• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of Anthropogenic Forcings and El Ni?o on Chinese Extreme Temperatures

    2018-06-20 01:50:08FREYCHETSPARROWTETTMINETERHEGERLandWALLOM
    Advances in Atmospheric Sciences 2018年8期

    N.FREYCHET,S.SPARROW,S.F.B.TETT,M.J.MINETER,G.C.HEGERL,and D.C.H.WALLOM

    1 School of Geosciences,University of Edinburgh,Crew Building,The King’s Buildings,Edinburgh EH9 3FF,UK

    2 Oxford e-Research Centre,University of Oxford,Oxford,OX1 2JD,United Kingdom

    1.Introduction

    Change in the risk of extreme temperatures over China has been a major focus of research(e.g.,Ren et al.,2016;Zhou and Wang,2016;Chen and Zhai,2017;Freychet et al.,2017;Luo and Lau,2017).The impact of anthropogenic forcings has been identified in several studies(e.g.,Sun et al.,2016;Yin et al.,2016,2017;Ma et al.,2017;Peng et al.,2017;Sun et al.,2017)showing an increase in the risk of high temperatures due to an increase in greenhouse gases.Meanwhile,aerosol emissions are understood to have reduced this risk due to their cooling effect(e.g.,Li et al.,2016;Mascioli et al.,2016;Dong et al.,2017),albeit these results are still largely model-dependent(Kasoar et al.,2016).Natural variability also affects extreme temperatures.More specifically,the impact of the El Ni?o–Southern Oscillation(ENSO)has been documented in several studies and is the leading mode of the interannual natural variability(McPhaden et al.,2016).However,due to the limited period of observations and the low frequency of these events(about two per decade),it is difficult to conduct strong statistical analyses on their impact,especially when investigating the most extreme temperatures.Moreover,ENSO usually exhibits a stronger signal on sea surface temperatures(SSTs)during winter,so most studies have focused on its impact at that time of the year.The influence of ENSO during summer remains difficult to evaluate,although Hu et al.(2013)showed a strengthening relationship between ENSO and extreme temperatures over China during recent decades.

    This study uses ensembles with several thousand members to evaluate the risk of summer extreme maximum temperatures over central and eastern China under different conditions.The main objective is to quantify how the most extreme temperatures(during summer)over China are sensitive to different forcings.It is important to evaluate the relative magnitudes of natural variability and anthropogenic influences.Such a study is not easy to conduct with observations only,as ENSO events are limited(about one significant El Ni?o event every five years)and annual extreme temperatures are rare too.This study aims to contribute to a better understanding of the impact of natural and human drivers of Chinese extreme temperatures,and to provide a statistical approach as a complement to observational-only studies.

    Extreme event attribution studies commonly compare ensembles of simulations;particularly,to estimate the impact of greenhouse gases and aerosols relative to a counter-factual natural world[e.g.,Black and Karoly,2016;Sarojini et al.,2016;Zhang et al.,2016;Qian et al.,2018(for recent works);Otto,2017(for a review on attribution techniques)].This method has not been commonly used to investigate how ENSO impacts the risk of extreme temperatures.Black and Karoly(2016)used such a method to analyze Australian temperatures,butfailed to find a clear ENSO signal.In this study,the relative importance of anthropogenic influences(through greenhouse gases and aerosol emissions)is compared to natural variability(i.e.,the role of ENSO,using the 2015/16 El Ni?o SST signal)using large ensemble simulations.The extended summer maxima of both daily maximum and minimum temperatures are considered.The former corresponds to the most extreme temperature during the day;the latter indicates how warm a night can be and is important for human health as it can lead to exhaustion(Sarofim et al.,2016).

    The data and methods are described in section 2 and the results are presented in section 3.Section 4 provides some discussion and concluding remarks.

    2.Methods

    2.1.Model experiment design

    The simulations were run as part of the“climate prediction.net weather@home”distributed computing project,where members of the public donate idle time on their computers to running model simulations.The weather@home setup consists of the Met Office Hadley Centre Atmospheric model(including a land/surface component),HadAM3P,running globally at a horizontal resolution of 1.25?(lat)×1.875?(lon).This is one-way-coupled with the Met Office Hadley Centre Regional Model,HadRM3P,running at a resolution of 50 km over East Asia(15?S–55?N,70?–170?E;Fig.1a).Both models have 19 vertical levels.The models include a sulfur cycle(Jones et al.,2001)and use the Moses 2 land surface scheme(Essery and Clark,2003).The weather@home 2 modeling system is described in detail in Guillod et al.(2017)and hasbeen used previously to study extreme events in many different regions of the world(e.g.,Li et al.,2015;Mar thews et al.,2015;Black et al.,2016;Haustein et al.,2016;Mitchell et al.,2016;Schaller et al.,2016).

    Fig.1.(a)weather@home East Asia 50 km region boundary(red).The shaded area represents the sponge layer in the regional model.The yellow part is the central China region and the green the East China region,used in the returnperiod analysis.(b)OSTIA(Donlon et al.,2012)May–September anomalies of SST(?C)for three different years,relative to the 1971–2000 summer climatology.For each year,the long-term change has been removed by subtracting the difference(year minus climatology)in the tropical band(30?S–30?N)averaged SST.(c)OSTIA 2016 anomalies for the Yellow Sea area only.

    Four ensembles were conducted(Table 1):a 1986–2016 climatology,used for model evaluation(in which each year was run independently);and three repetitive single-year simulations forced by estimated natural forcings(NAT),greenhouse gases only(GHG),and observed aerosols and greenhouse gas emissions(ACT).These three simulations(NAT,GHG and ACT)repeated the same warm season(April–September)several thousand times with a small perturbation to the initial potential temperature field of the atmosphere.They were conducted for three different years(2014,2015 and 2016)and were each spun up for 16 months,i.e.,starting on 1 December two years prior to the study year.During this period,a strong El Ni?o event occurred,with a peak during the winter of 2015/16(Hu and Fedorov,2017).For this study,we consider summer 2014 as a reference(before the development of ENSO),summer 2015 as an ENSO year(with a strong signal even during the summer period),and 2016 as a following ENSO year or La-Ni?a-like year(Fig.1b).During 2016,the SST anomaly shows slightly warmer temperatures over the West Pacific and cooler SST over the central East Pacific(with magnitudes overall below 1?C).Thus,2016 can also be considered as a weak negative ENSO phase,but these anomalies are relatively small compared to the 2015 patterns.

    As the ACT ensemble corresponds most closely to reality,ACT-14(values of ACT in 2014)is used to compare against other years or cases.Thus,all results are presented as deviations compared to 2014.The difference between NAT and ACT represents the anthropogenic impact,while the difference between GHG and ACT gives an estimate of the impact of aerosols.

    The model is evaluated by comparing the climatology of the highest daily maximum and minimum temperatures(TXx and TNx,respectively;Table 2)with results from ERA Interim(Dee et al.,2011),referred as ERAI in the figures.Although the simulated TXx values are too large compared to ERA-Interim over central and East China(Fig.S1),the spatial pattern is reproduced well.Comparing the model interannual variability and mean with ERA-Interim for Tmax and Tmin over central East China(Fig.S2),the model is warmer than ERA-Interim(especially Tmax)but cooler than the ground station observation.Moreover,it is consistent with the ERA-Interim trend and variability.The mean 2014–16 summer signal is also found to have a reasonable range compared to reanalysis and observation(Fig.S2),albeit the model mean is smoother due to ensemble averaging.The daily distribution of the temperatures over the region is also in good agreement with the observations(Fig.S3).The model performance is summarized with a Taylor diagram(Fig.S4)using ERA-Interim as a reference for all diagnostics.Spatial correlations are all above 0.9 and the variability of the model is close to ERA-Interim,albeit the most extreme temperatures(TXx and TNx)have slightly weaker scores than Tmax and Tmin.Station observations have weaker correlations with ERA-Interim than the model,which may be explained by their sparse spatial coverage compared to ERA Interim.

    2.2.Index definition and computation

    TX and TN are each used to compute several extreme indices during the extended summer(May–September):the summer maximum of each temperature(TXx and TNx,respectively,expressed in?C)and the number of days above the 2014 climatological 95th percentile of each temperature(TX95 and TN95,expressed in days).Table 2 summarizes the notation and definitions.

    The duration of the events is also considered,by selecting five-day persistent temperatures.To do so,the minimum temperature during the five-day time window is first selected(for each day of the summer),and then the maximum of these minima is extracted.For instance, first the minimum temperature is selected for 1–5 May,2–6 May...to 25–30 September.Then,the maximum among these minima is retained.

    Each index is computed individually for each ensemble member before being analyzed as an ensemble.Thus,results are obtained for the GHG,NAT and ACT ensembles,and for 2014,2015 and 2016.

    TXx and TNx are both fitted to generalized extreme value(GEV)distributions using,for each simulation,the maximum value at each grid point,in the extended summer season.Uncertainties in the parameter values are computed by bootstrapping(Efron and Tibshirani,1993)ACT-14 with 1000 samples and then computing the standard errors.The differences between ensembles are considered significant when they are larger than three standard deviations of the bootstrap ensemble(99.7%confidence interval).As there is a large number of members in each ensemble,the GEV fit is stable and uncertainties are small.

    Most of the results are presented as differences between cases,and thus the systematic biases of the model are cancelled out.However,when presenting results as absolute temperatures,a bias correction is first applied.The model bias is estimated by simply computing the difference between the 2014 climatology and ERA-Interim(Fig.S1c and f),and removed from the model temperatures before being displayed in the figures.

    3.Results

    ?

    Fig.2.differences in the(a–h)location and(i–p)scale parameters from the GEV fit for each ensemble.All scales are in ?C.Contours are every 0.2?C and 0.05?C intervals for the location and scale,respectively(with dashed lines indicating negative values).Only significant differences are shaded(see section 2 for details).

    Table 2.Notation for the different types of indices.

    The extended summer TXx and TNx are analyzed first.We use a GEV distribution to fit the ensemble distributions at each grid point and display the results in terms of location and scale parameters.Figure 2 displays the differences between each case,and the reference used for comparison(ACT-14)is also shown,in Fig.S5.The anthropogenic impact is quite clear and affects the temperatures over the whole region(Figs.2b and d)with an increase in the location parameter,and thus the mean summer TXx and TNx,of 1?C to 1.5?C.Conversely,aerosols tend to reduce the location parameter,by 0.5?C to 1?C(Figs.2a and c),consistent with previous findings(e.g.,Li et al.,2016).This suggests that well mixed greenhouse gases have increased the mean TXx and TNx.The scale parameter is found to be reduced by aerosols emissions(Figs.2i and k),by about 10%relative to the reference(Figs.S2c and d).This is especially the case for TNx,possibly due to the aerosols and their interaction with humidity.Another possibility is cooling reducing the potential land-surface amplification of extremes.However,this effect is small when considering all anthropogenic forcings(Figs.2j and l).This indicates that greenhouse gas emissions oppose the effect of aerosols and tend to increase the extreme temperature variability,leading to a small net effect.

    The influence of ENSO(or more specifically,SST patterns)is more variable(Figs.2e–h).During the peak of the ENSO event(2015),extreme temperatures are reduced over central and Northeast China.This is especially so for TXx,for which the location parameter changes by 0.5?C to 1?C,which is of a similar magnitude to the impact of aerosols.

    In the year after the event(2016),the impact is somewhat reversed,with an increase in temperatures over the eastern coastalregion(especially for TNx,with a magnitude of 0.5?C to 1.2?C).This is in accordance with Hu et al.(2013),who found an increase in hot days over the Yangtze River basin during El Ni?o years.This may be partly due to a warm SST anomaly(Fig.1c)in the Yellow Sea during 2015(Fig.1b).The reduction of TXx and TNx during the ENSO year is quite consistent with the negative anomaly of SST over the West Pacific(Fig.1b).Increased surface pressure over the West Pacific(Fig.S6)leads to cooler air being transported from the ocean to the continent and to milder temperatures over central China.Locally,the influence of ENSO or SST patterns can be considerable,potentially amplifying or off setting anthropogenic influences.The scale parameter mainly shows a reduction during and after ENSO,indicating less variability in extreme temperatures outside peak ENSO.This effect is local and does not correspond to the regions where the location parameter changes are the largest.

    Similar results were analyzed for five-day persistent events(not shown).The patterns and magnitude of the differences were similar to the previous results,indicating that daily extremes and persistent extremes are impacted in the same way by the different drivers.

    The shape parameter is also analyzed for daily extremes(Fig.S7).It does not show consistent large-scale signals;although,it can vary locally,indicating some changes in the tails of the distributions(i.e.,the most extreme values).Most of the differences,however,are not significant.

    As a complement to the most extreme temperatures,we also analyze the probability of temperatures exceeding their respective climatological 95th percentiles(Fig.S8).Similar to TXx and TNx,the anthropogenic influence is quite homogenous and increases TX95 and TN95 by 30%to 60%compared to the naturalized case(Fig.S8b and d).Aerosols produce stronger and more variable spatial patterns(Figs.S8a and c)than greenhouse gases,especially for TN95.Along the coastal regions,TN95 is more than doubled in GHG compared to ACT.Thus,aerosols halve the probability of nighttime high temperatures over these regions.This pattern is not visible for TX95,and as these coastal regions have overall more humidity than central regions it indicates again that aerosols have strong interaction with humidity(and thus nighttime temperatures).This may be an indirect effect of aerosols insofar as they tend to cool down the SST and thus lower the overall atmospheric humidity,especially over coastal regions.

    The impact of ENSO on TX95 and TN95(Figs.S8e–h)is similar to TXx and TNx.During 2015,TX95 and TN95 are both reduced by more than 40%over central China;whereas,after the ENSO event,TN95 is approximately doubled over the eastern coast.Thus,ENSO has a more consistent impact on the temperatures:it tends to reduce(during)or enhance(after)both the high(above the 95th percentile)and maximum temperatures,while the aerosols lead to a variable response.

    To summarize the impact of ENSO over the central China region(orange box in Fig.1a),the distribution of the regional-averaged TXx and TNx is computed and displayed(Fig.3)in terms of estimated return periods.TXx and TNx are bias-corrected first(see section 2).During the ENSO year,the return times of TXx are strongly reduced,so extreme high temperatures become less probable.For instance,a 1-in-10-year return event becomes a 1-in-50-year return event during 2015.This shift is similar for all return periods(although,it follows a logarithmic scale,meaning the effect on the highest return periods is amplified).Each case(ACT,GHG and NAT)shows the same signal,albeit it is stronger in ACT.This may be because ACT uses observed SSTs,while the other cases use modified SSTs to be consistent with the emissions or naturalized world scenario(thus,the actual pattern of ENSO may be altered).The signal is weaker for TNx,although it is still visible for each case.The anthropogenic and aerosol impacts are also quite clear,with a large shift be-tween the di ff erent cases.

    Fig.3.Return period of central China(25?–35?N,110?–117E)regional-mean temperatures(units: ?C)for each ensemble and year(colored circles)and their respective 95%confidence interval(shading).The temperatures are first bias-corrected,by removing the corresponding regional mean differences(based on the 2014 climatology)between HadRM3P and ERA-Interim(Figs.S1c and f).

    The same investigation is conducted for coastal East China(Fig.S9,and Fig.1a for the definition of the region).TNx is the most impacted over this region during the post-ENSO year,and the signal is clearly visible for all cases and all return periods.TXx does not exhibit a clear shift during the post-ENSO year,but the shift during 2015 is visible.Thus,the ENSO impact on TXx is not limited to the central China region(although it is clearer there).

    Finally,to complete the statistical approach of the study,the differences in the atmospheric circulation between each case are investigated(Fig.S6).In Had RM3P,the main differences are found for sea level pressure(SLP).During 2015,a positive anomaly extends over the West Pacific to the South Asia region.This leads to enhanced air transport from the ocean to the continent and thus moderates the temperature over central China(lower TXx).During 2016,a positive SLP anomaly is also visible over the West Pacific but it does not extend over the continent.This may lead to enhanced circulation near the coast(with possibly higher humidity and thus enhanced TNx),while central China temperatures remain more impacted by land–atmosphere processes(thus,higher TXx).The differences between the Had RM3P ensembles(ACT minus GHG and ACT minus NAT)are much weaker and suggest that the anthropogenic impact on temperature is mainly due to thermodynamic effects.It is also noticeable that the anomalies in ERA-Interim are different from the model,especially in the mid-upper troposphere.This may be due to the ensemble averaging,where only the most systematic anomalies remain.

    Finally,the seasonal signal of TX and TN is analyzed by extracting the day corresponding to TXx and TNx in each member(ensemble results displayed in Fig.4 for the differences,and Figs.S5g and h for the reference).The results show that when we consider all anthropogenic forcings,or the forcing of aerosols alone,the effect on the timing of the maxima is only slight(Figs.4a–d).ENSO exhibits a dipole pattern during the event(Figs.4e and g),with the hottest day occurring earlier in South China and later in North China,and an overall delay after the event(Figs.4f and h).As we only consider one ENSO event,it does not mean that the seasonality of the extreme temperatures is systematically modified in the same way(during and just after the event),but mainly that changes in SST patterns modify the seasonal timing of extreme temperatures.

    4.Conclusion

    The influence of anthropogenic forcings(mainly greenhouse gases and aerosols)and natural variability(using the 2015/16 ENSO event)on summer extreme temperatures over China is analyzed with multi-thousand-member ensembles.This method allows a strong statistical analysis for a single ENSO event and for the most extreme temperatures in an extended summer,albeit the results are only based on results from a single model.

    During the peak of ENSO,TXx is reduced significantly over the central China region.In 2016(post ENSO)TNx tends to increase over the eastern coastal region.The magnitude of the year-to-year anomalies is as large as the anthropogenic influence.This implies that the natural variability can influence,at a regional scale,in a significant way,extreme temperatures.Based on the model,ENSO can oppose,during the peak of the event,or amplify,the following year,the effect of greenhouse gases on summer temperature extremes.The overall return-period probability is also found to be reduced for both TX and TN during El Ni?o.The impact is mainly observed on the location parameters of the GEV fitting,meaning it is mainly due to a shift in temperatures rather than a change in variability.

    Aerosols have a strong signature in TNx over the coastal region,perhaps indicating an effect of aerosols on the humidity(including reduced evaporation due to the cooling effect,or potential changes in cloud properties).Although this is an interesting point,more experiments are needed for a better understanding.

    Fig.4.difference in the ensemble means of the average time of TXx and TNx in days.Contours are in two-day intervals(with dashed lines indicating negative values).Positive(negative)values correspond to a delay(advance)in the peak of temperatures.Shaded values are above the 99.7%confidence interval.

    Finally,the timing of the maximum temperatures during the summer shifts by more than 10 days between the year 2016 and 2014(whereas,the anthropogenic forcings did not impact this shift).This highlights how ENSO can quickly modify the seasonality of extreme temperatures,and should be an important point for seasonal forecasting.

    This study indicates that,based on model results,natural interannual variability and anthropogenic forcing have similar magnitudes of impact on extreme temperatures over China.Although,the former has a more regional effect,while the latter has a more spatially homogenous signal.

    It should be noted that this study considers only one specific ENSO event,which had a strong signal during the summer.Other ENSO events could have different impacts,depending on their SST patterns and timing.Moreover,given the possible biases in the model,the magnitude of the response in the real world could be different.We are highly confident that the patterns are realistic,given that the model has very good skill in reproducing TXx and TNx spatial characteristics.

    Acknowledgements.This work and all contributors were supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.We would like to thank the Met Office Hadley Centre PRECIS team for their technical and scientific support for the development and application of weather@home.Finally,we would like to thank all of the volunteers who have donated their computing time to climate prediction.net and weather@home.

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use,distribution,and reproduction in any medium,provided the original author(s)and the source are credited.

    Electronic supplementary material:Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-018-7258-8.

    REFERENCES

    Black,M.T.,and D.J.Karoly,2016:Southern Australia’swarmest October on record:The role of ENSO and climate change.Bull.Amer.Meteor.Soc.,97,S118–S121,https://doi.org/10.1175/BAMS-D-16-0124.1.

    Black,M.T.,and Coauthors,2016:The weather@home regional climate modelling project for Australia and New Zealand.Geoscientific Model Development,9,3161–3176,https://doi.org/10.5194/gmd-9-3161-2016.

    Chen,Y.,and P.M.Zhai,2017:Revisiting summertime hot extremes in China during 1961-2015:Overlooked compound extremes and significant changes.Geophys.Res.Lett.,44,5096–5103,https://doi.org/10.1002/2016GL072281.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137(656),553–597,https://doi.org/10.1002/qj.828.

    Dong,B.W.,R.T.Sutton,and L.Shaffrey,2017:Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe.Climate Dyn.,48,1537–1554,https://doi.org/10.1007/s00382-016-3158-8.

    Donlon,C.J.,M.Martin,J.Stark,J.Roberts-Jones,E.Fiedler,and W.Wimmer,2012:The Operational Sea Surface Temperature and Sea Ice analysis(OSTIA)system.Remote Sensing of Environment,116,140–158,https://doi.org/10.1016/j.rse.2010.10.017.

    Efron,B.,and R.J.Tibshirani,1993:An Introduction to the Bootstrap.Chapman and Hall.

    Essery,R.and D.B.Clark,2003:Developments in the MOSES 2 land-surface model for PILPS 2e.Global Planet Change,38,161–164,https://doi.org/10.1016/S0921-8181(03)00026-2.

    Freychet,N.,S.Tett,J.Wang,and G.Hegerl,2017:Summer heat waves over Eastern China:Dynamical processes and trend attribution.Environmental Research Letters,12,024015,https://doi.org/10.1088/1748-9326/aa5ba3.

    Guillod,B.P.,and Coauthors,2017:weather@home 2:validation of an improved global-regional climate modelling system.Geosci.Model Dev.,10,1849–1872,https://doi.org/10.5194/gmd-10-1849-2017.

    Haustein,K.,and Coauthors,2016:Real-time extreme weather event attribution with forecast seasonal SSTs.Environmental Research Letters,11,064006,https://doi.org/10.1088/1748-9326/11/6/064006.

    Hu,K.M.,G.Huang,and R.G.Wu,2013:A strengthened influence of ENSO on August high temperature extremes over the Southern Yangtze River Valley since the Late 1980s.J.Climate,26,2205–2221,https://doi.org/10.1175/JCLI-D-12-00277.1.

    Hu,S.N.,and A.V.Fedorov,2017:The extreme El Ni?o of 2015–2016 and the end of global warming hiatus.Geophys.Res.Lett.,44,3816–3824,https://doi.org/10.1002/2017 GL072908.

    Jones,A.,D.L.Roberts,M.J.Woodage,&C.E.Johnson,2001:Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle.J.Geophys.Res.:Atmospheres,106(D17),20293–20310,https://doi.org/10.1029/2000JD000089.

    Kasoar,M.,A.Voulgarakis,J.-F.Lamarque,D.T.Shindell,N.Bellouin,W.J.Collins,G.Faluvegi,and K.Tsigaridis,2016:Regional and global temperature response to anthropogenic SO2emissions from China in three climate models.Atmospheric Chemistry and Physics,16,9785–9804,https://doi.org/10.5194/acp-16-9785-2016.

    Li,C.X.,T.B.Zhao,and K.R.Ying,2016:Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models.Theor.Appl.Climatol.,125,529–540,https://doi.org/10.1007/s00704-015-1527-6.

    Li,S.H.,P.W.Mote,D.E.Rupp,D.Vickers,R.Mera,and M.Allen,2015:Evaluation of a regional climate modeling effort for the Western United States using a superensemble from weather@home.J.Climate,28,7470–7488,https://doi.org/10.1175/JCLI-D-14-00808.1.

    Luo,M.,and N.-G.Lau,2017:Heat waves in Southern China:Synoptic behavior,long-term change,and urbanization effects.J.Climate,30(2),703–720,https://doi.org/10.1175/JCLI-D-16-0269.1.

    Ma,S.M.,T.J.Zhou,D.A.Stone,O.Ang′elil,and H.Shiogama,2017:Attribution ofthe July–August2013 heatevent in Central and Eastern China to anthropogenic greenhouse gas emissions.Environmental Research Letters,12,054020,https://doi.org/10.1088/1748-9326/aa69d2.

    Marthews,T.R.,F.E.L.Otto,D.Mitchell,S.J.Dadson,and R.G.Jones,2015:The 2014 drought in the Horn of Africa:Attribution of meteorological drivers.Bull.Amer.Meteor.Soc.,96,S83–S88,https://doi.org/10.1175/BAMS-D-15-00115.1.

    Mascioli,N.R.,A.M.Fiore,M.Previdi,and G.Correa,2016:Temperature and precipitation extremes in the United States:Quantifying the responses to anthropogenic aerosols and greenhouse gases.J.Climate,29,2689–2701,https://doi.org/10.1175/JCLI-D-15-0478.1.

    McPhaden,M.J.,S.E.Zebiak,and M.H.Glantz,2016:ENSO as an integrating concept in earth science.Science,314,1740–1745,https://doi.org/10.1126/science.1132588.

    Mitchell,D.,and Coauthors,2016:Attributing human mortality during extreme heat waves to anthropogenic climate change.Environmental Research Letters,11,074006,https://doi.org/10.1088/1748-9326/11/7/074006.

    Otto,F.E.L.,2017:Attribution of weather and climate events.Annual Review of Environment and Resources,42,627–646,https://doi.org/10.1146/annurev-environ-102016-060847.

    Peng,X.,Q.N.She,L.B.Long,M.Liu,Q.Xu,J.X.Zhang,and W.N.Xiang,2017:Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta,China.Atmospheric Research,195,20–30,https://doi.org/10.1016/j.atmosres.2017.05.013.

    Qian,C.,and Coauthors,2018:Human in fluence on the record breaking cold event in January of 2016 in Eastern China.Bull.Amer.Meteor.Soc.,99(1),S118–S122,https://doi.org/10.1175/BAMS-D-17-0095.1.

    Ren,Y.-Y.,D.Parker,G.-Y.Ren,and R.Dunn,2016:Tempospatial characteristics of sub-daily temperature trends in mainland China.Climate Dyn.,46,2737–2748,https://doi.org/10.1007/s00382-015-2726-7.

    Sarofim,M.C.,and Coauthors,2016:Temperature-related death and illness.Chapter 2,The Impacts of Climate Change onHuman Health in the United States:A Scientific Assessment,U.S.Global Change Research Program,43–68.

    Sarojini,B.B.,P.A.Stott,and E.Black,2016:Detection and attribution of human influence on regional precipitation.Nature Climate Change,6(7),669–675,https://doi.org/10.1038/nclimate2976.

    Schaller,N.,and Coauthors,2016:Human in fluence on climate in the 2014 southern England winter floods and their impacts.Nature Climate Change,6,627–634,https://doi.org/10.1038/nclimate2927.

    Sparrow,S.,D.Wallom,Z.Klimont,C.Hayes,and W.Ingram,2016a:1990 to 2050 Atmospheric SO2Ancillary Files for HadCM3.[Available online from https://figshare.com/articles/Atmospheric_SO2_Ancillary_Files_for_HadCM3/3409186]

    Sparrow,S.,D.Wallom,and W.Ingram,2016b:Sulphate Ancillary Metadata and Processing Metadata and Scripts. figshare.https://doi.org/10.6084/m9.figshare.3469199.v3.

    Sun,Q.H.,C.Y.Miao,A.AghaKouchak,and Q.Y.Duan,2017:Unraveling anthropogenic influence on the changing risk of heat waves in China.Geophys.Res.Lett.,44,5078–5085,https://doi.org/10.1002/2017GL073531.

    Sun,Y.,L.C.Song,H.Yin,B.T.Zhou,T.Hu,X.B.Zhang and P.Stott,2016:Human influence on the 2015 extreme high temperature events in Western China.Bull.Amer.Meteor.Soc.,97(12),S102–S106,https://doi.org/10.1175/BAMS-D-16-0158.1.

    Yin,H.,Y.Sun,H.Wan,X.B.Zhang,and C.H.Lu,2017:Detection of anthropogenic influence on the intensity of extreme temperaturesin China.Int.J.Climatol.,37,1229–1237,https://doi.org/10.1002/joc.4771.

    Zhang,H.H.,T.L.Delworth,F.R.Zeng,G.Vecchi,K.Paffendorf,and L.W.Jia,2016:Detection,attribution,and projection of regional rainfall changes on(multi-)decadal time scales:A focus on Southeastern South America.J.Climate,29,8515–8534,https://doi.org/10.1175/JCLI-D-16-0287.1.

    Zhou,C.-L.,and K.-C.Wang,2016:Coldest temperature extreme monotonically increased and hottest extreme oscillated over Northern hemisphere land during last 114 years.Scientific Reports,6,25721,https://doi.org/10.1038/srep25721.

    √禁漫天堂资源中文www| 色精品久久人妻99蜜桃| 国产一区在线观看成人免费| 久久久久久免费高清国产稀缺| 久久久久免费精品人妻一区二区| 亚洲国产欧美一区二区综合| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 母亲3免费完整高清在线观看| 久久婷婷人人爽人人干人人爱| 欧美一区二区精品小视频在线| 特级一级黄色大片| 高潮久久久久久久久久久不卡| 特大巨黑吊av在线直播| 久9热在线精品视频| 亚洲国产精品成人综合色| 日本a在线网址| 国产精品1区2区在线观看.| 亚洲天堂国产精品一区在线| 欧美日韩福利视频一区二区| 黄色女人牲交| 又黄又爽又免费观看的视频| 男女那种视频在线观看| 中文字幕精品亚洲无线码一区| 欧美黑人欧美精品刺激| 人人妻人人澡欧美一区二区| 在线国产一区二区在线| 老司机福利观看| 欧美3d第一页| 在线看三级毛片| 给我免费播放毛片高清在线观看| 18禁美女被吸乳视频| 亚洲欧美日韩无卡精品| 色综合婷婷激情| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 亚洲av熟女| 99re在线观看精品视频| 精品少妇一区二区三区视频日本电影| 国产探花在线观看一区二区| 国产69精品久久久久777片 | 99久久精品热视频| 国产野战对白在线观看| 精品福利观看| 日韩欧美在线乱码| 无人区码免费观看不卡| 一本久久中文字幕| 少妇人妻一区二区三区视频| 在线观看舔阴道视频| 午夜成年电影在线免费观看| 99久久综合精品五月天人人| 国产主播在线观看一区二区| 日本免费一区二区三区高清不卡| 亚洲精品在线美女| 日韩精品青青久久久久久| 一a级毛片在线观看| 亚洲18禁久久av| 免费看美女性在线毛片视频| 国模一区二区三区四区视频 | 狂野欧美白嫩少妇大欣赏| 成年女人毛片免费观看观看9| 日韩欧美国产在线观看| 久久 成人 亚洲| 手机成人av网站| 97碰自拍视频| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 久久久国产成人精品二区| 搡老熟女国产l中国老女人| 久久久久亚洲av毛片大全| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区| 特级一级黄色大片| 一区福利在线观看| 国产av又大| 看免费av毛片| 亚洲美女黄片视频| 欧美成人一区二区免费高清观看 | 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 久99久视频精品免费| 亚洲精品av麻豆狂野| ponron亚洲| 国产一区二区激情短视频| 亚洲人与动物交配视频| 欧美乱色亚洲激情| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 亚洲专区国产一区二区| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 天堂av国产一区二区熟女人妻 | 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 波多野结衣高清无吗| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 窝窝影院91人妻| 神马国产精品三级电影在线观看 | 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 很黄的视频免费| 亚洲午夜理论影院| 欧美在线黄色| 男插女下体视频免费在线播放| 中文字幕久久专区| 97碰自拍视频| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| 午夜免费观看网址| 真人一进一出gif抽搐免费| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 亚洲人成网站高清观看| 亚洲自拍偷在线| 两个人视频免费观看高清| www.精华液| 欧美三级亚洲精品| 成在线人永久免费视频| 成人国语在线视频| 精品国产超薄肉色丝袜足j| 麻豆国产97在线/欧美 | www.自偷自拍.com| 久久天躁狠狠躁夜夜2o2o| 国产成人av激情在线播放| 91字幕亚洲| 最近视频中文字幕2019在线8| 精品久久蜜臀av无| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 欧美国产日韩亚洲一区| 亚洲精品在线观看二区| 亚洲一码二码三码区别大吗| 欧美一级a爱片免费观看看 | 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜| 久久精品综合一区二区三区| 亚洲avbb在线观看| 亚洲全国av大片| 香蕉丝袜av| 亚洲avbb在线观看| 好男人电影高清在线观看| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 99热这里只有是精品50| 国产av在哪里看| 国产成人精品无人区| 正在播放国产对白刺激| 国产精品影院久久| 成人午夜高清在线视频| 免费在线观看日本一区| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 欧美日韩国产亚洲二区| 亚洲男人天堂网一区| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 国产精品一及| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 精品乱码久久久久久99久播| 一进一出抽搐动态| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 欧洲精品卡2卡3卡4卡5卡区| 三级国产精品欧美在线观看 | 国产69精品久久久久777片 | 国产一区二区在线av高清观看| av片东京热男人的天堂| 国产午夜福利久久久久久| 午夜福利免费观看在线| 亚洲av电影不卡..在线观看| 亚洲专区中文字幕在线| 精品久久久久久久末码| 久久精品国产综合久久久| 久久精品夜夜夜夜夜久久蜜豆 | 99精品久久久久人妻精品| 啦啦啦观看免费观看视频高清| 日本五十路高清| 国产精品久久久久久人妻精品电影| 欧美久久黑人一区二区| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 国产激情欧美一区二区| 香蕉av资源在线| 日本一区二区免费在线视频| 一级黄色大片毛片| 国产亚洲精品久久久久5区| 丰满人妻熟妇乱又伦精品不卡| 亚洲全国av大片| 色播亚洲综合网| 成人一区二区视频在线观看| 香蕉av资源在线| 老司机午夜十八禁免费视频| 不卡一级毛片| 日日干狠狠操夜夜爽| 精品第一国产精品| 美女大奶头视频| 一本一本综合久久| 亚洲专区国产一区二区| 日本a在线网址| 国内精品久久久久精免费| 欧美av亚洲av综合av国产av| 狂野欧美白嫩少妇大欣赏| 国产精品99久久99久久久不卡| 久久精品综合一区二区三区| 中文在线观看免费www的网站 | 蜜桃久久精品国产亚洲av| 999久久久国产精品视频| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 美女黄网站色视频| 色综合欧美亚洲国产小说| 人妻夜夜爽99麻豆av| 国产成人精品无人区| 日日爽夜夜爽网站| 99热只有精品国产| 亚洲欧美精品综合久久99| 身体一侧抽搐| 国产成人精品无人区| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 69av精品久久久久久| 国产精品电影一区二区三区| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 日韩免费av在线播放| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 成在线人永久免费视频| 久久 成人 亚洲| 丰满的人妻完整版| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产 | 国产高清视频在线播放一区| 国产精华一区二区三区| 老司机在亚洲福利影院| 亚洲欧美一区二区三区黑人| 中文资源天堂在线| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 国产男靠女视频免费网站| 久久性视频一级片| 婷婷精品国产亚洲av| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 日韩精品免费视频一区二区三区| 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 宅男免费午夜| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| www国产在线视频色| 午夜福利高清视频| 桃红色精品国产亚洲av| 又紧又爽又黄一区二区| 一级片免费观看大全| 国产伦在线观看视频一区| 99热只有精品国产| 欧美大码av| 午夜福利欧美成人| 首页视频小说图片口味搜索| 老汉色∧v一级毛片| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 中文在线观看免费www的网站 | 日韩大尺度精品在线看网址| 免费电影在线观看免费观看| 级片在线观看| 少妇被粗大的猛进出69影院| 蜜桃久久精品国产亚洲av| 国产亚洲精品第一综合不卡| 三级毛片av免费| 亚洲电影在线观看av| 听说在线观看完整版免费高清| 中文在线观看免费www的网站 | 九色国产91popny在线| avwww免费| 中文字幕精品亚洲无线码一区| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 色播亚洲综合网| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站 | 精品国产美女av久久久久小说| 久久精品国产99精品国产亚洲性色| 成人国产一区最新在线观看| 一进一出抽搐动态| 男人舔女人的私密视频| 精品欧美国产一区二区三| 久久国产精品影院| 国产精品 国内视频| 国产精品乱码一区二三区的特点| 久久人妻福利社区极品人妻图片| 黑人操中国人逼视频| 国产黄a三级三级三级人| 男女那种视频在线观看| 深夜精品福利| 精品久久久久久久久久免费视频| 1024香蕉在线观看| 高清在线国产一区| 婷婷六月久久综合丁香| 日本在线视频免费播放| 99久久精品热视频| 精品久久久久久久久久久久久| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 又粗又爽又猛毛片免费看| 久久久国产成人免费| 变态另类成人亚洲欧美熟女| 日韩高清综合在线| 夜夜看夜夜爽夜夜摸| 免费看十八禁软件| 国产视频一区二区在线看| 欧美zozozo另类| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 国产亚洲精品一区二区www| 欧美一区二区国产精品久久精品 | 免费av毛片视频| 校园春色视频在线观看| 午夜a级毛片| 成熟少妇高潮喷水视频| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 丁香欧美五月| 特大巨黑吊av在线直播| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 免费av毛片视频| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色| 亚洲精品在线美女| 欧美性长视频在线观看| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 日韩 欧美 亚洲 中文字幕| 婷婷丁香在线五月| 在线观看一区二区三区| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区| 国产片内射在线| 一进一出好大好爽视频| 国产高清videossex| 他把我摸到了高潮在线观看| 亚洲人成网站高清观看| 天堂√8在线中文| 99精品在免费线老司机午夜| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 极品教师在线免费播放| 757午夜福利合集在线观看| av视频在线观看入口| 曰老女人黄片| 久久久久国内视频| 不卡一级毛片| 亚洲人与动物交配视频| 亚洲乱码一区二区免费版| 国产亚洲欧美98| 久久精品人妻少妇| 国产69精品久久久久777片 | 日本a在线网址| 岛国在线观看网站| 国产成人精品久久二区二区91| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 搞女人的毛片| av超薄肉色丝袜交足视频| 三级男女做爰猛烈吃奶摸视频| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 香蕉国产在线看| 久久久久久人人人人人| 两人在一起打扑克的视频| 12—13女人毛片做爰片一| 亚洲人与动物交配视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| 国产成人精品久久二区二区免费| 国产伦人伦偷精品视频| 黄色成人免费大全| 这个男人来自地球电影免费观看| 我的老师免费观看完整版| 国产成人aa在线观看| 精品人妻1区二区| www国产在线视频色| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全电影3| 男女床上黄色一级片免费看| 免费在线观看日本一区| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| av福利片在线观看| 欧美高清成人免费视频www| 国产精品自产拍在线观看55亚洲| 色老头精品视频在线观看| 一边摸一边抽搐一进一小说| 日本黄大片高清| 精品熟女少妇八av免费久了| 久久久国产欧美日韩av| √禁漫天堂资源中文www| 日韩欧美三级三区| 男男h啪啪无遮挡| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 老汉色∧v一级毛片| 非洲黑人性xxxx精品又粗又长| 日韩成人在线观看一区二区三区| 欧美中文综合在线视频| 亚洲av成人av| 国产亚洲精品一区二区www| 亚洲aⅴ乱码一区二区在线播放 | xxxwww97欧美| 国产又色又爽无遮挡免费看| 两个人看的免费小视频| or卡值多少钱| 国产免费男女视频| 精品久久久久久久末码| 一区二区三区高清视频在线| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 亚洲 欧美一区二区三区| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 日本一二三区视频观看| 大型黄色视频在线免费观看| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| xxx96com| 听说在线观看完整版免费高清| 亚洲一区中文字幕在线| tocl精华| 亚洲乱码一区二区免费版| 午夜成年电影在线免费观看| 亚洲熟妇熟女久久| 欧美 亚洲 国产 日韩一| 中亚洲国语对白在线视频| 动漫黄色视频在线观看| xxxwww97欧美| 丰满的人妻完整版| 国产1区2区3区精品| 在线观看美女被高潮喷水网站 | 亚洲七黄色美女视频| av福利片在线观看| 欧美日韩福利视频一区二区| av国产免费在线观看| 欧美大码av| 久久久国产精品麻豆| 日韩精品中文字幕看吧| 久久亚洲真实| 999精品在线视频| 亚洲免费av在线视频| 丰满的人妻完整版| 中文字幕av在线有码专区| 欧美zozozo另类| 999久久久精品免费观看国产| 午夜老司机福利片| 久久亚洲精品不卡| 中文字幕久久专区| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| 久久久精品国产亚洲av高清涩受| 国产高清激情床上av| 日日夜夜操网爽| 制服丝袜大香蕉在线| 变态另类成人亚洲欧美熟女| 午夜老司机福利片| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| 最近最新中文字幕大全免费视频| 亚洲精品中文字幕在线视频| www国产在线视频色| 免费在线观看完整版高清| 人人妻人人看人人澡| 久久亚洲真实| 好男人电影高清在线观看| 亚洲av电影不卡..在线观看| АⅤ资源中文在线天堂| 成人高潮视频无遮挡免费网站| 香蕉国产在线看| 亚洲成人精品中文字幕电影| 黑人欧美特级aaaaaa片| 在线观看美女被高潮喷水网站 | 夜夜爽天天搞| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 久久精品影院6| 亚洲va日本ⅴa欧美va伊人久久| 成人手机av| 亚洲自拍偷在线| 久久热在线av| 日本免费a在线| 久久精品91蜜桃| 成年免费大片在线观看| 精品乱码久久久久久99久播| 国产伦在线观看视频一区| 桃红色精品国产亚洲av| 午夜福利18| 亚洲人成网站高清观看| 18禁美女被吸乳视频| 国产一区二区三区视频了| 免费看日本二区| www.999成人在线观看| netflix在线观看网站| 亚洲精品久久国产高清桃花| 免费看a级黄色片| 精品久久久久久久久久久久久| 国产一区二区三区在线臀色熟女| 国产视频一区二区在线看| 亚洲成a人片在线一区二区| 国产91精品成人一区二区三区| 91九色精品人成在线观看| 男人的好看免费观看在线视频 | 亚洲第一电影网av| 九九热线精品视视频播放| 在线观看66精品国产| 久久久久性生活片| 亚洲,欧美精品.| 国产亚洲精品一区二区www| 禁无遮挡网站| 成人三级黄色视频| 精品国内亚洲2022精品成人| 色播亚洲综合网| www.自偷自拍.com| 中文在线观看免费www的网站 | 男插女下体视频免费在线播放| 精品人妻1区二区| 久久热在线av| 亚洲七黄色美女视频| ponron亚洲| 国内久久婷婷六月综合欲色啪| 久久久精品欧美日韩精品| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| 哪里可以看免费的av片| 婷婷精品国产亚洲av| 亚洲人成伊人成综合网2020| 黄片小视频在线播放| 99国产精品一区二区三区| av福利片在线| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 国产精华一区二区三区| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频| 国产精品 国内视频| 国产男靠女视频免费网站| 精品一区二区三区av网在线观看| 久久人妻福利社区极品人妻图片| 麻豆久久精品国产亚洲av| 法律面前人人平等表现在哪些方面| 亚洲精品粉嫩美女一区| 777久久人妻少妇嫩草av网站| 午夜老司机福利片| 黄片小视频在线播放| 亚洲最大成人中文| 国产成人av教育| 精品乱码久久久久久99久播| 757午夜福利合集在线观看| 狂野欧美白嫩少妇大欣赏| 宅男免费午夜| 757午夜福利合集在线观看| 国产成人一区二区三区免费视频网站| 丰满人妻一区二区三区视频av | 国产成人啪精品午夜网站| 国产精品自产拍在线观看55亚洲| 欧美日韩黄片免| 午夜成年电影在线免费观看| 叶爱在线成人免费视频播放| 每晚都被弄得嗷嗷叫到高潮| 高清在线国产一区| 少妇裸体淫交视频免费看高清 | 国产精华一区二区三区| 国产又色又爽无遮挡免费看| 国产亚洲精品综合一区在线观看 | 国产男靠女视频免费网站| 日韩大尺度精品在线看网址| 久久精品91无色码中文字幕| 欧美av亚洲av综合av国产av|