furthermore, to compare the difference on the charge separation and transfer process between 1 and 2, the EIS measurements were carried out. As shown in Fig. 5, the smaller semicircle diameter of 1 than 2 indicates the resistance of 2/PTO electrode is bigger than that of 1/FTO, that is to say, the faster interfacial charge transfer and lower charge recombination occur in 1. On the other hand, as compared with the previously reported CuII-based photocatalysts exhibiting high degradation per- formance of RhB and MB, such as centrosymmetric dinuclear [Cu2(2,2?-bipy)2(pfbz)4] (pfbz = pen- tafluorobenzoate)[19], pyridine-2,6-dicarbohydrazide based imine linked ligands extended one-dimen- sional CuIIchains with distinct coordination en- vironments[20]and three-dimensional [Cu(mip)(bpy)0.5](mip = 5-methylisophthalate and bpy = 4,4?-bipyridine) with jsm topology[21], the dimensionality, unsaturated coordination site of CuIIcenter and the chemical structure of the organic ligand play important roles for the enhancement of the photocatalytic activity.

    3. 6 Stability and reusability of the photocatalysts

    The stability of photocatalyst was confirmed by comparison of the PXRD patterns before and after the photocatalytic reactions. After this reaction, the PXRD patterns of 1 and 2 were almost the same as those of the as-prepared samples (Fig. S3), sug- gesting the robust stability of the two photocatalysts during the process of photocatalytic reaction. Additionally, the reusability of 1 with better catalytic performance was examined by performing three consecutive runs. The degradation efficiency of 1 only varied from 90% to 64% after three runs (Fig. 6), implying that 1can be re-used without a significant loss of the catalytic activity.

    Fig. 4. UV-vis absorption spectra and degradation efficiency for degradation of RhB and MB by using 1 and 2 as photocatalysts under visible irradiation at different time intervals (insert: photographs of RhB and MB solution before and after photocatalytic reaction by 1 and 2)

    Fig. 5. EIS Nyquist plots of 1 and 2 as electrode materials under the irradiation of visble light

    Fig. 6. Cycle performance of 1 on the photodegradation of aqueous RhB solution

    4 CONCLUSION

    Two bulky conjugated 4-(2,6-di(pyrazin-2-yl)py- ridin-4-yl)benzoate-derived one-dimensional chains were solvothermally obtained by varying the transition metal ions and were used as photocata- lysts to degrade organic dyes. Due to the narrower band gap and broader response to visible irradiation, the CuII-based chain exhibits better photocatalytic activity than those of ZnII-chain.

    (1) Yener, J.; Kopac, T.; Dogu, G.; Dogu, T. Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon.2008, 144, 400-406.

    (2) Wu, Z. B.; Yuan, X. Z.; Zhang, J.; Wang, H.; Jiang, L. B.; Zeng, G. G. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives.2017, 9, 41-64.

    (3) Saha, T. K.; Frauendorf, H.; John, M.; Dechert, S.; Meyer, F. Efficient oxidative degradation of azo dyes by a water-soluble manganese porphyrin catalyst.2013, 5, 796-805.

    (4) Zhang, H. B.; Liu, G. G.; Shi, L.; Liu, H. M.; Wang, T.; Ye, J. H. Engineering coordination polymers for photocatalysis.2016, 22, 149-168.

    (5) Wang, C. C.; Li, R. J.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks.2014, 7, 2831-2867.

    (6) Dai, M.; Li, H. X.; Lang, J. P. New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts.2015, 17, 4741-4753.

    (7) Chen, M. M.; Li, X. H.; Lang, J. P. Two coordination polymers and their silver(I)-doped species: synthesis, characterization, and high catalytic activity for the photodegradation of various organic pollutants in water.2016,15-16, 2508-2515.

    (8) Du, J. J.; Yuan, Y. P.; Sun, J. X.; Peng, F. M.; Jiang, X.; Qiu, L. G.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye.2011, 190, 945-951.

    (9) Wang, X. L.; Le, M.; Lin, H. Y.; Luan, J.; Liu, G. C.; Sui, F. F.; Chang, Z. H. Assembly, structures, photophysical, properties and photocatalytic activities of a series of coordination polymers constructed from semi-rigid bis-pyridyl-bisamide and benzenetricarboxylic acid.2015, 2, 373-383.

    (10) Hou, Y. L.; Sun, W. Y.; Zhou, X. P.; Wang, J. H.; Li, D. A copper(I)/copper(II)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes.2014, 50, 2295-2297.

    (11) Liu, L.; Wu, D. Q.; Zhao, B.; Han, X.; Wu, J.; Hou, H. W.; Fan, Y. T. Copper(II) coordination polymers: tunable structures and a different activation effect of hydrogen peroxide for the degradation of methyl orange under visible light irradiation.2015, 44, 1406-1411.

    (12) Li, K.; Lv, X. X.; Shi, L. L.; Liu, L.; Li, B. L.; Wu, B. A new strategy to obtain tetranuclear cobalt(II) metal-organic frameworks based on the [Co4(3-OH)2]cluster: synthesis, structures and properties.2016, 45, 15078-15088.

    (13) Stublla, A.; Potvin, P. G. Ruthenium(II) complexes of carboxylated terpyridines and dipyrazinylpyridines.2010, 3040-3050.

    (14) Sheldrick, G. M.University of G?ttingen, Germany 1996.

    (15) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (16) Sheldrick, G. M.t. University of G?ttingen, Germany 1997.

    (17) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(II) perchlorate.1984, 1349-1356.

    (18) Nakamoto, K.,edWiley Press, New York 1986.

    (19) Han, L. J.; Kong, Y. J.; Yan, T. J.; Fan, L. T.; Zhang, Q.; Zhao, H. J.; Zheng, H. G. A new five-coordinated copper compound for efficient degradation of methyl orange and Congo red in the absence of UV-visible radiation.2016, 45, 18566-18571.

    (20) Hussain, N.; Bhardwaj, V. K. The influence of different coordination environment in one-dimensional Cu(II) coordination polymers on photo-degradation of organic dyes.2016, 45, 7697-7707.

    (21) Xu, B.; Chen, Z. M.; Zhi, P. F.; Liu, G. N.; Li, C. C. Structure and photocatalytic property of a new Cu(II) based framework with jsm topology.2015, 52, 9-11.

    27 September 2017;

    20 December 2017 (CCDC 1573596 for 1 and 1573597 for 2)

    ① This work was supported by NNSFC (No. 21671149)

    . Zhao Xiao-Jun, born in 1955, professor, majoring in coordination chemistry. E-mail: xiaojun_zhao15@163.com

    10.14102/j.cnki.0254-5861.2011-1834

    国产伦精品一区二区三区四那| 欧美日韩国产mv在线观看视频 | 午夜爱爱视频在线播放| 新久久久久国产一级毛片| 国产精品不卡视频一区二区| 大话2 男鬼变身卡| 亚洲怡红院男人天堂| 嫩草影院精品99| 午夜爱爱视频在线播放| 另类亚洲欧美激情| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 校园人妻丝袜中文字幕| 中文字幕制服av| 97超碰精品成人国产| 欧美xxⅹ黑人| 97超视频在线观看视频| 精品久久久久久久末码| 亚洲人成网站在线播| 国产精品人妻久久久久久| 日韩欧美 国产精品| 各种免费的搞黄视频| 97热精品久久久久久| 99热这里只有精品一区| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 伊人久久国产一区二区| 欧美三级亚洲精品| 97超视频在线观看视频| 国产 精品1| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 18禁裸乳无遮挡动漫免费视频 | 精品人妻偷拍中文字幕| 精品久久久久久久久av| 国产中年淑女户外野战色| 美女被艹到高潮喷水动态| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 国产成人aa在线观看| 欧美潮喷喷水| 亚洲精品日韩在线中文字幕| 18禁在线播放成人免费| 亚洲av不卡在线观看| 中文资源天堂在线| 免费av不卡在线播放| 少妇高潮的动态图| 成年av动漫网址| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 成人午夜精彩视频在线观看| 国产成人午夜福利电影在线观看| 又爽又黄a免费视频| a级毛色黄片| 欧美极品一区二区三区四区| 亚洲真实伦在线观看| 亚洲av日韩在线播放| 亚洲怡红院男人天堂| 大片免费播放器 马上看| 国产美女午夜福利| 最近中文字幕高清免费大全6| 亚洲成人精品中文字幕电影| 国产精品无大码| 自拍偷自拍亚洲精品老妇| 国产 一区精品| 国产永久视频网站| 亚洲av欧美aⅴ国产| 日韩av在线免费看完整版不卡| 日韩av在线免费看完整版不卡| 亚洲av国产av综合av卡| 国产高清不卡午夜福利| 全区人妻精品视频| 欧美三级亚洲精品| 日韩一本色道免费dvd| 久久精品国产自在天天线| 天美传媒精品一区二区| 极品少妇高潮喷水抽搐| 国产熟女欧美一区二区| 各种免费的搞黄视频| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 久久久久久九九精品二区国产| 国产成人福利小说| 久久精品夜色国产| 高清视频免费观看一区二区| 国产一区二区三区av在线| 日本av手机在线免费观看| 国产精品久久久久久久久免| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 51国产日韩欧美| 国产精品人妻久久久久久| 久久99热这里只有精品18| 久久久精品免费免费高清| 国产综合懂色| 亚洲精品一二三| 边亲边吃奶的免费视频| 色5月婷婷丁香| 国产老妇伦熟女老妇高清| 人妻系列 视频| 成年av动漫网址| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 精品久久久精品久久久| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲高清精品| 伊人久久精品亚洲午夜| 国产高清不卡午夜福利| 免费黄色在线免费观看| 免费黄网站久久成人精品| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 五月玫瑰六月丁香| 成人特级av手机在线观看| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 久久久久久久亚洲中文字幕| 久久精品国产亚洲av涩爱| 久久久久久久久久久免费av| 亚洲av日韩在线播放| 精品国产乱码久久久久久小说| 亚洲欧美精品专区久久| 久久人人爽人人爽人人片va| 国产精品国产三级国产av玫瑰| 免费大片18禁| 久久6这里有精品| 一本一本综合久久| 韩国av在线不卡| 新久久久久国产一级毛片| 小蜜桃在线观看免费完整版高清| 久久亚洲国产成人精品v| 久久久久久久久久久免费av| 国产永久视频网站| 国产成人福利小说| 亚洲久久久久久中文字幕| 插逼视频在线观看| 嫩草影院精品99| 久久久久久久国产电影| 日本-黄色视频高清免费观看| 亚洲国产欧美人成| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 又爽又黄a免费视频| 永久免费av网站大全| 国产高清国产精品国产三级 | 干丝袜人妻中文字幕| 国产精品.久久久| 免费电影在线观看免费观看| 美女高潮的动态| 三级经典国产精品| 亚洲最大成人av| 免费看日本二区| 国产一区二区三区综合在线观看 | 禁无遮挡网站| 国产成人freesex在线| 少妇人妻久久综合中文| 日韩亚洲欧美综合| 人妻制服诱惑在线中文字幕| 一边亲一边摸免费视频| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 男女国产视频网站| 亚洲国产成人一精品久久久| 麻豆久久精品国产亚洲av| 国产高清国产精品国产三级 | 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| a级毛色黄片| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 高清毛片免费看| 身体一侧抽搐| 一二三四中文在线观看免费高清| 国产91av在线免费观看| 免费黄频网站在线观看国产| 午夜福利视频精品| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区| 亚洲av男天堂| 国产精品久久久久久精品古装| 色网站视频免费| 日本猛色少妇xxxxx猛交久久| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 听说在线观看完整版免费高清| 伊人久久国产一区二区| 深夜a级毛片| 性色avwww在线观看| 日韩一区二区视频免费看| 日本色播在线视频| 最近2019中文字幕mv第一页| 高清午夜精品一区二区三区| 久久精品久久精品一区二区三区| 人妻 亚洲 视频| 看非洲黑人一级黄片| 日本欧美国产在线视频| 黄色日韩在线| av在线天堂中文字幕| 高清毛片免费看| av在线蜜桃| 各种免费的搞黄视频| 乱系列少妇在线播放| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 69av精品久久久久久| 精品视频人人做人人爽| 国产精品久久久久久精品电影| 狂野欧美白嫩少妇大欣赏| .国产精品久久| 综合色av麻豆| 国产乱人偷精品视频| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 亚洲av免费在线观看| 干丝袜人妻中文字幕| 丝袜喷水一区| 亚洲成人精品中文字幕电影| 亚洲欧美一区二区三区国产| 永久网站在线| 美女内射精品一级片tv| 久久久久久久久久成人| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 国内精品美女久久久久久| 免费观看性生交大片5| 欧美97在线视频| 免费观看a级毛片全部| 久久久久网色| 国产av码专区亚洲av| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 麻豆成人av视频| 国产男人的电影天堂91| 精品亚洲乱码少妇综合久久| 日韩欧美精品v在线| 国产淫片久久久久久久久| 亚洲,欧美,日韩| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 国产 一区精品| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线 | 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 久久久久国产网址| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 欧美日韩视频精品一区| 久久人人爽人人片av| 日本-黄色视频高清免费观看| 亚洲,一卡二卡三卡| 国产在线男女| 麻豆国产97在线/欧美| 精品亚洲乱码少妇综合久久| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 成人国产av品久久久| 日日撸夜夜添| 国产一区亚洲一区在线观看| 精品午夜福利在线看| 丰满乱子伦码专区| 欧美zozozo另类| 亚洲精品一区蜜桃| 亚洲在久久综合| av国产免费在线观看| 国产高清国产精品国产三级 | 99热这里只有是精品在线观看| 久久亚洲国产成人精品v| 日韩不卡一区二区三区视频在线| 超碰97精品在线观看| 国产乱人视频| 好男人在线观看高清免费视频| 国产精品.久久久| av在线天堂中文字幕| 成年女人在线观看亚洲视频 | 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 又黄又爽又刺激的免费视频.| 日韩不卡一区二区三区视频在线| 欧美极品一区二区三区四区| 黄片wwwwww| 一级黄片播放器| 国产免费福利视频在线观看| 国产亚洲精品久久久com| 国产精品一区二区在线观看99| 午夜免费鲁丝| 一个人看视频在线观看www免费| 有码 亚洲区| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 极品教师在线视频| 婷婷色综合大香蕉| 极品教师在线视频| 精品久久久久久久久亚洲| 日韩一区二区三区影片| 2022亚洲国产成人精品| 99热全是精品| 欧美精品人与动牲交sv欧美| 人妻少妇偷人精品九色| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看| av福利片在线观看| 欧美日韩国产mv在线观看视频 | 日韩制服骚丝袜av| 国产欧美日韩一区二区三区在线 | 老女人水多毛片| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 欧美一级a爱片免费观看看| 韩国高清视频一区二区三区| 日本熟妇午夜| 两个人的视频大全免费| 亚州av有码| 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 边亲边吃奶的免费视频| 免费大片18禁| 国产精品国产三级国产专区5o| 日韩视频在线欧美| 亚洲精品aⅴ在线观看| 日韩大片免费观看网站| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 国产黄片美女视频| 亚洲欧洲日产国产| 国产v大片淫在线免费观看| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 永久免费av网站大全| 毛片一级片免费看久久久久| 免费少妇av软件| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 神马国产精品三级电影在线观看| 一级片'在线观看视频| 少妇熟女欧美另类| 国产成人一区二区在线| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 观看免费一级毛片| 欧美精品一区二区大全| 久久综合国产亚洲精品| 国产欧美日韩一区二区三区在线 | 亚洲精品成人久久久久久| 欧美3d第一页| 免费观看a级毛片全部| 美女视频免费永久观看网站| 在线观看一区二区三区| 国产在线一区二区三区精| 日本wwww免费看| 久久精品国产a三级三级三级| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 婷婷色综合大香蕉| 99久久人妻综合| 亚洲av成人精品一二三区| 九九爱精品视频在线观看| 最新中文字幕久久久久| 新久久久久国产一级毛片| av免费在线看不卡| 日韩视频在线欧美| 亚洲精品国产成人久久av| 午夜免费男女啪啪视频观看| 视频中文字幕在线观看| 成人免费观看视频高清| 丝袜美腿在线中文| 插逼视频在线观看| 国产淫片久久久久久久久| 男的添女的下面高潮视频| 精品人妻熟女av久视频| 亚洲真实伦在线观看| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 九九爱精品视频在线观看| 日韩制服骚丝袜av| 精品久久久噜噜| 一级a做视频免费观看| 成人午夜精彩视频在线观看| 中国国产av一级| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 熟女电影av网| 国产人妻一区二区三区在| 午夜福利高清视频| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 亚洲人成网站高清观看| 丰满乱子伦码专区| 国产成人freesex在线| 久久韩国三级中文字幕| 精品熟女少妇av免费看| 日韩 亚洲 欧美在线| 欧美亚洲 丝袜 人妻 在线| 日本黄色片子视频| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 国产av不卡久久| 免费看不卡的av| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 欧美日韩一区二区视频在线观看视频在线 | 国产乱人偷精品视频| 亚州av有码| av专区在线播放| 久久影院123| 国产伦在线观看视频一区| 亚洲色图综合在线观看| 在线天堂最新版资源| av女优亚洲男人天堂| 亚洲精品自拍成人| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 一本久久精品| 日韩亚洲欧美综合| 国产白丝娇喘喷水9色精品| 高清av免费在线| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 久久久久性生活片| 日韩一本色道免费dvd| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 在线观看免费高清a一片| 赤兔流量卡办理| 日韩制服骚丝袜av| 国产精品一区www在线观看| 插逼视频在线观看| 国产高清有码在线观看视频| 国产在线男女| 国产男人的电影天堂91| 新久久久久国产一级毛片| 日韩伦理黄色片| 婷婷色av中文字幕| 婷婷色麻豆天堂久久| 国产精品嫩草影院av在线观看| 99精国产麻豆久久婷婷| 国产成人a∨麻豆精品| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 亚洲在久久综合| 王馨瑶露胸无遮挡在线观看| 身体一侧抽搐| 国产亚洲一区二区精品| 国内揄拍国产精品人妻在线| 国产成人精品一,二区| 激情五月婷婷亚洲| 日韩国内少妇激情av| 亚洲婷婷狠狠爱综合网| 寂寞人妻少妇视频99o| 国产乱来视频区| 日韩精品有码人妻一区| 丝袜喷水一区| 激情 狠狠 欧美| 色综合色国产| 男人和女人高潮做爰伦理| 亚洲精品日韩在线中文字幕| 亚洲精品国产av蜜桃| 成人国产av品久久久| 日本-黄色视频高清免费观看| 亚洲av国产av综合av卡| 欧美性感艳星| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 亚洲图色成人| 国产一区二区在线观看日韩| 国产精品久久久久久精品古装| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 国产永久视频网站| 国产美女午夜福利| 日韩人妻高清精品专区| 国产 精品1| 日韩人妻高清精品专区| 国产精品99久久99久久久不卡 | 国产欧美亚洲国产| av国产精品久久久久影院| 熟女电影av网| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 国产在线男女| 男男h啪啪无遮挡| 中文天堂在线官网| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 人人妻人人爽人人添夜夜欢视频 | 我的女老师完整版在线观看| 免费av观看视频| 日本爱情动作片www.在线观看| 久久久久久久久久成人| 精品久久久久久久久av| 国产精品女同一区二区软件| 高清视频免费观看一区二区| 久久久久久久精品精品| 久热这里只有精品99| 91久久精品国产一区二区三区| 夜夜爽夜夜爽视频| 九色成人免费人妻av| 国产精品人妻久久久久久| 免费大片18禁| 国产探花极品一区二区| 久久6这里有精品| 国产欧美亚洲国产| 能在线免费看毛片的网站| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 中文资源天堂在线| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产av新网站| 国产成人a区在线观看| 啦啦啦在线观看免费高清www| 99热这里只有是精品50| 99热网站在线观看| 一级爰片在线观看| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 成人漫画全彩无遮挡| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 亚洲经典国产精华液单| 国产在视频线精品| 色网站视频免费| 久久国内精品自在自线图片| 日本黄大片高清| 97精品久久久久久久久久精品| 只有这里有精品99| 久久久久久久大尺度免费视频| 精品久久久久久电影网| 国产高清三级在线| 日韩av免费高清视频| 久热这里只有精品99| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 观看美女的网站| 亚洲成人av在线免费| 国产精品一区www在线观看| 只有这里有精品99| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 国产久久久一区二区三区| 免费av毛片视频| 男人添女人高潮全过程视频| 久久综合国产亚洲精品| 大陆偷拍与自拍| 熟女人妻精品中文字幕| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 日本wwww免费看| 成人欧美大片| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 免费黄色在线免费观看| 精品久久久久久久久亚洲| 久久久久久久亚洲中文字幕| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区性色av| 亚洲人与动物交配视频| 国产精品无大码| 日本三级黄在线观看| 爱豆传媒免费全集在线观看| 日韩一区二区视频免费看| 欧美日韩视频高清一区二区三区二| 网址你懂的国产日韩在线| 午夜爱爱视频在线播放| 街头女战士在线观看网站| 国产在线一区二区三区精| av在线天堂中文字幕| 成人毛片60女人毛片免费| 欧美成人午夜免费资源| 美女xxoo啪啪120秒动态图| 麻豆久久精品国产亚洲av| 亚洲图色成人| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 伊人久久国产一区二区| 日韩成人av中文字幕在线观看| 22中文网久久字幕| 日日啪夜夜爽| 啦啦啦中文免费视频观看日本| 日韩人妻高清精品专区| 真实男女啪啪啪动态图| 丝袜美腿在线中文| 国产黄频视频在线观看| 成年女人在线观看亚洲视频 | 亚洲av二区三区四区| 国产69精品久久久久777片| 爱豆传媒免费全集在线观看|