• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of Anthropogenic Forcings and El Ni?o on Chinese Extreme Temperatures

    2018-06-20 01:50:08FREYCHETSPARROWTETTMINETERHEGERLandWALLOM
    Advances in Atmospheric Sciences 2018年8期

    N.FREYCHET,S.SPARROW,S.F.B.TETT,M.J.MINETER,G.C.HEGERL,and D.C.H.WALLOM

    1 School of Geosciences,University of Edinburgh,Crew Building,The King’s Buildings,Edinburgh EH9 3FF,UK

    2 Oxford e-Research Centre,University of Oxford,Oxford,OX1 2JD,United Kingdom

    1.Introduction

    Change in the risk of extreme temperatures over China has been a major focus of research(e.g.,Ren et al.,2016;Zhou and Wang,2016;Chen and Zhai,2017;Freychet et al.,2017;Luo and Lau,2017).The impact of anthropogenic forcings has been identified in several studies(e.g.,Sun et al.,2016;Yin et al.,2016,2017;Ma et al.,2017;Peng et al.,2017;Sun et al.,2017)showing an increase in the risk of high temperatures due to an increase in greenhouse gases.Meanwhile,aerosol emissions are understood to have reduced this risk due to their cooling effect(e.g.,Li et al.,2016;Mascioli et al.,2016;Dong et al.,2017),albeit these results are still largely model-dependent(Kasoar et al.,2016).Natural variability also affects extreme temperatures.More specifically,the impact of the El Ni?o–Southern Oscillation(ENSO)has been documented in several studies and is the leading mode of the interannual natural variability(McPhaden et al.,2016).However,due to the limited period of observations and the low frequency of these events(about two per decade),it is difficult to conduct strong statistical analyses on their impact,especially when investigating the most extreme temperatures.Moreover,ENSO usually exhibits a stronger signal on sea surface temperatures(SSTs)during winter,so most studies have focused on its impact at that time of the year.The influence of ENSO during summer remains difficult to evaluate,although Hu et al.(2013)showed a strengthening relationship between ENSO and extreme temperatures over China during recent decades.

    This study uses ensembles with several thousand members to evaluate the risk of summer extreme maximum temperatures over central and eastern China under different conditions.The main objective is to quantify how the most extreme temperatures(during summer)over China are sensitive to different forcings.It is important to evaluate the relative magnitudes of natural variability and anthropogenic influences.Such a study is not easy to conduct with observations only,as ENSO events are limited(about one significant El Ni?o event every five years)and annual extreme temperatures are rare too.This study aims to contribute to a better understanding of the impact of natural and human drivers of Chinese extreme temperatures,and to provide a statistical approach as a complement to observational-only studies.

    Extreme event attribution studies commonly compare ensembles of simulations;particularly,to estimate the impact of greenhouse gases and aerosols relative to a counter-factual natural world[e.g.,Black and Karoly,2016;Sarojini et al.,2016;Zhang et al.,2016;Qian et al.,2018(for recent works);Otto,2017(for a review on attribution techniques)].This method has not been commonly used to investigate how ENSO impacts the risk of extreme temperatures.Black and Karoly(2016)used such a method to analyze Australian temperatures,butfailed to find a clear ENSO signal.In this study,the relative importance of anthropogenic influences(through greenhouse gases and aerosol emissions)is compared to natural variability(i.e.,the role of ENSO,using the 2015/16 El Ni?o SST signal)using large ensemble simulations.The extended summer maxima of both daily maximum and minimum temperatures are considered.The former corresponds to the most extreme temperature during the day;the latter indicates how warm a night can be and is important for human health as it can lead to exhaustion(Sarofim et al.,2016).

    The data and methods are described in section 2 and the results are presented in section 3.Section 4 provides some discussion and concluding remarks.

    2.Methods

    2.1.Model experiment design

    The simulations were run as part of the“climate prediction.net weather@home”distributed computing project,where members of the public donate idle time on their computers to running model simulations.The weather@home setup consists of the Met Office Hadley Centre Atmospheric model(including a land/surface component),HadAM3P,running globally at a horizontal resolution of 1.25?(lat)×1.875?(lon).This is one-way-coupled with the Met Office Hadley Centre Regional Model,HadRM3P,running at a resolution of 50 km over East Asia(15?S–55?N,70?–170?E;Fig.1a).Both models have 19 vertical levels.The models include a sulfur cycle(Jones et al.,2001)and use the Moses 2 land surface scheme(Essery and Clark,2003).The weather@home 2 modeling system is described in detail in Guillod et al.(2017)and hasbeen used previously to study extreme events in many different regions of the world(e.g.,Li et al.,2015;Mar thews et al.,2015;Black et al.,2016;Haustein et al.,2016;Mitchell et al.,2016;Schaller et al.,2016).

    Fig.1.(a)weather@home East Asia 50 km region boundary(red).The shaded area represents the sponge layer in the regional model.The yellow part is the central China region and the green the East China region,used in the returnperiod analysis.(b)OSTIA(Donlon et al.,2012)May–September anomalies of SST(?C)for three different years,relative to the 1971–2000 summer climatology.For each year,the long-term change has been removed by subtracting the difference(year minus climatology)in the tropical band(30?S–30?N)averaged SST.(c)OSTIA 2016 anomalies for the Yellow Sea area only.

    Four ensembles were conducted(Table 1):a 1986–2016 climatology,used for model evaluation(in which each year was run independently);and three repetitive single-year simulations forced by estimated natural forcings(NAT),greenhouse gases only(GHG),and observed aerosols and greenhouse gas emissions(ACT).These three simulations(NAT,GHG and ACT)repeated the same warm season(April–September)several thousand times with a small perturbation to the initial potential temperature field of the atmosphere.They were conducted for three different years(2014,2015 and 2016)and were each spun up for 16 months,i.e.,starting on 1 December two years prior to the study year.During this period,a strong El Ni?o event occurred,with a peak during the winter of 2015/16(Hu and Fedorov,2017).For this study,we consider summer 2014 as a reference(before the development of ENSO),summer 2015 as an ENSO year(with a strong signal even during the summer period),and 2016 as a following ENSO year or La-Ni?a-like year(Fig.1b).During 2016,the SST anomaly shows slightly warmer temperatures over the West Pacific and cooler SST over the central East Pacific(with magnitudes overall below 1?C).Thus,2016 can also be considered as a weak negative ENSO phase,but these anomalies are relatively small compared to the 2015 patterns.

    As the ACT ensemble corresponds most closely to reality,ACT-14(values of ACT in 2014)is used to compare against other years or cases.Thus,all results are presented as deviations compared to 2014.The difference between NAT and ACT represents the anthropogenic impact,while the difference between GHG and ACT gives an estimate of the impact of aerosols.

    The model is evaluated by comparing the climatology of the highest daily maximum and minimum temperatures(TXx and TNx,respectively;Table 2)with results from ERA Interim(Dee et al.,2011),referred as ERAI in the figures.Although the simulated TXx values are too large compared to ERA-Interim over central and East China(Fig.S1),the spatial pattern is reproduced well.Comparing the model interannual variability and mean with ERA-Interim for Tmax and Tmin over central East China(Fig.S2),the model is warmer than ERA-Interim(especially Tmax)but cooler than the ground station observation.Moreover,it is consistent with the ERA-Interim trend and variability.The mean 2014–16 summer signal is also found to have a reasonable range compared to reanalysis and observation(Fig.S2),albeit the model mean is smoother due to ensemble averaging.The daily distribution of the temperatures over the region is also in good agreement with the observations(Fig.S3).The model performance is summarized with a Taylor diagram(Fig.S4)using ERA-Interim as a reference for all diagnostics.Spatial correlations are all above 0.9 and the variability of the model is close to ERA-Interim,albeit the most extreme temperatures(TXx and TNx)have slightly weaker scores than Tmax and Tmin.Station observations have weaker correlations with ERA-Interim than the model,which may be explained by their sparse spatial coverage compared to ERA Interim.

    2.2.Index definition and computation

    TX and TN are each used to compute several extreme indices during the extended summer(May–September):the summer maximum of each temperature(TXx and TNx,respectively,expressed in?C)and the number of days above the 2014 climatological 95th percentile of each temperature(TX95 and TN95,expressed in days).Table 2 summarizes the notation and definitions.

    The duration of the events is also considered,by selecting five-day persistent temperatures.To do so,the minimum temperature during the five-day time window is first selected(for each day of the summer),and then the maximum of these minima is extracted.For instance, first the minimum temperature is selected for 1–5 May,2–6 May...to 25–30 September.Then,the maximum among these minima is retained.

    Each index is computed individually for each ensemble member before being analyzed as an ensemble.Thus,results are obtained for the GHG,NAT and ACT ensembles,and for 2014,2015 and 2016.

    TXx and TNx are both fitted to generalized extreme value(GEV)distributions using,for each simulation,the maximum value at each grid point,in the extended summer season.Uncertainties in the parameter values are computed by bootstrapping(Efron and Tibshirani,1993)ACT-14 with 1000 samples and then computing the standard errors.The differences between ensembles are considered significant when they are larger than three standard deviations of the bootstrap ensemble(99.7%confidence interval).As there is a large number of members in each ensemble,the GEV fit is stable and uncertainties are small.

    Most of the results are presented as differences between cases,and thus the systematic biases of the model are cancelled out.However,when presenting results as absolute temperatures,a bias correction is first applied.The model bias is estimated by simply computing the difference between the 2014 climatology and ERA-Interim(Fig.S1c and f),and removed from the model temperatures before being displayed in the figures.

    3.Results

    ?

    Fig.2.differences in the(a–h)location and(i–p)scale parameters from the GEV fit for each ensemble.All scales are in ?C.Contours are every 0.2?C and 0.05?C intervals for the location and scale,respectively(with dashed lines indicating negative values).Only significant differences are shaded(see section 2 for details).

    Table 2.Notation for the different types of indices.

    The extended summer TXx and TNx are analyzed first.We use a GEV distribution to fit the ensemble distributions at each grid point and display the results in terms of location and scale parameters.Figure 2 displays the differences between each case,and the reference used for comparison(ACT-14)is also shown,in Fig.S5.The anthropogenic impact is quite clear and affects the temperatures over the whole region(Figs.2b and d)with an increase in the location parameter,and thus the mean summer TXx and TNx,of 1?C to 1.5?C.Conversely,aerosols tend to reduce the location parameter,by 0.5?C to 1?C(Figs.2a and c),consistent with previous findings(e.g.,Li et al.,2016).This suggests that well mixed greenhouse gases have increased the mean TXx and TNx.The scale parameter is found to be reduced by aerosols emissions(Figs.2i and k),by about 10%relative to the reference(Figs.S2c and d).This is especially the case for TNx,possibly due to the aerosols and their interaction with humidity.Another possibility is cooling reducing the potential land-surface amplification of extremes.However,this effect is small when considering all anthropogenic forcings(Figs.2j and l).This indicates that greenhouse gas emissions oppose the effect of aerosols and tend to increase the extreme temperature variability,leading to a small net effect.

    The influence of ENSO(or more specifically,SST patterns)is more variable(Figs.2e–h).During the peak of the ENSO event(2015),extreme temperatures are reduced over central and Northeast China.This is especially so for TXx,for which the location parameter changes by 0.5?C to 1?C,which is of a similar magnitude to the impact of aerosols.

    In the year after the event(2016),the impact is somewhat reversed,with an increase in temperatures over the eastern coastalregion(especially for TNx,with a magnitude of 0.5?C to 1.2?C).This is in accordance with Hu et al.(2013),who found an increase in hot days over the Yangtze River basin during El Ni?o years.This may be partly due to a warm SST anomaly(Fig.1c)in the Yellow Sea during 2015(Fig.1b).The reduction of TXx and TNx during the ENSO year is quite consistent with the negative anomaly of SST over the West Pacific(Fig.1b).Increased surface pressure over the West Pacific(Fig.S6)leads to cooler air being transported from the ocean to the continent and to milder temperatures over central China.Locally,the influence of ENSO or SST patterns can be considerable,potentially amplifying or off setting anthropogenic influences.The scale parameter mainly shows a reduction during and after ENSO,indicating less variability in extreme temperatures outside peak ENSO.This effect is local and does not correspond to the regions where the location parameter changes are the largest.

    Similar results were analyzed for five-day persistent events(not shown).The patterns and magnitude of the differences were similar to the previous results,indicating that daily extremes and persistent extremes are impacted in the same way by the different drivers.

    The shape parameter is also analyzed for daily extremes(Fig.S7).It does not show consistent large-scale signals;although,it can vary locally,indicating some changes in the tails of the distributions(i.e.,the most extreme values).Most of the differences,however,are not significant.

    As a complement to the most extreme temperatures,we also analyze the probability of temperatures exceeding their respective climatological 95th percentiles(Fig.S8).Similar to TXx and TNx,the anthropogenic influence is quite homogenous and increases TX95 and TN95 by 30%to 60%compared to the naturalized case(Fig.S8b and d).Aerosols produce stronger and more variable spatial patterns(Figs.S8a and c)than greenhouse gases,especially for TN95.Along the coastal regions,TN95 is more than doubled in GHG compared to ACT.Thus,aerosols halve the probability of nighttime high temperatures over these regions.This pattern is not visible for TX95,and as these coastal regions have overall more humidity than central regions it indicates again that aerosols have strong interaction with humidity(and thus nighttime temperatures).This may be an indirect effect of aerosols insofar as they tend to cool down the SST and thus lower the overall atmospheric humidity,especially over coastal regions.

    The impact of ENSO on TX95 and TN95(Figs.S8e–h)is similar to TXx and TNx.During 2015,TX95 and TN95 are both reduced by more than 40%over central China;whereas,after the ENSO event,TN95 is approximately doubled over the eastern coast.Thus,ENSO has a more consistent impact on the temperatures:it tends to reduce(during)or enhance(after)both the high(above the 95th percentile)and maximum temperatures,while the aerosols lead to a variable response.

    To summarize the impact of ENSO over the central China region(orange box in Fig.1a),the distribution of the regional-averaged TXx and TNx is computed and displayed(Fig.3)in terms of estimated return periods.TXx and TNx are bias-corrected first(see section 2).During the ENSO year,the return times of TXx are strongly reduced,so extreme high temperatures become less probable.For instance,a 1-in-10-year return event becomes a 1-in-50-year return event during 2015.This shift is similar for all return periods(although,it follows a logarithmic scale,meaning the effect on the highest return periods is amplified).Each case(ACT,GHG and NAT)shows the same signal,albeit it is stronger in ACT.This may be because ACT uses observed SSTs,while the other cases use modified SSTs to be consistent with the emissions or naturalized world scenario(thus,the actual pattern of ENSO may be altered).The signal is weaker for TNx,although it is still visible for each case.The anthropogenic and aerosol impacts are also quite clear,with a large shift be-tween the di ff erent cases.

    Fig.3.Return period of central China(25?–35?N,110?–117E)regional-mean temperatures(units: ?C)for each ensemble and year(colored circles)and their respective 95%confidence interval(shading).The temperatures are first bias-corrected,by removing the corresponding regional mean differences(based on the 2014 climatology)between HadRM3P and ERA-Interim(Figs.S1c and f).

    The same investigation is conducted for coastal East China(Fig.S9,and Fig.1a for the definition of the region).TNx is the most impacted over this region during the post-ENSO year,and the signal is clearly visible for all cases and all return periods.TXx does not exhibit a clear shift during the post-ENSO year,but the shift during 2015 is visible.Thus,the ENSO impact on TXx is not limited to the central China region(although it is clearer there).

    Finally,to complete the statistical approach of the study,the differences in the atmospheric circulation between each case are investigated(Fig.S6).In Had RM3P,the main differences are found for sea level pressure(SLP).During 2015,a positive anomaly extends over the West Pacific to the South Asia region.This leads to enhanced air transport from the ocean to the continent and thus moderates the temperature over central China(lower TXx).During 2016,a positive SLP anomaly is also visible over the West Pacific but it does not extend over the continent.This may lead to enhanced circulation near the coast(with possibly higher humidity and thus enhanced TNx),while central China temperatures remain more impacted by land–atmosphere processes(thus,higher TXx).The differences between the Had RM3P ensembles(ACT minus GHG and ACT minus NAT)are much weaker and suggest that the anthropogenic impact on temperature is mainly due to thermodynamic effects.It is also noticeable that the anomalies in ERA-Interim are different from the model,especially in the mid-upper troposphere.This may be due to the ensemble averaging,where only the most systematic anomalies remain.

    Finally,the seasonal signal of TX and TN is analyzed by extracting the day corresponding to TXx and TNx in each member(ensemble results displayed in Fig.4 for the differences,and Figs.S5g and h for the reference).The results show that when we consider all anthropogenic forcings,or the forcing of aerosols alone,the effect on the timing of the maxima is only slight(Figs.4a–d).ENSO exhibits a dipole pattern during the event(Figs.4e and g),with the hottest day occurring earlier in South China and later in North China,and an overall delay after the event(Figs.4f and h).As we only consider one ENSO event,it does not mean that the seasonality of the extreme temperatures is systematically modified in the same way(during and just after the event),but mainly that changes in SST patterns modify the seasonal timing of extreme temperatures.

    4.Conclusion

    The influence of anthropogenic forcings(mainly greenhouse gases and aerosols)and natural variability(using the 2015/16 ENSO event)on summer extreme temperatures over China is analyzed with multi-thousand-member ensembles.This method allows a strong statistical analysis for a single ENSO event and for the most extreme temperatures in an extended summer,albeit the results are only based on results from a single model.

    During the peak of ENSO,TXx is reduced significantly over the central China region.In 2016(post ENSO)TNx tends to increase over the eastern coastal region.The magnitude of the year-to-year anomalies is as large as the anthropogenic influence.This implies that the natural variability can influence,at a regional scale,in a significant way,extreme temperatures.Based on the model,ENSO can oppose,during the peak of the event,or amplify,the following year,the effect of greenhouse gases on summer temperature extremes.The overall return-period probability is also found to be reduced for both TX and TN during El Ni?o.The impact is mainly observed on the location parameters of the GEV fitting,meaning it is mainly due to a shift in temperatures rather than a change in variability.

    Aerosols have a strong signature in TNx over the coastal region,perhaps indicating an effect of aerosols on the humidity(including reduced evaporation due to the cooling effect,or potential changes in cloud properties).Although this is an interesting point,more experiments are needed for a better understanding.

    Fig.4.difference in the ensemble means of the average time of TXx and TNx in days.Contours are in two-day intervals(with dashed lines indicating negative values).Positive(negative)values correspond to a delay(advance)in the peak of temperatures.Shaded values are above the 99.7%confidence interval.

    Finally,the timing of the maximum temperatures during the summer shifts by more than 10 days between the year 2016 and 2014(whereas,the anthropogenic forcings did not impact this shift).This highlights how ENSO can quickly modify the seasonality of extreme temperatures,and should be an important point for seasonal forecasting.

    This study indicates that,based on model results,natural interannual variability and anthropogenic forcing have similar magnitudes of impact on extreme temperatures over China.Although,the former has a more regional effect,while the latter has a more spatially homogenous signal.

    It should be noted that this study considers only one specific ENSO event,which had a strong signal during the summer.Other ENSO events could have different impacts,depending on their SST patterns and timing.Moreover,given the possible biases in the model,the magnitude of the response in the real world could be different.We are highly confident that the patterns are realistic,given that the model has very good skill in reproducing TXx and TNx spatial characteristics.

    Acknowledgements.This work and all contributors were supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.We would like to thank the Met Office Hadley Centre PRECIS team for their technical and scientific support for the development and application of weather@home.Finally,we would like to thank all of the volunteers who have donated their computing time to climate prediction.net and weather@home.

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use,distribution,and reproduction in any medium,provided the original author(s)and the source are credited.

    Electronic supplementary material:Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-018-7258-8.

    REFERENCES

    Black,M.T.,and D.J.Karoly,2016:Southern Australia’swarmest October on record:The role of ENSO and climate change.Bull.Amer.Meteor.Soc.,97,S118–S121,https://doi.org/10.1175/BAMS-D-16-0124.1.

    Black,M.T.,and Coauthors,2016:The weather@home regional climate modelling project for Australia and New Zealand.Geoscientific Model Development,9,3161–3176,https://doi.org/10.5194/gmd-9-3161-2016.

    Chen,Y.,and P.M.Zhai,2017:Revisiting summertime hot extremes in China during 1961-2015:Overlooked compound extremes and significant changes.Geophys.Res.Lett.,44,5096–5103,https://doi.org/10.1002/2016GL072281.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137(656),553–597,https://doi.org/10.1002/qj.828.

    Dong,B.W.,R.T.Sutton,and L.Shaffrey,2017:Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe.Climate Dyn.,48,1537–1554,https://doi.org/10.1007/s00382-016-3158-8.

    Donlon,C.J.,M.Martin,J.Stark,J.Roberts-Jones,E.Fiedler,and W.Wimmer,2012:The Operational Sea Surface Temperature and Sea Ice analysis(OSTIA)system.Remote Sensing of Environment,116,140–158,https://doi.org/10.1016/j.rse.2010.10.017.

    Efron,B.,and R.J.Tibshirani,1993:An Introduction to the Bootstrap.Chapman and Hall.

    Essery,R.and D.B.Clark,2003:Developments in the MOSES 2 land-surface model for PILPS 2e.Global Planet Change,38,161–164,https://doi.org/10.1016/S0921-8181(03)00026-2.

    Freychet,N.,S.Tett,J.Wang,and G.Hegerl,2017:Summer heat waves over Eastern China:Dynamical processes and trend attribution.Environmental Research Letters,12,024015,https://doi.org/10.1088/1748-9326/aa5ba3.

    Guillod,B.P.,and Coauthors,2017:weather@home 2:validation of an improved global-regional climate modelling system.Geosci.Model Dev.,10,1849–1872,https://doi.org/10.5194/gmd-10-1849-2017.

    Haustein,K.,and Coauthors,2016:Real-time extreme weather event attribution with forecast seasonal SSTs.Environmental Research Letters,11,064006,https://doi.org/10.1088/1748-9326/11/6/064006.

    Hu,K.M.,G.Huang,and R.G.Wu,2013:A strengthened influence of ENSO on August high temperature extremes over the Southern Yangtze River Valley since the Late 1980s.J.Climate,26,2205–2221,https://doi.org/10.1175/JCLI-D-12-00277.1.

    Hu,S.N.,and A.V.Fedorov,2017:The extreme El Ni?o of 2015–2016 and the end of global warming hiatus.Geophys.Res.Lett.,44,3816–3824,https://doi.org/10.1002/2017 GL072908.

    Jones,A.,D.L.Roberts,M.J.Woodage,&C.E.Johnson,2001:Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle.J.Geophys.Res.:Atmospheres,106(D17),20293–20310,https://doi.org/10.1029/2000JD000089.

    Kasoar,M.,A.Voulgarakis,J.-F.Lamarque,D.T.Shindell,N.Bellouin,W.J.Collins,G.Faluvegi,and K.Tsigaridis,2016:Regional and global temperature response to anthropogenic SO2emissions from China in three climate models.Atmospheric Chemistry and Physics,16,9785–9804,https://doi.org/10.5194/acp-16-9785-2016.

    Li,C.X.,T.B.Zhao,and K.R.Ying,2016:Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models.Theor.Appl.Climatol.,125,529–540,https://doi.org/10.1007/s00704-015-1527-6.

    Li,S.H.,P.W.Mote,D.E.Rupp,D.Vickers,R.Mera,and M.Allen,2015:Evaluation of a regional climate modeling effort for the Western United States using a superensemble from weather@home.J.Climate,28,7470–7488,https://doi.org/10.1175/JCLI-D-14-00808.1.

    Luo,M.,and N.-G.Lau,2017:Heat waves in Southern China:Synoptic behavior,long-term change,and urbanization effects.J.Climate,30(2),703–720,https://doi.org/10.1175/JCLI-D-16-0269.1.

    Ma,S.M.,T.J.Zhou,D.A.Stone,O.Ang′elil,and H.Shiogama,2017:Attribution ofthe July–August2013 heatevent in Central and Eastern China to anthropogenic greenhouse gas emissions.Environmental Research Letters,12,054020,https://doi.org/10.1088/1748-9326/aa69d2.

    Marthews,T.R.,F.E.L.Otto,D.Mitchell,S.J.Dadson,and R.G.Jones,2015:The 2014 drought in the Horn of Africa:Attribution of meteorological drivers.Bull.Amer.Meteor.Soc.,96,S83–S88,https://doi.org/10.1175/BAMS-D-15-00115.1.

    Mascioli,N.R.,A.M.Fiore,M.Previdi,and G.Correa,2016:Temperature and precipitation extremes in the United States:Quantifying the responses to anthropogenic aerosols and greenhouse gases.J.Climate,29,2689–2701,https://doi.org/10.1175/JCLI-D-15-0478.1.

    McPhaden,M.J.,S.E.Zebiak,and M.H.Glantz,2016:ENSO as an integrating concept in earth science.Science,314,1740–1745,https://doi.org/10.1126/science.1132588.

    Mitchell,D.,and Coauthors,2016:Attributing human mortality during extreme heat waves to anthropogenic climate change.Environmental Research Letters,11,074006,https://doi.org/10.1088/1748-9326/11/7/074006.

    Otto,F.E.L.,2017:Attribution of weather and climate events.Annual Review of Environment and Resources,42,627–646,https://doi.org/10.1146/annurev-environ-102016-060847.

    Peng,X.,Q.N.She,L.B.Long,M.Liu,Q.Xu,J.X.Zhang,and W.N.Xiang,2017:Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta,China.Atmospheric Research,195,20–30,https://doi.org/10.1016/j.atmosres.2017.05.013.

    Qian,C.,and Coauthors,2018:Human in fluence on the record breaking cold event in January of 2016 in Eastern China.Bull.Amer.Meteor.Soc.,99(1),S118–S122,https://doi.org/10.1175/BAMS-D-17-0095.1.

    Ren,Y.-Y.,D.Parker,G.-Y.Ren,and R.Dunn,2016:Tempospatial characteristics of sub-daily temperature trends in mainland China.Climate Dyn.,46,2737–2748,https://doi.org/10.1007/s00382-015-2726-7.

    Sarofim,M.C.,and Coauthors,2016:Temperature-related death and illness.Chapter 2,The Impacts of Climate Change onHuman Health in the United States:A Scientific Assessment,U.S.Global Change Research Program,43–68.

    Sarojini,B.B.,P.A.Stott,and E.Black,2016:Detection and attribution of human influence on regional precipitation.Nature Climate Change,6(7),669–675,https://doi.org/10.1038/nclimate2976.

    Schaller,N.,and Coauthors,2016:Human in fluence on climate in the 2014 southern England winter floods and their impacts.Nature Climate Change,6,627–634,https://doi.org/10.1038/nclimate2927.

    Sparrow,S.,D.Wallom,Z.Klimont,C.Hayes,and W.Ingram,2016a:1990 to 2050 Atmospheric SO2Ancillary Files for HadCM3.[Available online from https://figshare.com/articles/Atmospheric_SO2_Ancillary_Files_for_HadCM3/3409186]

    Sparrow,S.,D.Wallom,and W.Ingram,2016b:Sulphate Ancillary Metadata and Processing Metadata and Scripts. figshare.https://doi.org/10.6084/m9.figshare.3469199.v3.

    Sun,Q.H.,C.Y.Miao,A.AghaKouchak,and Q.Y.Duan,2017:Unraveling anthropogenic influence on the changing risk of heat waves in China.Geophys.Res.Lett.,44,5078–5085,https://doi.org/10.1002/2017GL073531.

    Sun,Y.,L.C.Song,H.Yin,B.T.Zhou,T.Hu,X.B.Zhang and P.Stott,2016:Human influence on the 2015 extreme high temperature events in Western China.Bull.Amer.Meteor.Soc.,97(12),S102–S106,https://doi.org/10.1175/BAMS-D-16-0158.1.

    Yin,H.,Y.Sun,H.Wan,X.B.Zhang,and C.H.Lu,2017:Detection of anthropogenic influence on the intensity of extreme temperaturesin China.Int.J.Climatol.,37,1229–1237,https://doi.org/10.1002/joc.4771.

    Zhang,H.H.,T.L.Delworth,F.R.Zeng,G.Vecchi,K.Paffendorf,and L.W.Jia,2016:Detection,attribution,and projection of regional rainfall changes on(multi-)decadal time scales:A focus on Southeastern South America.J.Climate,29,8515–8534,https://doi.org/10.1175/JCLI-D-16-0287.1.

    Zhou,C.-L.,and K.-C.Wang,2016:Coldest temperature extreme monotonically increased and hottest extreme oscillated over Northern hemisphere land during last 114 years.Scientific Reports,6,25721,https://doi.org/10.1038/srep25721.

    一区二区三区四区激情视频| 日韩人妻高清精品专区| 精品午夜福利在线看| 国产高清国产精品国产三级| 精品少妇久久久久久888优播| 卡戴珊不雅视频在线播放| 老司机影院成人| 黑人巨大精品欧美一区二区蜜桃 | 欧美激情极品国产一区二区三区 | 夫妻午夜视频| 国产精品熟女久久久久浪| 国产成人aa在线观看| 蜜桃国产av成人99| 美女视频免费永久观看网站| 色婷婷久久久亚洲欧美| 国产精品久久久久久av不卡| 久久人人爽av亚洲精品天堂| 国产成人免费无遮挡视频| 亚洲,一卡二卡三卡| 免费观看性生交大片5| 亚洲情色 制服丝袜| 中文字幕av电影在线播放| 亚洲欧美日韩卡通动漫| 日本爱情动作片www.在线观看| av国产精品久久久久影院| 日本爱情动作片www.在线观看| 啦啦啦中文免费视频观看日本| av卡一久久| 简卡轻食公司| 午夜免费观看性视频| 成年美女黄网站色视频大全免费 | 久久精品国产鲁丝片午夜精品| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 啦啦啦在线观看免费高清www| 国产黄片视频在线免费观看| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 街头女战士在线观看网站| 日韩强制内射视频| 如何舔出高潮| 欧美日韩综合久久久久久| 国产极品粉嫩免费观看在线 | 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 欧美性感艳星| 美女国产高潮福利片在线看| 黑人巨大精品欧美一区二区蜜桃 | 最新中文字幕久久久久| 大片免费播放器 马上看| 自线自在国产av| 一个人看视频在线观看www免费| 一区二区三区精品91| 男女国产视频网站| 蜜桃国产av成人99| 波野结衣二区三区在线| 久久久久视频综合| 国产精品国产三级国产专区5o| 午夜视频国产福利| 国产 一区精品| 天美传媒精品一区二区| 国产深夜福利视频在线观看| 全区人妻精品视频| 多毛熟女@视频| 欧美日韩av久久| av专区在线播放| 国产精品 国内视频| 色哟哟·www| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 两个人的视频大全免费| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| 波野结衣二区三区在线| 亚洲内射少妇av| 熟女人妻精品中文字幕| 色5月婷婷丁香| 欧美精品一区二区免费开放| 久久青草综合色| 亚洲国产成人一精品久久久| 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 成人国产av品久久久| 久久久久久久久久人人人人人人| 亚洲国产欧美在线一区| 青春草国产在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费看av在线观看网站| 亚洲精品美女久久av网站| 欧美亚洲 丝袜 人妻 在线| 在线观看三级黄色| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 国产成人精品婷婷| 亚洲综合精品二区| 999精品在线视频| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 日韩伦理黄色片| 王馨瑶露胸无遮挡在线观看| 在线观看免费视频网站a站| 高清午夜精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 午夜福利影视在线免费观看| 熟女av电影| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 大又大粗又爽又黄少妇毛片口| 男女啪啪激烈高潮av片| 中文字幕av电影在线播放| 精品人妻一区二区三区麻豆| 高清黄色对白视频在线免费看| 一级毛片电影观看| 在线观看www视频免费| 国产欧美亚洲国产| 色吧在线观看| 九色亚洲精品在线播放| 少妇高潮的动态图| 午夜久久久在线观看| 简卡轻食公司| 国产精品99久久久久久久久| 亚洲怡红院男人天堂| 中文字幕精品免费在线观看视频 | 伦精品一区二区三区| 最黄视频免费看| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 精品久久久久久久久亚洲| 亚洲成人手机| 日韩精品免费视频一区二区三区 | 日韩不卡一区二区三区视频在线| 校园人妻丝袜中文字幕| 久久久久久久亚洲中文字幕| a级毛片在线看网站| 黄片播放在线免费| 亚洲国产精品国产精品| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 一级毛片aaaaaa免费看小| 免费高清在线观看视频在线观看| 嫩草影院入口| 亚洲精品久久成人aⅴ小说 | 在线观看www视频免费| 久久久久久久久久久免费av| 日韩三级伦理在线观看| 丝袜在线中文字幕| 成年美女黄网站色视频大全免费 | 日韩熟女老妇一区二区性免费视频| 亚洲av.av天堂| 国产精品久久久久久精品电影小说| 熟女av电影| 搡女人真爽免费视频火全软件| 国产精品久久久久成人av| 精品人妻在线不人妻| 91aial.com中文字幕在线观看| 热re99久久国产66热| 一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 免费大片18禁| 免费黄色在线免费观看| 一级爰片在线观看| 黄色配什么色好看| 亚洲一区二区三区欧美精品| 精品午夜福利在线看| 欧美日韩国产mv在线观看视频| 美女视频免费永久观看网站| 午夜免费男女啪啪视频观看| 日本黄大片高清| 欧美bdsm另类| 国产精品女同一区二区软件| av女优亚洲男人天堂| 精品久久久噜噜| 亚洲人成77777在线视频| 最新中文字幕久久久久| 欧美日韩视频高清一区二区三区二| 久久久久网色| 久久久国产欧美日韩av| 亚洲av二区三区四区| 在线观看免费日韩欧美大片 | 国产亚洲欧美精品永久| 麻豆乱淫一区二区| 亚洲成色77777| 多毛熟女@视频| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 如日韩欧美国产精品一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 久久久久人妻精品一区果冻| 亚洲欧美色中文字幕在线| 国产午夜精品久久久久久一区二区三区| 热re99久久国产66热| 日韩一区二区视频免费看| 美女主播在线视频| 亚洲精品成人av观看孕妇| videosex国产| 97在线视频观看| 在线亚洲精品国产二区图片欧美 | 亚洲成人一二三区av| 在线天堂最新版资源| 黑人欧美特级aaaaaa片| 精品人妻一区二区三区麻豆| 3wmmmm亚洲av在线观看| 亚洲国产色片| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 国产免费又黄又爽又色| 亚洲国产av影院在线观看| 亚洲五月色婷婷综合| 亚洲成人av在线免费| 丰满乱子伦码专区| 精品久久久噜噜| 看非洲黑人一级黄片| 水蜜桃什么品种好| 日本免费在线观看一区| 99久久综合免费| 国产又色又爽无遮挡免| 亚洲天堂av无毛| videossex国产| 97超碰精品成人国产| 少妇人妻久久综合中文| 婷婷成人精品国产| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 看免费成人av毛片| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 欧美日韩综合久久久久久| 中国三级夫妇交换| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| av免费观看日本| 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 亚洲少妇的诱惑av| 亚洲第一区二区三区不卡| 免费久久久久久久精品成人欧美视频 | 黄片播放在线免费| 亚洲av综合色区一区| .国产精品久久| 久久ye,这里只有精品| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 欧美日韩视频高清一区二区三区二| 男人添女人高潮全过程视频| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 我的老师免费观看完整版| 夫妻午夜视频| 91精品国产九色| 国产免费现黄频在线看| 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 色5月婷婷丁香| 黑人高潮一二区| 亚洲av不卡在线观看| 日韩一本色道免费dvd| 性色avwww在线观看| 十八禁网站网址无遮挡| 中国国产av一级| 天天影视国产精品| 爱豆传媒免费全集在线观看| 91成人精品电影| 一区二区三区精品91| 国产精品久久久久久精品电影小说| 成人亚洲欧美一区二区av| 欧美日韩视频高清一区二区三区二| 在线观看免费视频网站a站| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 午夜日本视频在线| 一本一本综合久久| 欧美xxⅹ黑人| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 中文字幕久久专区| 欧美日韩精品成人综合77777| 久久精品国产亚洲网站| 看十八女毛片水多多多| 成人影院久久| 精品久久久噜噜| 久久久久久久久大av| 亚洲av不卡在线观看| 91国产中文字幕| 国产精品99久久99久久久不卡 | 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 一本—道久久a久久精品蜜桃钙片| 简卡轻食公司| 人妻一区二区av| 99久久中文字幕三级久久日本| 久久久久久人妻| 日本av免费视频播放| 亚洲国产精品成人久久小说| 亚洲在久久综合| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 国产av一区二区精品久久| 免费播放大片免费观看视频在线观看| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到 | 插逼视频在线观看| www.av在线官网国产| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 亚洲精品色激情综合| 老熟女久久久| 日日撸夜夜添| 天堂俺去俺来也www色官网| 欧美日韩一区二区视频在线观看视频在线| 王馨瑶露胸无遮挡在线观看| 免费看不卡的av| 国产欧美日韩综合在线一区二区| 亚洲美女黄色视频免费看| 国内精品宾馆在线| 两个人的视频大全免费| 国产 精品1| 国产在线免费精品| 免费大片18禁| 不卡视频在线观看欧美| 高清不卡的av网站| 久久精品人人爽人人爽视色| av国产久精品久网站免费入址| 九草在线视频观看| 热re99久久国产66热| 国产精品.久久久| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 青春草亚洲视频在线观看| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 国产黄频视频在线观看| 亚洲成人一二三区av| 在线观看免费日韩欧美大片 | 久久精品久久久久久噜噜老黄| 欧美成人精品欧美一级黄| 亚洲色图 男人天堂 中文字幕 | 丁香六月天网| 亚洲精品色激情综合| 亚洲国产毛片av蜜桃av| 日韩av免费高清视频| 乱码一卡2卡4卡精品| 99久久中文字幕三级久久日本| 十八禁高潮呻吟视频| 亚洲伊人久久精品综合| av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| a级毛片免费高清观看在线播放| 两个人免费观看高清视频| 日本猛色少妇xxxxx猛交久久| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 亚洲精华国产精华液的使用体验| 国产综合精华液| 国产毛片在线视频| 啦啦啦中文免费视频观看日本| 亚洲国产日韩一区二区| 91精品国产国语对白视频| 免费大片黄手机在线观看| 亚洲色图综合在线观看| 免费高清在线观看日韩| 中文字幕精品免费在线观看视频 | 少妇的逼好多水| 日韩电影二区| 久久久久人妻精品一区果冻| 亚洲在久久综合| av国产精品久久久久影院| 九草在线视频观看| 亚洲国产最新在线播放| 精品熟女少妇av免费看| 欧美精品亚洲一区二区| 日产精品乱码卡一卡2卡三| 一边摸一边做爽爽视频免费| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 18禁观看日本| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 黑人高潮一二区| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 成人综合一区亚洲| 欧美另类一区| 亚洲性久久影院| av国产精品久久久久影院| 亚洲性久久影院| 激情五月婷婷亚洲| 午夜免费男女啪啪视频观看| 亚州av有码| 桃花免费在线播放| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| 精品亚洲成国产av| 一边亲一边摸免费视频| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 成人综合一区亚洲| 久久久久久伊人网av| 久久久久久人妻| 国产欧美日韩综合在线一区二区| 国产乱人偷精品视频| 桃花免费在线播放| 一区二区日韩欧美中文字幕 | 亚洲色图综合在线观看| 99国产综合亚洲精品| av不卡在线播放| 亚洲精品aⅴ在线观看| 少妇 在线观看| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说| 我的老师免费观看完整版| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕 | 男人添女人高潮全过程视频| 亚洲av电影在线观看一区二区三区| 十八禁网站网址无遮挡| 国产日韩欧美在线精品| 亚洲成色77777| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 高清av免费在线| 午夜福利视频在线观看免费| 久久久久久久久大av| 欧美97在线视频| 成人影院久久| 国产精品.久久久| 春色校园在线视频观看| 午夜日本视频在线| 亚洲精品国产av蜜桃| 亚洲一级一片aⅴ在线观看| 男女无遮挡免费网站观看| 日韩强制内射视频| 亚洲中文av在线| 中文字幕精品免费在线观看视频 | 久久久精品94久久精品| 精品人妻熟女毛片av久久网站| 亚洲婷婷狠狠爱综合网| 两个人的视频大全免费| 另类精品久久| 一级毛片 在线播放| 男女无遮挡免费网站观看| 丰满迷人的少妇在线观看| www.av在线官网国产| 婷婷色综合www| 亚洲激情五月婷婷啪啪| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 两个人免费观看高清视频| 精品少妇久久久久久888优播| 久久久久久久久久人人人人人人| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 人妻少妇偷人精品九色| 观看av在线不卡| 精品亚洲成国产av| 中文字幕最新亚洲高清| 色94色欧美一区二区| 老司机影院成人| 91国产中文字幕| 久久精品国产鲁丝片午夜精品| 免费久久久久久久精品成人欧美视频 | 国产亚洲精品久久久com| 国产在线免费精品| 一本一本综合久久| 国产精品成人在线| 国产亚洲精品第一综合不卡 | 韩国av在线不卡| 久久精品久久久久久噜噜老黄| 在线观看一区二区三区激情| 青春草亚洲视频在线观看| 亚洲av二区三区四区| 国产精品久久久久久精品电影小说| 国产精品无大码| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| 在线观看一区二区三区激情| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃 | 777米奇影视久久| 日韩成人伦理影院| 国语对白做爰xxxⅹ性视频网站| 日韩av在线免费看完整版不卡| 久久久久久久国产电影| 中文精品一卡2卡3卡4更新| 亚洲国产精品999| 成人无遮挡网站| 久久久亚洲精品成人影院| 纯流量卡能插随身wifi吗| 国产成人精品婷婷| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 久久99精品国语久久久| 国产日韩欧美亚洲二区| 中国国产av一级| 精品国产一区二区三区久久久樱花| 97精品久久久久久久久久精品| 成人国产麻豆网| 久久婷婷青草| 国产成人免费无遮挡视频| 中文天堂在线官网| 成年av动漫网址| 国产亚洲午夜精品一区二区久久| 岛国毛片在线播放| 简卡轻食公司| 少妇人妻 视频| 一区二区日韩欧美中文字幕 | 曰老女人黄片| 国产欧美日韩综合在线一区二区| 秋霞伦理黄片| 大片免费播放器 马上看| 亚洲精品乱码久久久久久按摩| 亚洲图色成人| 久久久久人妻精品一区果冻| 国产熟女欧美一区二区| a级毛色黄片| 中国三级夫妇交换| 亚洲在久久综合| 国产精品嫩草影院av在线观看| 久久久久久久久久久久大奶| 秋霞在线观看毛片| 国产国语露脸激情在线看| 秋霞伦理黄片| 18禁在线无遮挡免费观看视频| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 中文字幕最新亚洲高清| 欧美日韩一区二区视频在线观看视频在线| 国产无遮挡羞羞视频在线观看| 精品午夜福利在线看| 久久鲁丝午夜福利片| 丝袜脚勾引网站| 久久久久精品久久久久真实原创| av专区在线播放| 18禁在线无遮挡免费观看视频| freevideosex欧美| 国产日韩欧美亚洲二区| 综合色丁香网| 亚洲国产精品一区二区三区在线| 丝袜在线中文字幕| √禁漫天堂资源中文www| 亚洲av二区三区四区| 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 成年人免费黄色播放视频| 午夜激情av网站| 少妇人妻久久综合中文| 伦精品一区二区三区| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久噜噜老黄| 另类亚洲欧美激情| 春色校园在线视频观看| 精品久久久久久久久亚洲| 久久久精品免费免费高清| 午夜91福利影院| 国产一区二区三区av在线| av在线老鸭窝| 精品一区在线观看国产| 五月开心婷婷网| 麻豆乱淫一区二区| xxx大片免费视频| 国产成人精品福利久久| 久久精品夜色国产| 一本—道久久a久久精品蜜桃钙片| 国产在线视频一区二区| 狂野欧美激情性bbbbbb| 桃花免费在线播放| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影小说| 亚洲国产av影院在线观看| 高清视频免费观看一区二区| 曰老女人黄片| 亚洲av男天堂| 99re6热这里在线精品视频| 精品人妻熟女av久视频| 99久久中文字幕三级久久日本| 国产在线视频一区二区| 亚洲欧美日韩另类电影网站| 亚洲精品色激情综合| 看十八女毛片水多多多| 国产亚洲一区二区精品| 精品久久久久久久久av| 美女脱内裤让男人舔精品视频| 飞空精品影院首页| 日韩强制内射视频| 在线看a的网站| 日日啪夜夜爽| 黄色怎么调成土黄色|