• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Tetranuclear Zinc(II) Coordination Polymers Based on 3,5-Bis(2-carboxylphenoxy)benzoic Acid with Highly Selective Sensing of Nitrobenzene①

    2018-06-20 11:15:46FANGKeGongZHAOQinNnLIMioMioHUTuoPing
    結(jié)構(gòu)化學(xué) 2018年5期

    FANGKe-GongZHAOQin-NnLIMio-MioHUTuo-Ping,

    ?

    Two Tetranuclear Zinc(II) Coordination Polymers Based on 3,5-Bis(2-carboxylphenoxy)benzoic Acid with Highly Selective Sensing of Nitrobenzene①

    FANG Ke-GongaZHAO Qian-NanbLI Miao-MiaobHU Tuo-Pinga, b②

    a(,030001)b(030051)

    Two novel zinc(II) coordination polymers,[Zn2(BCB)(CH3OH)(3-OH)]n(1) and{[Zn2(BCB)(3-OH)(H2O)2]·CH3OH}n(2), have been constructed from 3,5-bis(2-carboxyl- phenoxy)benzoic acid (H3BCB)and characterized by elemental analysis (EA), IR, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Structural analysis reveals that complexes 1 and 2 are both 1D polymeric chains with unprecedented tetranuclear {Zn4(COO)4(3-OH)2} clusters, which were further expanded into a 2D structure.Fluorescence measurements show that 1 and 2 have highly selective and sensitive detection of nitrobenzene.

    3,5-bis(2-carboxylphenoxy)benzoic acid, tetranuclear cluster, zinc, luminscence, sensing;

    1 INTRODUCTION

    Being a prominent representative of inorganic- organic hybrid materials, the coordination polymers (CPs) have attracted more and more attention of materials scientists and chemists for their fascinating structures and potential applications in the fields of gas adsorption and separation, catalysis and photocatalysis, molecule sensing and fluorescent probe, molecular switch, and so on[1-4].

    With the development in the level of industria- lization and the social activities of human beings, environmental problems have become major issues[5]. Lots of toxic organic molecules and heavy metal ions have caused a lot of adverse effects on the health of human being. Nitroaroma- tics (NACs), a kind of important chemical raw materials widely used in leather, dyes, fireworks, and the glass industry, are explosive and hazardous[6]. Therefore, effective detection of NACs is important to environmental safety.

    In general, CPs can be constructed form organic linkers and inorganic nodes under suita- ble situation. However, many influence factors, including internal and external factors, greatly affected the assembly of CPs[7, 8]. Among them, the backbone of organic linkers occupied an important position without a shadow of a doubt. A myriad of obtained CPs has been proved that the reasonable design of organic linkers is an efficiently route in building CPs[9]. To our knowledge, the tripodal linkers have been widely selected in building functional CPs for their interesting backbone and various coordination modes[10, 11]. Moreover, the flexible backbone usually endows the linkers more freedom to adjust themselves when coordinating with the metal ions. And the large conjugated rings of linker have high sensitivity and selectivity because of the high binding strength to the nitroaromatic compounds as electron donors, and benefit for electron transfer[12].Thus, the investi- gation of flexible tripodal linkers based CPs seems interesting and meaningful.

    Inspired by the above mentioned points and followed our recent research, we selected a flexible tripodal ligand of 3,5-bis(2-carboxylphenoxy)- benzoic acid (H3BCB) to react with transition metal salts, finally obtaining two CPs with tetranuclear {Zn4(COO)4(3-OH)2} SBUs based 1D polymeric chain (1 & 2). And theluminescence and sensing of small molecules of 1 and 2have been investigated.

    2 EXPERIMENTAL

    2. 1 Generals

    All chemicals were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification.IR spectrawere measured on a FTIR-8400S spectrometer in the range of 400~4000 cm-1(Fig. S1, see ESI). Elemental analyses were carried out on a Vario MACRO cube elemen- tal analyzer. TGA was measured from 25 to 800oC on a ZCTA analyzer at a heating rate 10oC/min under air atmosphere.X-ray powder diffractions of the title complexes were measured on a Rigaku D/Max-2500 PC diffractometer with Mo-radiation over the 2range of 5~50° at room temperature. Fluorescence spectra were performed on an F-2700 FL spectrophotometer at room temperature.

    2. 2 Synthesis of [Zn2(BCB)(CH3OH)(μ3-OH)]n (1)

    The H3BCB (0.010 mmol, 3.9 mg) was dissolved in 2 mL MeOH, and a dorp of 0.05 mol/L NaOH aqueous solution was added to deprotonate. After that, 2 mL aqueous solution of Zn(NO3)2·6H2O (0.06 mmol, 17.8 mg) was added into the solution, then the mixed reactantswere sealed in a 15 mL Teflon-lined stainless-steel vessel, which was heated to130 °C for 2 days and then cooled to room temperature slowly.Colorless block crystals of 1were obtained. Yield: 40% based on H3BCB. Anal. Calcd. (%) for C22H16O10Zn2: C, 42.26; H, 2.82. Found(%): C, 42.31; H, 2.94. IR (KBr pellet, cm-1): 3554 (m), 1591 (s), 1561 (s), 1475 (m), 1393 (s), 1282 (w), 1207 (s), 1125 (m), 1096 (w), 997 (m), 863 (w), 706 (w), 659 (w).

    2. 3 Synthesis of {[Zn2(BCB)(μ3-OH)(H2O)2]·CH3OH}n (2)

    A mixture of Zn(NO3)2·6H2O (0.015 mmol, 4.5 mg), H3BCB (0.005 mmol, 2.0 mg), H2O/MeOH (1 mL, v/v = 1/1), and two drops of ammonia water was added to a hard glass tube, pumped into a near-vacuum, and heated at 130 °C for 2 days, and then cooled to room temperature. Colorless block crystals of 2were obtained. Yield: 36% based on H3BCB. Anal. Calcd. (%) for C22H20O12Zn2: C, 43.52; H, 3.32. (%): C, 43.37; H, 3.41. IR (KBr pellet, cm-1): 3566 (m), 3426 (m), 1592 (s), 1557 (s), 1476 (w), 1394 (s), 1272 (w), 1207 (m), 1126 (m), 1092 (w), 998 (m), 864 (m), 765 (m), 701 (w), 653 (w).

    2. 4 Structure determination

    Intensity data collection was carried out on a Siemens SMART diffractometer equipped with a CCD detector using a graphite-monochromatized Moradiation (= 0.71073 ?) at 296(2) K. The absorption correction was based on multiple and symmetry-equivalent reflections in the data set using the SADABS program based on the method of Blessing[13]. The structure was solved by direct methods and refined by full-matrix least-squares using the SHELXS-97 package, and further refined by SHELXL-97 procedure[14]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms bound to carbon were refined using ariding model with C–H = 0.93 ? andiso= 1.2eo(C). The H atoms of water molecules were located from difference density maps and refined with restraints of O–H = 0.82(2) and H–H = 1.38(2) ?.Crystallo- graphic data for complexes 1 and 2are given in Table S1, and their elected bond lengths and bond angles are listed in Table 1 and Table S2.

    Scheme 1. Coordination modes of H3BCB in 1 and 2, with,andcorresponding to the dihedral angles between rings A/B, B/C, and A/C of the deprotonated H3BCBligand

    Table 1. Selected Bond Lengths (?) and Bond Angles (o) for 1 and 2

    Symmetry codes:#1–+1, –, –+1 for 1;#1–+1, –+1, –for 2

    3 RESULTS AND DISCUSSION

    3. 1 Description of the [Zn2(BCB)(CH3OH)(μ3-OH)]n (1)

    Structural analysis reveals thatcomplex 1 crystallizesin the monoclinic system, space group21/. As shown in Fig. 1a, the asymmetric unitconsists oftwo crystallographically independent ZnIIions, one BCB3-ligand, one3-OH-anion, and one coordinated CH3OH molecule. Zn(1) is pentacoordinated by fiveO atoms from two dif- ferent BCB3-ligands, two3-OH-anions, and one coordinated CH3OH molecule, exhibiting a distortedtrigonal bipyramidgeometry (5= 0.53(0),5= |–|/60°[15a],andare the two largest bond angles in the five-coordinated complex). Zn(2)locates in a distorted tetrahedron {ZnO4} coor- dination environment with the4parameter being 0.86(2) (4= [360°–()]/141°[15a], whereandare the two largest bond angles in the four- coordinate complex.),completed by four O atoms from three BCB3-ligands and one3-OH-anion. Besides, the Zn–O bond lengths range from 1.971(7) to 2.214(4) ?, respectively, which are similar to the reported reference[15b].

    In the assembly of complex 1, the H3BCB is completely deprotonated and connects five ZnIIions by adopting a (1-0)-(1-1)-(1-1)-coordination mode (Mode I, Scheme 2), in which the dihedral angles of,, andare 76.18(5)°, 83.48(6)° and 44.94(3)° (here,,andcorrespond to the dihedral angles between rings A/B, B/C, and A/C of the BCB3-ligand). With the help of tricoordinated3-OH-anions, the bridging carboxyl groups connected four ZnIIions, obtaining an interestingly tetranuclear {Zn4(COO)4(3-OH)2} cluster, with the nearestZn···Zn distances being 3.347 ? for Zn(1)···Zn(2) and 3.230 ? for Zn(1)···Zn(2A) (Fig. 1b), which are close to the literature[15b]. Then, the BCB3-ligands linked the {Zn4(COO)4(3-OH)2} clusters, thus successfully forming an unprece- dented 1D polymeric chain with the separated {Zn4(COO)4(3-OH)2} cluster distance to be 8.112 ? (Fig. 2). Those 1D polymeric chains interacted with each other through hydrogen bonds (C(1)– H(1)···O(36i) = 3.564(3) ?, C(32)–H(32)···O(22ii) = 3.856(2) ?, Symmetry codes: i: 1/2 +,3/2 –, 1/2 +; ii: 3/2 –,–1/2 +, 3/2 –), leaving a 2D supramolecular structure (Fig. 3).

    Fig. 1. (a) Asymmetric unit of complex 1. (b) Tetranuclear{Zn4(COO)4(3-OH)2} SBUs. (Symmetry codes: A: 1–, –, 1–; B: 1–, 1–, 1–; D:, 1+,)

    Fig. 2. Schematic view of the 1Dpolymeric chain of 1 along thedirection

    Fig. 3. Hydrogen-bond expanded 2D sheet of 1 viewed along thedirection

    3. 2 Description of {[Zn2(BCB)(μ3-OH)(H2O)2]n·CH3OH}n(2)

    In complex 2, the BCB3-ligand adopted a (1-1)-(1-1)-(1-1)-coordination mode (Mode II, Scheme 2) to connect four ZnIIions, with the dihedral angles of,, andbeing 75.72(1)°, 73.62(7)°, and 37.63(3)°, respectively. It is notewor- thy that four 2-position carboxyl groups from two different BCB3-ligands interacted with four ZnIIions with the help of3-OH-anions, constructing a similar {Zn4(COO)4(3-OH)2} cluster with the Zn···Zn distances being 3.345 ? for Zn(1)···Zn(2) and 3.344 ? for Zn(1)···Zn(2A) (Fig. 4b). Then the BCB3-ligands linked the {Zn4(COO)4(3-OH)2} clusters, leaving a 1D polymeric chain with the separated {Zn4(COO)4(3-OH)2} cluster distance to be 13.068 ? (Fig. 5). Those 1D polymeric chains further interacted with the adjacent ones through hydrogen bonds (O(1W)–H(1WA)···O(8i) = 3.158(5) ?, C(9)–H(9)···O(1i) = 3.598(4) ?, O(2W)–H(2WA)···O(9ii) = 3.207(4) ?, C(3)– H(3)···O(9ii) = 3.447(7) ?, C(18)–H(18)···O(8iii) = 3.408(8) ?. Symmetry codes: i: –,1–, –; ii:,–1+,; iii: 1+,,), finally leaving a 2D sheet (Fig. 6).

    Fig. 4. (a) Asymmetric unit of complex 2. (b) Tetranuclear{Zn4(COO)4(3-OH)2} SBUs.(Symmetry codes: A: 1–, 1–, –; B: –, 2–, –)

    Fig. 5. Schematic view of the 1Dpolymeric chain of 2

    Fig. 6. Hydrogen-bond expanded 2D sheet of 2

    3. 3 Powder X-ray diffraction and thermogravimetric analysis

    In order to check the phase purity of this complex, the PXRD patterns of the title complexes were checked at room temperature. As shown in Fig. S2, the peak positions of the simulated and experimental PXRD patterns are in agreement with each other, demonstrating good phase purity of the complexes. The dissimilarities in intensity may be due to the preferred orientation of the crystalline powder samples.

    In order to investigate thermal stability of the title complexes, thermogravimetric analysis was carried out and the TG curve is depicted in Fig. S3. For 1, the preliminary weight loss below 200oCcorres- ponds to the release of coordinated methanol molecules and3-water molecules (obsd: 8.31%; calcd: 8.58%) and then the architecture can exist stablely until the temperature is up to 450 °C.For2, the first weight loss in the temperature range of 120~210 °C can be attributed to the release of coordinated water molecules,3-water molecules, as well as the free methanol molecules(obsd: 13.23%; calcd: 14.00%). No obvious weight loss is observed until the decomposition of the architecture occurs at about 380 °C.

    Fig. 7. Emission spectra of complexes 1 and 2 inthe solid state at room temperature

    3. 4 Photoluminescence and sensing of small molecules

    The fluorescence spectra of fresh complexes 1 and 2were performed on an F-4600 FL spectro- photometer in the solid state at room temperature in the scan range of 280~560 nm, as shown in Fig. 7. For complexes 1 and 2, the emission spectra exhibit strong blue-fluorescent emission peaks at 353 nm (ex= 300 nm) for 1 and357 nm (ex= 300 nm) for 2, respectively.The emission is neither metal-to-ligand charge transfer (MLCT) norligand-to-metal transfer (LMCT) in nature since theZnIIion is difficult to oxidize or reduce due to its10con-figuration.Thus, they can be assigned to intraligand (*→or→*)emission[16].

    Fig. 8. Luminescence intensity of complex 1 dispersed in different organic solvents

    Fig. 9. (a) Effect on the emission spectra of 1 dispersed in DMSO upon incremental addition of NB analyte. (b) Fluorescence quenching linearity relationship at low concentration of NB

    To further explore the sensing sensitivity of fresh complexes 1 and 2 for small solvent molecules, six kinds of solvent molecules, including DMF, DMSO, CH3OH, CH3CN, N-butyl alcohol and nitrobenzene (NB), are selected for the luminescent sensing studies. Here, finely ground samples of complexes 1 and 2 (2 mg) were dispersed in 2 mL various organic solvents. As shown in Figs. 8 and 10, complexes 1 and 2 dispersed in DMSO display the strongest luminescent intensity, which exhibits the weakest emission in NB. To further research the recognition of complexes 1 and 2 for NB, the luminescence of series NB solutions with different concentrations was tested. Complex 1 presents obvious quenching effects of fluorescence intensity with increasing the addition of NB, and the quenching rate of the emission reaches as much as 89.4% when the concentration of NB in the suspension solution is 0.30 mM (Fig. 9). The quenching effect can be rationalized by the Stern-Volmer equation: (/) =K[Q] + 1, whereandare the luminescence intensities of DMSO suspensions before and after adding NB, respectively;Kis the quenching constant (M?1); [Q] is the molar concentration of NB[17].The Stern-Volmer plots are nearly linear at low concentration. For complex 2, the quenching percentage for NB is 76.0% (Fig. 11). And theKvalues with NB are 2.33 × 104M?1for 1 and 2.07 × 104M?1for 2[18]. This phenomenon shows that complexes 1 and 2 may be both good candidates to detect nitrobenzene.The luminescence quenching of CPs for NB may be interpreted by the photoinduced electrontransfer mechanism caused by inductive effect or the fluorescence resonance energy transfer (FRET) mechanism[19].

    Fig. 10. Luminescence intensities of complex 2 dispersed in different organic solvents

    Fig. 11. (a) Effect on the emission spectra of 2 dispersed in DMSO upon incremental addition of NB analyte. (b) Fluorescence quenching linearity relationship at low concentration of NB

    (1) (a) Gai, Y.; Guo, Q.; Xiong, K.; Jiang, F.; Li, C.; Li, X.; Chen, Y.; Zhu, C.; Huang, Q.; Yao, R.; Hong, M. Mixed-lanthanide metal-organic frameworks with tunable color and white light emission.2017, 17, 940–944;(b) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection.2014, 43, 5815?5840.

    (2) (a) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications.2017, 46, 3242?3285; (b) Fan, L.; Fan, W.; Li, B.; Liu, X.; Zhao, X.; Zhang, X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3?,5,5?-azobenzenetetracarboxylic acid.2015, 44, 2380?2389.

    (3) (a) Feng, X.; Feng, Y.; Guo, N.; Sun, Y.; Zhang, T.; Ma, L.; Wang, L. Seriesheteronuclear metal-organic frameworks: color tunability and luminescent probe with switchable properties.2017, 56, 1713–1721; (b) Zhang, X. T.; Fan, L. M.; Sun, Z.; Zhang, W.; Fan, W. L.; Sun, L. M.; Zhao, X. Syntheses, structures, and luminescence of four lanthanide metal-organic frameworks based on lanthanide-oxide chains with2- or3-symmetric trigonal-planar polycarboxylate ligands.2013, 124910?4916.

    (4) (a) Huo, L.; Zhang, J.; Gao, L.; Wang, X.; Fan, L.; Fang, K.; Hu, T. Two cadmium coordination polymers based on tris(-carboxyphenyl) phosphane oxide with highly selective sensing of nitrobenzene derivatives and Hg2+cations.2017, 19, 5285?5292; (b) Zhang, X.; Fan, L.; Fan, W.; Li, B.; Zhao, X. Assembly of a series of10coordination polymers based on W-shaped 1,3-di(2?,4?-dicarboxyphenyl)benzene: from syntheses, structural diversity, luminescence, to photocatalytic properties.2015, 17, 6681?6692; (c) Liu, G. Z.; Chen, H. T.; Zhang, X. T. Syntheses, crystal structures, and fluorescence properties of three coordination polymers constructed based on benzoic acid and its derivatives.2017, 36, 2058-2066.

    (5) (a) Chowdhury, A.; Howlader, P.; Mukherjee, P. S. Aggregation-induced emission of platinum(II) metallacycles and their ability to detect nitroaromatics.2016, 22, 7468?7478; (b) Meng, Q.; Xin, X.; Zhang, L.; Dai, F.; Wang, R.; Sun, D. A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B.2015, 3, 24016?24021; (c) Kong, Z. G.; Liu, D. X.; Song, M. Y.; Zhang, L. Y.; Feng, S. S.; Xu. Z. L. A two-dimensional supramolecular complex constructed by 1,10-phenanthroline derivative ligand: synthesis, structure and luminescence.2017, 36, 1859-1863.

    (6) (a) Li, W. J.; Lu, J.; Gao, S. Y.; Li, Q. H.; Cao, R. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives2014, 2, 19473?19478; (b) Wang, G. Y.; Song, C.; Kong, D. M.; Ruan, W. J.; Chang, Z.; Li, Y. Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands2014, 2, 2213?2220; (c) Wang, Z.; Tang, C. C.; Ren, X. M.; Mao, Y. R.; Yao, Q. X.; Li, D. C.; Dou, J. M. Syntheses, crystal structures and luminescent properties of two lanthanide coordination polymersbased on bifunctional ligand.2017, 36, 1631-1638.

    (7) (a) Fan, L. M.; Zhang, X. T.; Li, D. C.; Sun, D.; Zhang, W.; Dou, J. M. Supramolecular isomeric flat and wavy honeycomb networks: additive agent effect on the ligand linkages.2014, 16, 9191?9197; (b) Fan, L.; Fan, W.; Li, B.; Liu, X.; Zhao, X.; Zhang, X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3?,5,5?-azobenzenetetracarboxylic acid.2015, 44, 2380?2389.

    (8) (a) Hu, T.; Zeng, B.; Wang, X.; Hao, X. Syntheses, structures and magnetic properties of four manganese(II) and cobalt(II) complexes.2015, 17, 9348?9356; (b) Fan, L.; Fan, W.; Li, B.; Liu, X.; Zhao, X.; Zhang, X. Structural diversity of five coordination polymers based on 2,6-bis(3,5-dicarboxyphenyl)pyridine ligand: solvothermal syntheses, structural characterizations, and magnetic properties.. 2015, 17, 4669?4679.

    (9) (a) Zhang, X.; Fan, L.; Fan, W.; Li, B.; Zhao, X. Assembly of a series of10coordination polymers based on W-shaped 1,3-di(2?,4?-dicarboxyphenyl)benzene: from syntheses, structural diversity, luminescence, to photocatalytic properties.2015, 17, 6681?6692; (b) Huo, L.; Zhang, J.; Gao, L.; Wang, X.; Fan, L.; Fang, K.; Hu, T. Selective sensing of two novel coordination polymers based on tris(4-carboxylphenyl)phosphine oxide for organic molecules and Fe3+and Hg2+ions.2017, 256, 168?175.

    (10) (a) Wang, X. X.; Wang, X. Q.; Niu, X. Y.; Hu, T. P.Three novel metal-organic frameworks based on an unsymmetrical rigid carboxylate ligand for luminescence sensing of nitrobenzene derivatives and magnetic properties.2016, 18, 7471?7477; (b) Fan, L.; Zhang, X.; Sun, Z.; Zhang, W.; Ding, Y.; Fan, W.; Sun, L.; Zhao, X.; Lei, H. Ancillary ligands dependent structural diversity of a series of metal-organic frameworks based on 3,5-bis(3-carboxyphenyl)pyridine.2013, 13, 2462–2475.

    (11) (a) Zhang, X.; Fan, L.; Fan, W.; Li, B.; Liu, G.; Liu, X.; Zhao, X. Structural diversity, luminescence and photocatalytic properties of six coordination polymers based on designed bifunctional 2-(imidazol-1-yl)terephthalic acid.2016, 18, 6914?6925; (b) Fan, L.; Fan, W.; Song, W.; Sun, L.; Zhao, X.; Zhang, X. Structural diversity and magnetic properties of six metal-organic polymers based on semirigid tricarboxylate ligand of 3,5-bi(4-carboxyphenoxy)benzoic acid.2014, 43, 15979?15989.

    (12) Thomas, S.W.; Joly, G.D.; Swager,T. M. Chemical sensors based on amplifying fluorescent conjugated polymers.2007, 107, 1339?1386.

    (13) Bruker AXS.;Bruker: Madison, WI 1998.

    (14) Sheldrick, G. M..University of G?tingen, Germany 1997.

    (15) (a)Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index,4.2007, 955–964; (b) Wan, X. Y.; Jiang, F. L.; Chen, L.; Pan, J.; Zhou, K.; Su, K. Z.; Pang, J. D.; Lyu, G. X.; Hong, M. C. Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(II) coordination polymers assembled from a terphenyl-hexacarboxylate ligand.. 2015, 17, 3829–3837.

    (16) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks.2012, 112, 1126?1162.

    (17) (a) Han, L. H.; Yan, W.; Chen, S. G.; Shi, Z. Z.; Zheng, H. G. Exploring the detection of metal ions by tailoring the coordination mode of V-shaped thienylpyridyl ligand in three MOFs.2017, 56, 2936–2940; (b) Wang, K.; Tian, X.; Jin, Y.; Sun, J.; Zhang, Q. Heterometallic hybrid open frameworks: synthesis and application for selective detection of nitro explosives.2017, 17, 1836–1842.

    (18) (a) Lin, X. M.; Niu, J. L.; Wen, P. X.; Pang, Y.; Hu, L.; Cai, Y. P. A polyhedral metal-organic framework based on supramolecular building blocks: catalysis and luminescent sensing of solvent molecules.2016, 16, 4705–4710; (b) Zhang, S. R.; Du, D. Y.; Qin, J. S.; Li, S. L.; He, W. W.; Lan, Y. Q.; Su, Z. M. 2D Cd(II)-lanthanide(III) heterometallic-organic frameworks based on metalloligands for tunable luminescence and highly selective, sensitive, and recyclable detection of nitrobenzene.2014, 53, 8105–8113.

    (19) (a) Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection.2014, 43, 5815?5840; (b) Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K.Highly selective detection of nitro explosives by a luminescent metal-organic framework.2013, 52, 2881?2885.

    9 October 2017;

    11 January 2018 (CCDC 1528962 for 1 and 1528963 for 2)

    ① This work was supported by the Foundation of State Key Laboratory of Coal Conversion (No. J17-18-611) and the National Natural Science Foundation of China (No. 21676258)

    . Hu Tuo-Ping, born in 1969, professor, majoring in coordination chemistry. E-mail: hutuopingsx@126.com

    10.14102/j.cnki.0254-5861.2011-1841

    1000部很黄的大片| 男人狂女人下面高潮的视频| 色哟哟·www| 丰满的人妻完整版| 精品一区二区免费观看| 久久久久久久久大av| 国产精品免费一区二区三区在线| 最好的美女福利视频网| 国产精品,欧美在线| 我要看日韩黄色一级片| 久久精品综合一区二区三区| 俄罗斯特黄特色一大片| 超碰av人人做人人爽久久| 嫩草影院入口| 真人一进一出gif抽搐免费| 国产精品一区www在线观看 | 高清在线国产一区| 一本精品99久久精品77| 亚洲第一电影网av| 午夜精品一区二区三区免费看| 国产亚洲精品综合一区在线观看| 韩国av一区二区三区四区| 午夜激情福利司机影院| 黄色配什么色好看| 亚洲国产精品合色在线| 草草在线视频免费看| 免费大片18禁| 精品欧美国产一区二区三| 精品人妻熟女av久视频| 日本撒尿小便嘘嘘汇集6| 午夜激情福利司机影院| 久久久国产成人精品二区| 春色校园在线视频观看| 少妇人妻精品综合一区二区 | 国产视频一区二区在线看| 国产熟女欧美一区二区| 欧美成人免费av一区二区三区| 国产精品爽爽va在线观看网站| 亚洲欧美日韩卡通动漫| 午夜精品在线福利| 欧美中文日本在线观看视频| 免费黄网站久久成人精品| 老女人水多毛片| 99精品在免费线老司机午夜| 日日夜夜操网爽| 成人永久免费在线观看视频| 成人永久免费在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 永久网站在线| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 亚洲一级一片aⅴ在线观看| 欧美性猛交黑人性爽| 亚洲七黄色美女视频| 久久久色成人| 一级av片app| 欧美潮喷喷水| 变态另类成人亚洲欧美熟女| 日日啪夜夜撸| 丰满人妻一区二区三区视频av| 最近视频中文字幕2019在线8| 亚洲最大成人手机在线| 国产精品伦人一区二区| 精品人妻一区二区三区麻豆 | 天天躁日日操中文字幕| 人妻少妇偷人精品九色| 老司机午夜福利在线观看视频| 久久精品国产鲁丝片午夜精品 | 久久久精品欧美日韩精品| 97热精品久久久久久| x7x7x7水蜜桃| 九九爱精品视频在线观看| 国产aⅴ精品一区二区三区波| 国产伦精品一区二区三区四那| 一个人看的www免费观看视频| 亚洲成人久久性| 97人妻精品一区二区三区麻豆| 亚洲熟妇中文字幕五十中出| 69人妻影院| 别揉我奶头~嗯~啊~动态视频| 乱码一卡2卡4卡精品| 白带黄色成豆腐渣| 久久人人精品亚洲av| 长腿黑丝高跟| 91久久精品国产一区二区成人| 在线观看午夜福利视频| 久久九九热精品免费| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 在线国产一区二区在线| 免费av不卡在线播放| 国产主播在线观看一区二区| 噜噜噜噜噜久久久久久91| 欧美成人a在线观看| 日韩亚洲欧美综合| 非洲黑人性xxxx精品又粗又长| 老司机福利观看| 精品久久久久久成人av| 亚洲精华国产精华液的使用体验 | 可以在线观看的亚洲视频| 日本三级黄在线观看| 久久久久免费精品人妻一区二区| 亚洲精品亚洲一区二区| 国产亚洲91精品色在线| 春色校园在线视频观看| 午夜久久久久精精品| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 五月玫瑰六月丁香| a在线观看视频网站| 亚洲不卡免费看| 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| 男女边吃奶边做爰视频| 春色校园在线视频观看| 欧美成人免费av一区二区三区| 免费av观看视频| 麻豆成人av在线观看| 草草在线视频免费看| 精品免费久久久久久久清纯| 欧美xxxx黑人xx丫x性爽| 欧美丝袜亚洲另类 | 最新中文字幕久久久久| 午夜福利欧美成人| 人人妻人人澡欧美一区二区| 亚洲美女视频黄频| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 色综合站精品国产| 最近最新免费中文字幕在线| 欧美色欧美亚洲另类二区| 免费在线观看日本一区| 国内精品一区二区在线观看| 国产精品人妻久久久影院| 1024手机看黄色片| 国产午夜精品论理片| 成人国产麻豆网| 久久国内精品自在自线图片| 精品一区二区三区av网在线观看| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| av福利片在线观看| 黄色视频,在线免费观看| 婷婷丁香在线五月| 国产精品久久久久久久电影| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| av在线天堂中文字幕| 亚洲人成网站在线播| 国产熟女欧美一区二区| 亚洲无线在线观看| 国产在视频线在精品| 国产女主播在线喷水免费视频网站 | 亚洲内射少妇av| 国产亚洲欧美98| 国语自产精品视频在线第100页| 国产男人的电影天堂91| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 亚洲黑人精品在线| 国产av麻豆久久久久久久| 国产精品无大码| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 欧美高清性xxxxhd video| 真人一进一出gif抽搐免费| а√天堂www在线а√下载| 亚洲av美国av| 色综合亚洲欧美另类图片| 国产高清激情床上av| 免费av毛片视频| 亚洲18禁久久av| 国产一区二区三区在线臀色熟女| 在线观看美女被高潮喷水网站| 一级毛片久久久久久久久女| 中亚洲国语对白在线视频| 女人十人毛片免费观看3o分钟| 国产精品三级大全| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| 97热精品久久久久久| 国产真实乱freesex| 麻豆精品久久久久久蜜桃| 国产v大片淫在线免费观看| 天堂网av新在线| 国产伦一二天堂av在线观看| 在线观看66精品国产| 又粗又爽又猛毛片免费看| 亚洲精品成人久久久久久| 亚洲美女视频黄频| 长腿黑丝高跟| 露出奶头的视频| 欧美在线一区亚洲| 精品一区二区三区视频在线| 男人狂女人下面高潮的视频| 精品人妻一区二区三区麻豆 | 国产精品久久视频播放| 国产美女午夜福利| 亚洲av不卡在线观看| 久久人妻av系列| 欧美日本视频| 国产精品福利在线免费观看| 身体一侧抽搐| 国产精品无大码| 亚洲综合色惰| 有码 亚洲区| 日本免费a在线| 国产精品久久视频播放| 能在线免费观看的黄片| 夜夜夜夜夜久久久久| 一卡2卡三卡四卡精品乱码亚洲| 乱码一卡2卡4卡精品| netflix在线观看网站| 人妻制服诱惑在线中文字幕| 精品一区二区三区视频在线观看免费| 一区二区三区高清视频在线| 日韩欧美精品v在线| 香蕉av资源在线| 露出奶头的视频| 成人无遮挡网站| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 精品久久久久久久人妻蜜臀av| 亚洲国产精品合色在线| 国产精品一区二区性色av| 色在线成人网| 亚洲av美国av| 亚洲黑人精品在线| 51国产日韩欧美| 十八禁国产超污无遮挡网站| 国产精品99久久久久久久久| 人妻夜夜爽99麻豆av| 黄片wwwwww| 女生性感内裤真人,穿戴方法视频| 欧美zozozo另类| 亚洲av免费高清在线观看| 国产精品伦人一区二区| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 夜夜看夜夜爽夜夜摸| 亚洲成人中文字幕在线播放| 久久精品影院6| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| 乱码一卡2卡4卡精品| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 久久精品影院6| 午夜免费激情av| 欧美日韩亚洲国产一区二区在线观看| 小蜜桃在线观看免费完整版高清| 在线a可以看的网站| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华精| 国产69精品久久久久777片| 大又大粗又爽又黄少妇毛片口| 国产精品98久久久久久宅男小说| av天堂在线播放| 国产av不卡久久| 嫩草影院入口| 亚洲精品456在线播放app | 亚洲av.av天堂| 日本免费a在线| 午夜激情福利司机影院| 99热这里只有是精品在线观看| 黄色欧美视频在线观看| 国产高清不卡午夜福利| 日韩中字成人| 亚洲性夜色夜夜综合| 在线免费十八禁| 亚洲天堂国产精品一区在线| 黄色一级大片看看| 此物有八面人人有两片| 五月玫瑰六月丁香| 一个人观看的视频www高清免费观看| 成人性生交大片免费视频hd| 亚洲精品乱码久久久v下载方式| 在线国产一区二区在线| 中文亚洲av片在线观看爽| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 国产麻豆成人av免费视频| 久久久精品大字幕| 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 女人十人毛片免费观看3o分钟| 午夜激情欧美在线| 国产av麻豆久久久久久久| 欧美日韩黄片免| 丰满的人妻完整版| 日日干狠狠操夜夜爽| 日本黄色片子视频| 赤兔流量卡办理| 午夜福利在线观看免费完整高清在 | 日韩中字成人| 91在线精品国自产拍蜜月| 干丝袜人妻中文字幕| 午夜视频国产福利| 国产一区二区三区视频了| 男女下面进入的视频免费午夜| 男女之事视频高清在线观看| 亚洲成人久久爱视频| 天堂网av新在线| 亚洲一区二区三区色噜噜| 黄色女人牲交| 一个人观看的视频www高清免费观看| a在线观看视频网站| 99热6这里只有精品| 亚洲欧美精品综合久久99| 中国美白少妇内射xxxbb| 身体一侧抽搐| www.色视频.com| 一个人免费在线观看电影| 欧美色欧美亚洲另类二区| 免费av观看视频| 久久精品国产99精品国产亚洲性色| 91狼人影院| 国产真实伦视频高清在线观看 | 亚洲精华国产精华液的使用体验 | 日本三级黄在线观看| 亚洲经典国产精华液单| 精品国产三级普通话版| 日本a在线网址| 久久久国产成人精品二区| .国产精品久久| 天堂√8在线中文| 欧美3d第一页| 一级黄色大片毛片| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件 | 狠狠狠狠99中文字幕| 级片在线观看| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 亚洲人成网站在线播| 日本黄色视频三级网站网址| 亚洲无线在线观看| 91麻豆av在线| 日本黄色视频三级网站网址| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站 | 日本熟妇午夜| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美国产一区二区入口| 丝袜美腿在线中文| 日日夜夜操网爽| 91av网一区二区| 国产精华一区二区三区| 午夜免费男女啪啪视频观看 | 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片| 欧美一区二区国产精品久久精品| 中文字幕免费在线视频6| 国内精品美女久久久久久| 一夜夜www| 日本一本二区三区精品| 日本五十路高清| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 国产伦精品一区二区三区视频9| 午夜精品久久久久久毛片777| 国产成人一区二区在线| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 看十八女毛片水多多多| 琪琪午夜伦伦电影理论片6080| 亚洲av电影不卡..在线观看| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看 | 国产精品不卡视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 国产乱人伦免费视频| 亚洲av日韩精品久久久久久密| 蜜桃久久精品国产亚洲av| 国产高清视频在线播放一区| 最近中文字幕高清免费大全6 | 91午夜精品亚洲一区二区三区 | 久久香蕉精品热| or卡值多少钱| 九色国产91popny在线| 成人三级黄色视频| 日本欧美国产在线视频| 欧美激情久久久久久爽电影| 亚洲熟妇熟女久久| 欧美成人免费av一区二区三区| 午夜福利高清视频| 国产精品久久久久久av不卡| a级一级毛片免费在线观看| 久久精品夜夜夜夜夜久久蜜豆| 热99re8久久精品国产| 久久香蕉精品热| 最近中文字幕高清免费大全6 | 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 内射极品少妇av片p| 精品午夜福利在线看| 特大巨黑吊av在线直播| 成人毛片a级毛片在线播放| videossex国产| 久久精品国产亚洲av涩爱 | 在线观看66精品国产| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 麻豆av噜噜一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 久久久成人免费电影| 麻豆精品久久久久久蜜桃| av在线蜜桃| 亚洲黑人精品在线| 亚洲性久久影院| 哪里可以看免费的av片| 国产av一区在线观看免费| 成人三级黄色视频| 欧美xxxx性猛交bbbb| 成年女人看的毛片在线观看| 亚洲黑人精品在线| 色5月婷婷丁香| 无遮挡黄片免费观看| 午夜精品在线福利| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 欧美中文日本在线观看视频| 大型黄色视频在线免费观看| 最后的刺客免费高清国语| 亚洲av中文av极速乱 | 国产成人a区在线观看| 五月伊人婷婷丁香| 99热6这里只有精品| 悠悠久久av| 99riav亚洲国产免费| 久久久久国产精品人妻aⅴ院| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 国产精品久久久久久久久免| 亚洲真实伦在线观看| 国产成人aa在线观看| 999久久久精品免费观看国产| 欧美在线一区亚洲| 成人永久免费在线观看视频| 国产黄a三级三级三级人| 国产精品永久免费网站| eeuss影院久久| 夜夜夜夜夜久久久久| 国产三级中文精品| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 国产精品久久视频播放| 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 欧美精品国产亚洲| 级片在线观看| 久久婷婷人人爽人人干人人爱| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 97热精品久久久久久| 亚洲av二区三区四区| 免费人成视频x8x8入口观看| 欧美人与善性xxx| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 久久久精品大字幕| 99热只有精品国产| 观看免费一级毛片| 少妇丰满av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 日本黄色片子视频| 自拍偷自拍亚洲精品老妇| 日本撒尿小便嘘嘘汇集6| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 在现免费观看毛片| 欧美三级亚洲精品| 春色校园在线视频观看| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 亚洲精华国产精华液的使用体验 | 久久精品91蜜桃| 最近最新免费中文字幕在线| 亚洲最大成人中文| 欧美zozozo另类| 看十八女毛片水多多多| 天天躁日日操中文字幕| 久久久久久久久久成人| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 琪琪午夜伦伦电影理论片6080| 真人做人爱边吃奶动态| 亚洲精品国产成人久久av| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 欧美精品国产亚洲| av专区在线播放| 国国产精品蜜臀av免费| 中文字幕高清在线视频| 久久久久久久午夜电影| 看片在线看免费视频| 欧美性猛交黑人性爽| 人人妻人人看人人澡| 淫秽高清视频在线观看| 色5月婷婷丁香| 精品免费久久久久久久清纯| 欧美日韩国产亚洲二区| 日本a在线网址| 精品福利观看| 性色avwww在线观看| 在线观看免费视频日本深夜| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 18禁黄网站禁片午夜丰满| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲网站| 国产三级中文精品| 最新在线观看一区二区三区| 色在线成人网| 成熟少妇高潮喷水视频| 久久久成人免费电影| 十八禁国产超污无遮挡网站| 国产av不卡久久| 免费av观看视频| 中文字幕熟女人妻在线| 国产午夜精品论理片| 欧美激情在线99| 在线观看免费视频日本深夜| 男人和女人高潮做爰伦理| 日本免费一区二区三区高清不卡| x7x7x7水蜜桃| 精品久久久久久,| 内地一区二区视频在线| 最新中文字幕久久久久| 久久久久久久久久久丰满 | 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 91麻豆av在线| 日日撸夜夜添| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 国内精品一区二区在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲一区二区三区色噜噜| 国产精品一区www在线观看 | 国产视频内射| avwww免费| 中文在线观看免费www的网站| 免费高清视频大片| 亚洲精华国产精华液的使用体验 | 日韩欧美国产一区二区入口| 性欧美人与动物交配| 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 欧美一区二区国产精品久久精品| 国产伦在线观看视频一区| 久久亚洲真实| 亚洲电影在线观看av| 1024手机看黄色片| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 国产精品免费一区二区三区在线| 国产综合懂色| 亚洲内射少妇av| 国产精品99久久久久久久久| 一区二区三区免费毛片| 永久网站在线| 麻豆精品久久久久久蜜桃| 少妇丰满av| 久久久精品大字幕| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 桃红色精品国产亚洲av| 91久久精品电影网| 久久精品国产99精品国产亚洲性色| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品50| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 成年人黄色毛片网站| 亚洲真实伦在线观看|