• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and I2 Captureof a Cd(II) Coordination Polymer Basedon a Linear Bipyridyl Benzene Ligand①

    2018-06-20 12:00:06ZHANGYouJunLIULeiLeiZHANGYnWANGZhiPengDONGXioFngLIQingQingCHENJing
    結(jié)構(gòu)化學(xué) 2018年5期

    ZHANG You-Jun LIU Lei-Lei ZHANG Yn WANG Zhi-Peng DONG Xio-Fng LI Qing-Qing CHEN Jing

    ?

    Synthesis, Crystal Structure and I2Captureof a Cd(II) Coordination Polymer Basedon a Linear Bipyridyl Benzene Ligand①

    ZHANG You-JuanaLIU Lei-LeiaZHANG Yana,bWANG Zhi-PengaDONG Xiao-FangaLI Qing-QingaCHEN Jinga,b②

    a(455002)b(450052)

    A new complex with formula[Cd(3-pbpmb)2I2]n1(3-= 1,4-bis(pyridine- 3-ylmethoxy)benzene), has been solvothermally synthesized and characterized. The crystal belongs to monoclinic system, space group21/with= 8.2905(17),= 16.078(3),= 13.213(3) ?,= 99.44(3)°,M= 950.86,= 1737.3(6) ?3,= 2,D= 1.818 g/cm3,(000) = 924,= 2.450 mm-1, the final= 0.0198 and= 0.0467 for 3053 observed reflections (> 2()).The Cd(II) ion is coordinated by four N atoms of four 3-ligands and two iodine ions to furnish a distorted octahedral coordination geometry. The Cd(II) ion and its own symmetry-related ions are bridged by N atoms from two 3-ligands to generate a “zigzag” 1-D chain coordination polymer. These 1D chains are further connected into a three-dimensional (3D) framework by C–H×××interactions and intermolecular C–H×××I hydrogen bond. Interestingly, 1 displays efficient sorption of molecular iodine gas (up to 111 wt%), but invalid sorption of molecular water gas.

    crystal structure, Cd(II) compound, coordination polymer, I2capture;

    1 INTRODUCTION

    Nuclear energy is currently consideredasthe best alternative to meet increased worldwide energy demands and reduce greenhouse gas emissions if the challenge problem of nuclear waste management can be well resolved[1-3].129I as an important radioisotope in nuclear waste is dangerous for health because of its volatility and particular long-life (half-life of 1.57′107years)[4]. Therefore, the effective capture and storage of I2has attracted a great deal of attention in recent years. There are many ways to capture iodine, which are mainly divided into solution washing method and solid adsorption method. The solid adsorbents reported in literature are mainly porous materials, such as silver-based zeolites[2], layered double hydroxides(LDHS)[5-7], porous carbon[3], zeoball[8], and so on. However, in most cases, there are some disadvantages for these solid adsorbents. For example, the silver-based zeolites are related tohigh-cost production and complicated fabrication process as well as lacking high adsorption capacity[9]. The deactivation of activated carbon in environments with high humidity casts ashadow on its practical application for the adsorption of iodine[10],since the off-gas of fuel reprocessing plants contains high levels of water vapor[1].Thus, the exploitation of new capturing iodine materials with environment friendly property, high absorption capacity,moisture-stable and cheap is still an important challenge.

    The literatures have showed that the compounds with low surface area can also be used as a strong iodine vapor capture agent if there is a strong affinity between iodine and compound. For example, Yao’s group found [Zn2(tptc)(apy)2?(H2O)]·H2O exhibits very high adsorption value (216 wt %) for iodine[4], but BET is only 168 m2×g-1. Such compounds usually possess the conjugated-electron aromatic system, halogen bonds with iodine, or electron-donating of the metal-organic coordinations, which can increase affinity for I2,thus increasing the adsorption amount for iodine[11, 12]. Considering all aspects stated above, our idea in this work was to select a ligand with plentiful phenyl rings (3-) and KI to construct a novel coordination polymer [Cd(3-pbpm)2I2]n1 (3-= 1,4-bis(pyridine-3-ylmethoxy)benzene) under solvothermal conditions. The research shows that 1 displays efficient, competitive sorption of molecular iodine gas from a mixed stream containing iodine and water vapor.

    2 EXPERIMENTAL

    2. 1 Reagents and measurements

    The ligand 3-(1,4-bis(pyridine-3-ylme- thoxy)benzene) was synthesized and purified accor- ding to the reported literature procedure[13]. The commercially purchasedAll other chemicals and reagents were obtained from commercial sources and used as received. Elemental analyses (C, H, and N) were carried out with a Perkin Elmer 240C elemental analyzer. IR spectra were measured on a Varian 800 (Scimitar Series) FT-IR spectrometer in the 4000~400 cm-1region using KBr pellets. The diffraction data were collected on a Bruker APEX-II CCD single-crystal X-ray diffractometer. Powered X-ray diffraction (XRD) patterns of the sample were recorded by an X-ray diffractometer (Rigaku-Ultima III) equipped with a Cu-radiation. The solid UV-vis spectra were recorded at room temperature in reflectance mode using a PerkinElmer Lambda 35 spectrometer with integration sphere. A reference background was registered with BaSO4(white powder, 100% reflectance). Thermal analysis was performed with a Netzsch STA-409 PC thermo- gravimetric analyzer at a heating rate of 10 °C·min?1to 900 °C under an air flow.

    2. 2 Synthesis of [Cd(3-pbpmb)2I2]n

    Cd(Ac)2·2H2O (0.0213 g, 0.08 mmol), 3-pbpmb (0.0106 g, 0.04 mmol), KI (0.0133 g, 0.08 mmol) and H2O (4 mL) were sealed in a 10 mL Teflon-lined stainless-steel autoclave and heated in an oven to 170 °C for 3000 minutes. After cooling to room temperature, yellow needle crystals were obtained, collected and washed thoroughly withdeionized water and dried in air. Yield: 8 mg (42%, based on 3-).

    The powder XRD characterization indicates that the-value of diffraction peaks of the as-synthesized sample is in good agreement with the results simulated on the basis of single-crystal structure, which proves the phase purity of the as-synthesized product (Fig. 1). Anal. Calcd. (%) for C36H32CdI2N4O4: C, 45.5; H, 3.4; N, 5.9. Found: C, 45.2; H, 3.1; N, 5.5. Selected IR (KBr, cm?1): 2360 (w), 1505 (s), 1457 (m), 1430 (m), 1383 (m), 1335 (w), 1283 (w), 1227 (s), 1102 (w), 1030 (s), 927 (w), 804 (s), 703 (s), 644 (m), 525 (m) cm?1.

    2. 3 Crystal structure determination

    Single-crystal X-ray studies for 1 were performed on a Bruker APEX-II CCD diffractometer at 296(2) K. The determinations of unit cell parameters and data collections were performed with Mo-radiation with radiation wavelength of 0.71073 ? by using thescan mode. In the range of 2.53<<28.30o, a total of 11624 reflections were collected and 3053 were independent withint= 0.0209, of which 2864 were observed with> 2(). Lorentz polarization and absorption corrections were applied by using the multi-scan program[14]. The structure was solved by direct methods with SHELXS-97 program[15]and refined by full-matrix least-squares techniques on2with SHELXL-97[16]. Metal atoms were located from themaps, and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on2. Hydrogen atoms on carbon atoms of ligand were placed in calculated, ideal positions and refined as riding on their respective carbon atoms. The final= 0.0198 and= 0.0467 (= 1/[2(F2) + (0.0203)2+ 0.9274], where= (F2+ 2F2)/3).= 1.112, (Δ)max= 0.311, (Δ)min= –0.580 e/?3and (Δ/)max= 0.001. Selected bond distances and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (o) for 1

    Symmetry transformations used to generate the equivalent atoms: A:,1,1; B:1,,1; C:1,,1; D:1,1,

    Fig. 1. Powder XRD patterns of as-synthesized polycrystalline powder and of simulated from single-crystal data of 1

    2. 4 Iodine vapor capture experiment

    No radiological iodine was used in all experiments. Iodine vapor capture experiments were conducted as follows. Two preweighed glass vials containing powder sample (20 mg) and enough crystallites of I2were placed into a large glass vial, and the large glass vial was then capped and wrapped with Teflon tape in order to prevent the leakage of I2vapor. The large vial containing two smaller vials was placed in a convection oven at 75 °C under ambient pressure (typical conditions of fuel reprocessing)[1, 4]. The iodine-loaded samples were taken out after different exposure times and allowed to cool in air, and the mass change was recorded. The iodine uptake was calculated as (m2– m1)/m1× 100 wt%, where m1and m2are the masses of the sample before and after iodine uptake. The above experiment was repeated after replacing crystallites of I2with water or the crystallites of I2and water. The resultant solid sample was washed with cyclohexane (toremove I2adhered to the surface of the sample) until the filtrate became almost colorless and then left in air to dry. The loaded samples are respectively denoted as 1@I2and 1@H2O.

    3 RESULTS AND DISCUSSION

    3. 1 Description of the structure

    1 crystallizes in the monoclinic space group21/, and its asymmetric unit contains one Cd atom, two 3-ligands, and two I atoms. As shown in Fig. 2a, each Cd(1) ion is coordinated by four N atoms (Cd(1)–N(1) = 2.4719(19) ?, Cd(1)–N(2) = 2.366(2) ?) from four 3-pbpmb ligands and two I ions (Cd(1)–I(1) =3.0042(5) ?) to furnish a distorted octahedral coordination geometry. The Cd(1)–N(1) bond length (2.4719(19) ?) is a little longer than that in [Cd2L2(3-pbpmb)3]n(the mean Cd–N bond length 2.365(6) ?, H2L = 2,2?-azodibenzoic acid)[13], but is appreciably smaller than the upper limit for the covalent Cd–N distance (2.54(2)?)[17, 18]. Meanwhile, the Cd–I bond length (3.0042(5) ?) is somewhat longer than the typical Cd–I bond lengths previously reported[18], but is significantly shorter than the corresponding sum of the van der Waals radii for Cd and I (3.56 ?)[18], which may be because iodine ion forms intermolecular hydrogen bond with one hydrogen atom of -CH2- group. The Cd(1)ion and its own one symmetry-related ion are bridged by N atoms from two 3-pbpmb ligands togive a parallelogram-like [Cd2(3-pbpmb)2] unit (5.26× 15.07 ?2,Fig. 2b). Then, such units are interlinked together throughsharing 3-pbpmb ligands to generate a “zigzag” 1-D chain coordination polymer extending along theplane (Fig. 2b).These 1D chains are interconnected with neighbouring ones by C–H×××interactions via edge-to-face orientation between the benzene rings and the pyridine rings of 3-pbpmb (= 2.7802(8) ? and= 118.782(155)°) to form a 2D framework extending along theplane (Fig. 2c). Furthermore, the 2D frameworks are linked via intermolecular C–H×××I hydrogen bond (H(13B)×××I(1A) distance: 3.1271(5) ?, a little shorter than the sum of the van der Waals radii for H and I (ca. 1.2 ? for H, 1.98 ? for I), C(13)–H(13B)···I(1A) angle: 148.752(168)°, symmetry code: A =– 1.5,+ 0.5,+ 0.5; which indicates an intermolecular hydrogen bond between 3-pbpmb and the terminal iodineanion)[18], resulting in a 3D supramolecule (Fig. 2d).

    3. 2 Thermal analysis

    Measurements of the thermal behaviour of 1 were performed in air from room temperature to 900 °C at 10 °C·min?1. As shown in Fig. 3, there is no obvious weight loss before 250 °C in the TG curve of 1 because there are no solvent molecules in 1. Beyond this temperature, weight loss in two stages is observed. The first weightloss of 25.98% (calcd. 26.71%) in the temperature range of 250~480 °Ccan be assigned to the loss of two iodine ions. Upon further heating, the framework structure decomposes quickly because of the explosive combustion of the 3-pbpmb ligands (obsd. 61.85%; calcd. 61.49%). The ultimate residue for 1(12.05%) is close to thepercentage of cadmium oxide (calcd. 13.50%).

    3. 3 Iodine vapor capture

    Considering that there are many benzene rings and iodine ions, but no solvent molecules in 1, its capacity toward the molecular I2capture was studied. The amount of I2and water loading was taken at various time intervals and shown in Fig. 4a. As time progressed, the color of the sample changed from beige to red-brown (Fig. 4b).As shown in Fig. 4a, curve A is almost a straight line as time goes on, indicating that under typical conditions of fuel reprocessing, 1 has no adsorption capacity for water. However, curve B goes up rapidly, then becomes slowly after 10 hours, which shows that the capacity toward the molecular I2capture of 1 was very quick originally and the system had reached equilibrium after 47 h. For 1, the amount of I2loading was 111 wt%. In other words, the molecular iodine saturation capacity in 1 was found to be 1110 mg I2per gram of sample. Note that the I2adsorption capacity of 1 in the gas phase surpasses that of what has already been observed for porous complexes, for example {[Co3(BTC)2(TIB)2(H2O)4]·(H2O)4}n(27.92 wt%), {[Cu3(BTC)2(TIB)2(H2O)2]·(H2O)6}n(28.62 wt%)[12]and NiII(pz)[NiII(CN)4] (83 wt%)[19], and is comparable to ZIF-8 (100 wt%)[9]. More importantly, the amount of I2loading of 1 in the mixed stream containing iodine and water vapor can still reach 102 wt%. With respect to industrial online competitive gas sorption, it can be therefore inferred that the water vapor is not a competitive gas concern versus I2in a mixed off-gas stream. More importantly, 1@I2was very stable. 1@I2remained the same color intensity and only 1.9% weight loss was observed after leaving it at room temperature under atmos- pheric pressure for 10 days.

    Fig. 2. (a) View of the local coordination environments of Cd(II) ion in 1. Symmetry codes: A = 1–, 1–, –; B = 1+,,-1 (H atoms omitted for clarity). (b) 1D chain of 1 along theplane. (c) 2D supramolecular framework showing the intermolecular C–H···stacking interactions. (d) 3D supramolecular framework showing the intermolecular C–H···I hydrogen bond interactions

    Fig. 3. TG analyses of 1 and 1@I2

    Fig. 4. (a) Change in the adsorbed amount of I2, relative to time; (b) Photographs of crystals before and after I2adsorption

    The thermogravimetric analysis (TG) graph of 1@I2displayed a broad mass loss step from 100 to 250 °C (Fig. 3), and the calculated iodine mass loss was 101.61 wt%, which is close to the saturated adsorption value. The final residue of 5.80% for 1@I2is in agreement with the percentage of cadmium oxide (calcd. 6.67%).

    3. 4 UV-vis

    Solid state UV-vis absorption spectra of 1 and 1@I2were recorded at room temperature (Fig. 5). A single peak at~260 nm was observed for 1, whereas in the case of 1@ I2, a broad band appeared at the visible region between 230 and 500 nm with four shoulder peaks at~250,~310,~370 and 490 nm. Two absorption bands at~310 and~370 nm may be assigned to the spin and symmetry-allowed?* and?* transitions of I3-[5, 6]. But the spin- forbidden singlet-triplet transitions of I3-, expected at 440 and 560 nm, are not observed. The two absorp- tion bands can be significantly enhanced if I3-is in a low symmetry. The spectroscopic features thus show that the iodine molecules and iodine ions of 1 can form highly symmetric I3-. The absorption band at about 490 nm is assigned to molecular I2[20].

    Fig. 5. Solid-state UV-vis spectra for 1 and 1@I2at room temperature

    Importantly, no additional peaks at ~800 nm resulting from pristine iodine crystals were observed in the iodine-loaded sample, indicating that there were no unattached iodine molecules[21].

    In order to study the interaction of I2and 1, iodine vapor capture experiment was also carried out using single crystal sample of 1. Although the single crystals after capturing I2retained their original external forms, the crystals di?ract poorly, and the resolution of the structure was not possible. Fig. 2d shows that 1 structure contains two types of quadrilateralchannels: A (8.49?′3.83?) and B. According to the literature[22-24], channel A isbig enoughtoaccommodateiodinemolecules(3.35?). The iodide ions in channel A can produce ion-dipole action with I2,electron-rich aromatic networks with conjugated-electrons and strong electron-donor nitrogen atoms can provide a number of possibilities to interact with iodine. The cooperationeffect of three types of interaction largely improves theadsorption ability of I2, so when the temperature rises, iodine molecules move faster, allowing easier access to the A channel.The symmetry-allowed?* and?* transitions of I3-in UV-vis absorption spectra indicate that I2and I-ion in the A channelmay be on a line. Theoretically, the amount of iodine in channel A should be 106.8%, which is very close to the experimental value (111%). Thehigh affinity of 1 makes the adsorption of iodine difficult to lose.

    (1) Sigen, A.;Zhang, Y. W.; Li, Z. P.; Xia,H.; Xue, M.; Liu, X. M.; Mu, Y. Highly efficient and reversible iodine capture using ametalloporphyrin-based conjugated microporous polymer.2014, 50, 8495–8498.

    (2) Chapman, K. W.; Chupas, P. J.; Nenoff, T. M. Radioactive iodine capture in silver-containing mordenites throughnanoscale silver iodide formation.. 2010, 132, 8897–8899.

    (3) Sun, H. X.; La, P. Q.; Zhu, Z. Q.; Liang, W. D.; Yang, B. P.; Li, A. Capture and reversible storage of volatile iodine by porous carbonwith high capacity.2015, 50, 7326–7332.

    (4) Yao, R. X.;Cui, X.; Jia, X. X.; Zhang, F. Q.; Zhang, X. M. A luminescent zinc(II) metal-organic framework (MOF) withconjugated-electronligand for high iodine capture and nitro-explosive detection.2016, 55, 9270?9275.

    (5) Ma, R. Z.; Liang, J. B.; Takada, K.; Sasaki, T. Topochemical synthesis of Co?Fe layered doublehydroxides at varied Fe/Co ratios: unique intercalation oftriiodide and its profound effect.. 2011, 133, 613–620.

    (6) Mohanambe, L.; Vasudevan, S. Insertion of iodine in a functionalized inorganic layered solid.2004, 43, 6421?64245.

    (7) Ma, S. L.; Islam, S. M.; Shim, Y.; Gu, Q. Y.; Wang, P. L.; Li, H.; Sun, G. B.; Yang, X. J.; Kanatzidis, M. G. Highly efficient iodine capture bylayered double hydroxidesintercalated with polysulfides.2014, 26, 7114?7123.

    (8) Lin, Y. M.; Massa, W.; Dehnen, S. “Zeoball” [Sn36Ge24Se132]24?: a molecular anion with zeolite-relatedcomposition and spherical shape.. 2012, 134, 4497–4500.

    (9) Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M.Capture of volatile iodine, a gaseousfission product, by zeoliticimidazolate framework-8.2011, 133, 12398–12401.

    (10) Hughes, J. T.; Sava, D. F.; Nenoff, T. M.; Navrotsky, A. Thermochemical evidence for strong iodine chemisorption by ZIF-8.2013, 135, 16256?16259.

    (11) Lv, L. L.; Yang, J.; Zhang, H. M.; Liu, Y. Y.; Ma, J. F. Metal-ion exchange, small-molecule sensing, selective dyeadsorption, and reversible iodineuptake of three coordinationpolymers constructed by a new resorcin[4]arene-based tetracarboxylate.2015, 54, 1744?1755.

    (12) Rachuri, Y.; Bisht, K. K.; Suresh, E. Two-dimensional coordination polymers comprising mixed tripodalligands for selective colorimetric detectionof water and iodinecapture.2014, 14, 3300?3308.

    (13) Liu, L. L.; Yu, C. X.; Li, Y. R.; Han, J. J.; Ma, F. J.; Ma, L. F. Positional isomeric effect on the structural variationof Cd(II) coordination polymersbased on flexiblelinear/V-shaped bipyridyl benzene ligands.2015, 17, 653–664.

    (14) Sheldrick, G. M., University of Gottingen: G?ttingen, Germany 2002.

    (15) Sheldrick, G. M.,University of G?ttingen, Germany 1997.

    (16) Sheldrick, G. M.,. University of G?ttingen, Germany 1997.

    (17) Das, S.; Hung, C. H.; Goswami, S. Blue dimetallic complexes of two heavy metal ions CdII and HgII withan extended nitrogen donor ligand Preparation, spectralcharacterization, and crystallographic studies.2003, 42, 8592–8597.

    (18) Wei, K. J.; Xie, Y. S.; Ni, J.; Zhang, M.; Liu, Q. L. Syntheses, crystal structures, and photoluminescent properties of aseries of M(II) coordinationpolymers containing M-X2-M bridges: from 1-D chains to 2-D networks.2006,6, 1341–1350.

    (19) Massasso, G.;Long, J.;Haines, J.;Devautour-Vinot, S.;Maurin, G.;Grandjean, A.; Onida, B.; Donnadieu, B.; Larionova, J.; Guérin, C.;Guari, Y. Iodine capture by hofmann-type clathrate NiII(pz)[NiII(CN)4].2014, 53, 4269?4271.

    (20) Massasso, G.;Long, J.; ?Guérin, C.;Grandjean, A.;Onida, B.; Guari, Y.; Larionova, J.; Maurin, G.;Devautour-Vinot, S.Understanding thehost/guest interactions in iodine/hofmann-typeclathrate Ni(pz)[Ni(CN)4] system.2015, 119, 9395?9401.

    (21) Liao, Y. Z.; Weber, J.; Mills, B. M.; Ren, Z. H.; Faul, C. F. J. Highly e?cient and reversible iodine capture in hexaphenyl benzene-basedconjugated microporous polymers.2016, 49, 6322–6333.

    (22) Chen, Y.; Li, L. B.; Yang, J. F.; Wang, S.; Li., J. P. Reversible ?exible structural changes in multidimensional MOFs by guest molecules (I2,NH3) and thermal stimulation.2015, 226, 114–119.

    (23) Sava, D. F.; Chapman, K. W.; Rodriguez, M. A.; Greathouse, J. A.; Crozier, P. S.; Zhao, H. Y.; Chupas, P. J.; Neno?, T. M. Competitive I2sorption by Cu-BTC from Humid gas streams.2013, 25, 2591?2596.

    (24) Xin, B. J.; Zeng, G.; Gao, L.; Li, Y.; Xing, S. H.; Hua, J.; Li, G. H.; Shi, Z.; Feng, S. H. An unusual copper(I) halide-based metal-organicframework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties.2013, 42, 7562–7568.

    10 October 2017;

    17 January 2018 (CCDC 1810747)

    ① The work was supported by the National Natural Science Foundation of China (No. 21071006), Henan Province Key Laboratory of New Optoelectronic Functional Materials(No. aynu201703) and Anyang Normal University Breeding Fund

    . Tel./Fax: 03722900228. E-mail: chenjinghao2014@163.com

    10.14102/j.cnki.0254-5861.2011-1846

    亚洲 欧美 日韩 在线 免费| 在线免费观看的www视频| 国产精品亚洲美女久久久| 少妇的丰满在线观看| 两个人视频免费观看高清| 国产不卡一卡二| 国产欧美日韩一区二区三区在线| 久久久久久久久中文| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品成人综合色| 国产一区二区在线av高清观看| 日本 av在线| 麻豆久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 亚洲天堂国产精品一区在线| 91国产中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 桃红色精品国产亚洲av| 色播在线永久视频| 免费久久久久久久精品成人欧美视频| 在线观看日韩欧美| 午夜福利免费观看在线| 国产在线观看jvid| 欧美国产精品va在线观看不卡| 午夜免费鲁丝| 最新在线观看一区二区三区| 91国产中文字幕| 欧美激情极品国产一区二区三区| 12—13女人毛片做爰片一| www日本在线高清视频| 色尼玛亚洲综合影院| 操美女的视频在线观看| videosex国产| 88av欧美| 精品国产美女av久久久久小说| 91字幕亚洲| 国产欧美日韩一区二区三区在线| 夜夜看夜夜爽夜夜摸| 91在线观看av| 中文字幕av电影在线播放| 夜夜夜夜夜久久久久| 嫁个100分男人电影在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲男人天堂网一区| 日韩精品免费视频一区二区三区| 嫩草影视91久久| 国产免费男女视频| 热re99久久国产66热| 国产熟女xx| 侵犯人妻中文字幕一二三四区| 欧美一区二区精品小视频在线| 女人高潮潮喷娇喘18禁视频| 免费av毛片视频| 一二三四社区在线视频社区8| 亚洲九九香蕉| 最近最新免费中文字幕在线| 女警被强在线播放| 亚洲免费av在线视频| 久久伊人香网站| 国产精品一区二区在线不卡| 国产免费男女视频| 身体一侧抽搐| 91精品三级在线观看| 国产亚洲av嫩草精品影院| 久久影院123| 中文亚洲av片在线观看爽| 国产免费av片在线观看野外av| 亚洲国产精品成人综合色| www.精华液| 757午夜福利合集在线观看| 亚洲第一av免费看| 久久久久九九精品影院| 国产精品一区二区免费欧美| 久热爱精品视频在线9| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 人妻久久中文字幕网| 女性被躁到高潮视频| 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 久久久久久久久中文| 亚洲精品在线观看二区| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 国产高清视频在线播放一区| 91av网站免费观看| 久久久久国产一级毛片高清牌| 久久久久国产精品人妻aⅴ院| 日韩 欧美 亚洲 中文字幕| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 国产一级毛片七仙女欲春2 | 中国美女看黄片| 级片在线观看| 日本免费一区二区三区高清不卡 | 亚洲专区字幕在线| 午夜福利18| 国产成人精品久久二区二区91| 亚洲av电影不卡..在线观看| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 国产国语露脸激情在线看| 丝袜美足系列| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 久久久久久久久免费视频了| 国产av在哪里看| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看| 精品久久久久久,| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 国产男靠女视频免费网站| 高清黄色对白视频在线免费看| 亚洲avbb在线观看| 黄色 视频免费看| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 久久久国产成人免费| netflix在线观看网站| 亚洲国产精品999在线| 色精品久久人妻99蜜桃| 亚洲国产欧美网| 99re在线观看精品视频| 在线观看免费午夜福利视频| 亚洲色图av天堂| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 欧美性长视频在线观看| 国产精品二区激情视频| 老司机福利观看| 在线观看免费视频日本深夜| 久久精品影院6| 精品无人区乱码1区二区| 欧美绝顶高潮抽搐喷水| 国产精品,欧美在线| 99香蕉大伊视频| netflix在线观看网站| 男人舔女人下体高潮全视频| 在线观看免费日韩欧美大片| 亚洲午夜理论影院| 99热只有精品国产| 亚洲第一欧美日韩一区二区三区| 亚洲三区欧美一区| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 亚洲精品美女久久av网站| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 亚洲,欧美精品.| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 国产成人av教育| 国产精品乱码一区二三区的特点 | 一区二区三区国产精品乱码| 精品人妻在线不人妻| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 国产精品一区二区三区四区久久 | 丰满人妻熟妇乱又伦精品不卡| 亚洲成人久久性| 亚洲性夜色夜夜综合| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 亚洲av五月六月丁香网| 亚洲精品美女久久av网站| 欧美中文日本在线观看视频| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 国产成+人综合+亚洲专区| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 一本大道久久a久久精品| 午夜a级毛片| 久久午夜亚洲精品久久| 不卡av一区二区三区| 国产一卡二卡三卡精品| 女人精品久久久久毛片| 悠悠久久av| 久久人妻熟女aⅴ| av天堂久久9| 嫩草影视91久久| cao死你这个sao货| 午夜日韩欧美国产| 国产精品,欧美在线| av片东京热男人的天堂| 免费在线观看影片大全网站| 免费搜索国产男女视频| 国产亚洲精品综合一区在线观看 | 亚洲美女黄片视频| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 中国美女看黄片| 色综合婷婷激情| 一进一出好大好爽视频| 人妻久久中文字幕网| 久久久久久人人人人人| www.www免费av| 亚洲国产日韩欧美精品在线观看 | 国产精华一区二区三区| 午夜激情av网站| 美女高潮到喷水免费观看| 成人三级做爰电影| 久久人人精品亚洲av| 一本久久中文字幕| 欧美激情久久久久久爽电影 | 欧美国产精品va在线观看不卡| 日韩欧美三级三区| 91麻豆av在线| 91成人精品电影| 后天国语完整版免费观看| 亚洲一区中文字幕在线| 极品教师在线免费播放| 国产99久久九九免费精品| 日本欧美视频一区| 女警被强在线播放| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 在线观看舔阴道视频| 日韩欧美三级三区| 成人18禁在线播放| 午夜福利欧美成人| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 高清毛片免费观看视频网站| 欧美性长视频在线观看| 叶爱在线成人免费视频播放| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 免费搜索国产男女视频| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 国产aⅴ精品一区二区三区波| 国产精品久久久av美女十八| x7x7x7水蜜桃| 亚洲电影在线观看av| 性色av乱码一区二区三区2| 欧美一级a爱片免费观看看 | 久久人人精品亚洲av| 波多野结衣一区麻豆| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 国产精品日韩av在线免费观看 | 国产一区二区三区在线臀色熟女| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 国产在线观看jvid| 女人被狂操c到高潮| 国产欧美日韩一区二区三区在线| 男人操女人黄网站| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 国产乱人伦免费视频| 亚洲九九香蕉| 国产熟女xx| 日韩三级视频一区二区三区| 日韩大尺度精品在线看网址 | 91精品国产国语对白视频| 国产欧美日韩一区二区三| 99久久综合精品五月天人人| 免费看a级黄色片| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 亚洲七黄色美女视频| 久久久久久久久中文| 国产精品二区激情视频| 亚洲在线自拍视频| 久久中文看片网| www.精华液| 亚洲国产毛片av蜜桃av| 成人三级做爰电影| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 亚洲自偷自拍图片 自拍| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费鲁丝| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 免费av毛片视频| 欧美另类亚洲清纯唯美| 日韩精品免费视频一区二区三区| 国产成人欧美在线观看| 在线视频色国产色| 成年女人毛片免费观看观看9| 好男人电影高清在线观看| 精品欧美国产一区二区三| 国产精品免费视频内射| av网站免费在线观看视频| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 午夜久久久久精精品| 国产主播在线观看一区二区| 日本三级黄在线观看| 国产精品久久久av美女十八| 大码成人一级视频| 丁香欧美五月| 成年女人毛片免费观看观看9| 国产av在哪里看| 无人区码免费观看不卡| 久久久久亚洲av毛片大全| 免费在线观看黄色视频的| 国产午夜福利久久久久久| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 国产伦人伦偷精品视频| 久久精品亚洲熟妇少妇任你| 国产av精品麻豆| 精品国内亚洲2022精品成人| 日韩三级视频一区二区三区| 看片在线看免费视频| 日韩三级视频一区二区三区| 国产1区2区3区精品| АⅤ资源中文在线天堂| 国产精品野战在线观看| 在线天堂中文资源库| 亚洲情色 制服丝袜| 国产在线观看jvid| 亚洲av电影不卡..在线观看| 一区二区日韩欧美中文字幕| √禁漫天堂资源中文www| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 黄色女人牲交| 久久人妻av系列| 久久精品aⅴ一区二区三区四区| 校园春色视频在线观看| av视频免费观看在线观看| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 国产精品 欧美亚洲| 国产又色又爽无遮挡免费看| 多毛熟女@视频| 午夜福利欧美成人| 高清在线国产一区| 国产精品免费一区二区三区在线| 午夜免费鲁丝| 欧美黑人欧美精品刺激| 欧美一级a爱片免费观看看 | 国产不卡一卡二| 人妻久久中文字幕网| 亚洲国产看品久久| 午夜久久久在线观看| av在线播放免费不卡| 校园春色视频在线观看| 国产精品久久久久久精品电影 | 精品少妇一区二区三区视频日本电影| www.www免费av| 午夜两性在线视频| 国产熟女午夜一区二区三区| 日韩精品青青久久久久久| 免费在线观看亚洲国产| 涩涩av久久男人的天堂| 色av中文字幕| 一进一出好大好爽视频| 国内精品久久久久精免费| 久久久水蜜桃国产精品网| 一级毛片女人18水好多| 90打野战视频偷拍视频| 久久精品亚洲精品国产色婷小说| 欧美在线一区亚洲| 少妇 在线观看| 久久久久九九精品影院| 一区二区三区高清视频在线| 99久久国产精品久久久| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 免费av毛片视频| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 欧美激情高清一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 国产乱人伦免费视频| 亚洲精品久久国产高清桃花| 亚洲精品国产区一区二| 精品国产一区二区久久| 无遮挡黄片免费观看| 精品日产1卡2卡| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 亚洲熟妇中文字幕五十中出| 一级毛片高清免费大全| 日本免费a在线| 亚洲午夜精品一区,二区,三区| 一级,二级,三级黄色视频| 国产视频一区二区在线看| 如日韩欧美国产精品一区二区三区| 一区二区三区高清视频在线| 国产区一区二久久| 午夜福利欧美成人| 精品第一国产精品| 国产午夜精品久久久久久| 国产亚洲精品综合一区在线观看 | 日韩三级视频一区二区三区| 欧美乱码精品一区二区三区| 亚洲国产精品成人综合色| 国产高清videossex| 97碰自拍视频| 国产单亲对白刺激| 丰满的人妻完整版| 人妻丰满熟妇av一区二区三区| 美女高潮到喷水免费观看| av电影中文网址| а√天堂www在线а√下载| 欧美日韩精品网址| 波多野结衣一区麻豆| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美三级三区| 色播在线永久视频| а√天堂www在线а√下载| 九色亚洲精品在线播放| 69精品国产乱码久久久| 久久国产乱子伦精品免费另类| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久 | 午夜激情av网站| 国产亚洲av嫩草精品影院| 午夜视频精品福利| 久久草成人影院| 美国免费a级毛片| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区| 一区在线观看完整版| av天堂在线播放| 久久久久国产一级毛片高清牌| 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 嫩草影院精品99| 美女国产高潮福利片在线看| 午夜精品在线福利| 婷婷精品国产亚洲av在线| 色av中文字幕| 十八禁网站免费在线| 咕卡用的链子| 亚洲精华国产精华精| 久久久久久免费高清国产稀缺| 黄色片一级片一级黄色片| 美女免费视频网站| 久久影院123| 亚洲无线在线观看| 免费无遮挡裸体视频| 亚洲人成电影观看| 国产高清视频在线播放一区| 老司机午夜福利在线观看视频| 一进一出好大好爽视频| 热re99久久国产66热| 国产成人精品无人区| 精品一区二区三区视频在线观看免费| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频网站a站| 九色国产91popny在线| 久久精品人人爽人人爽视色| 99国产精品一区二区三区| 午夜福利在线观看吧| 亚洲精品国产区一区二| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| 亚洲色图综合在线观看| 欧美激情高清一区二区三区| 亚洲中文字幕日韩| av片东京热男人的天堂| 午夜免费观看网址| 一级毛片女人18水好多| 久久精品国产亚洲av高清一级| 一级黄色大片毛片| 69精品国产乱码久久久| av天堂在线播放| 国产精品永久免费网站| 久久精品人人爽人人爽视色| 欧美日韩精品网址| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| 国产精品永久免费网站| 亚洲精品国产精品久久久不卡| 少妇熟女aⅴ在线视频| 欧美成狂野欧美在线观看| www.自偷自拍.com| 成人18禁在线播放| 露出奶头的视频| 欧美激情久久久久久爽电影 | 激情视频va一区二区三区| 三级毛片av免费| 午夜福利欧美成人| 一级毛片精品| 久久久久久久久久久久大奶| 一区二区三区高清视频在线| 国产亚洲欧美精品永久| 19禁男女啪啪无遮挡网站| 搞女人的毛片| 真人一进一出gif抽搐免费| 国产亚洲精品第一综合不卡| 久久热在线av| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 亚洲成国产人片在线观看| 亚洲av美国av| 午夜福利影视在线免费观看| 久久性视频一级片| 国产三级在线视频| 91大片在线观看| 丝袜美腿诱惑在线| 国产在线观看jvid| 国内精品久久久久精免费| 18禁美女被吸乳视频| 欧美日韩黄片免| 少妇的丰满在线观看| 天堂动漫精品| 日韩精品中文字幕看吧| 操出白浆在线播放| 黄色女人牲交| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 亚洲国产精品sss在线观看| 夜夜躁狠狠躁天天躁| 日日干狠狠操夜夜爽| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 午夜免费观看网址| 一本大道久久a久久精品| 制服诱惑二区| 韩国精品一区二区三区| 欧美大码av| 欧美日韩乱码在线| 国产一区二区三区视频了| 成人三级做爰电影| 成人免费观看视频高清| 黑人巨大精品欧美一区二区mp4| 夜夜夜夜夜久久久久| 深夜精品福利| 色老头精品视频在线观看| 国产国语露脸激情在线看| 丰满的人妻完整版| 国产伦一二天堂av在线观看| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区三区四区第35| 麻豆一二三区av精品| 亚洲国产欧美一区二区综合| 日韩精品青青久久久久久| 国产aⅴ精品一区二区三区波| 免费女性裸体啪啪无遮挡网站| 老司机靠b影院| √禁漫天堂资源中文www| 国产精品自产拍在线观看55亚洲| 动漫黄色视频在线观看| 亚洲av电影不卡..在线观看| 午夜福利免费观看在线| 亚洲五月色婷婷综合| 桃色一区二区三区在线观看| 99热只有精品国产| 亚洲一区中文字幕在线| 国产精品秋霞免费鲁丝片| 亚洲视频免费观看视频| 99国产精品一区二区三区| 日韩有码中文字幕| 他把我摸到了高潮在线观看| 无限看片的www在线观看| 99香蕉大伊视频| 一进一出好大好爽视频| 超碰成人久久| 黄色片一级片一级黄色片| 在线免费观看的www视频| 日韩精品中文字幕看吧| 亚洲欧美激情综合另类| 在线免费观看的www视频| 亚洲一区中文字幕在线| 日韩一卡2卡3卡4卡2021年| www.999成人在线观看| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频| 亚洲,欧美精品.| 亚洲午夜精品一区,二区,三区| aaaaa片日本免费| 老汉色av国产亚洲站长工具| 亚洲专区国产一区二区| 成年女人毛片免费观看观看9| 色综合站精品国产| 动漫黄色视频在线观看| 法律面前人人平等表现在哪些方面|