• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Increasing Flash Floods in a Drying Climate over Southwest China

    2018-06-20 01:50:26ChanXIAOPeiliWULixiaZHANGandRobinCLARK
    Advances in Atmospheric Sciences 2018年8期

    Chan XIAO,Peili WU,Lixia ZHANG,and Robin T.CLARK

    1 National Climate Centre,China Meteorological Administration,Beijing 100081,China

    2 Met Office Hadley Centre,FitzRoy Road,Exeter EX1 3PB,UK

    3 Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    1.Introduction

    The hydrological cycle is likely to strengthen in a warmer world with increased globally averaged rainfall(e.g.,Wu et al.,2010;IPCC,2013).However,changesare highly unlikely to be uniform.While mid–high latitudes and(already wet)tropical regions are likely to become wetter,the subtropics are expected to become drier(Chou and Neelin,2004;Chou et al.,2009),increasing the frequency of regional drought(Dai,2012).For policymakers preparing adaptation strategies,these differing trends can be confusing as well as expensive to prepare for,especially for regions with a mixed tropical/subtropical climate.

    Southwest China,southeast of the Tibetan Plateau,is located in the subtropics around 25?N(Fig.1).The region is characterized by clearly distinctive dry and wet seasons.Summer and autumn make up the wet(rainy)season,contributing 80%of total annual precipitation(Qin et al.,1997).Summer rainfall in Southwest China is predominantly convective and highly dependent on surface heating and consequently usually occursin the afternoon orearly evening,often in short episodes of high intensity.

    The region is particularly sensitive to long-term climate variability and anthropogenic climate change.Recent years have seen some of the worst meteorological disasters in history,with profound impacts on society and the economy.Despite occurring during the rainy season,severe droughtduring summer 2006 caused water scarcity for 18 million people and nearly 2 billion US$of economic losses(Li et al.,2009).In the dry season,drought events have become more and more frequent.The severe drought of 2009/10 lasted for three consecutive seasons(Huang et al.,2012),causing drinking water shortages for 19 million people and livestock and 3 billion US$of economic losses(Sun et al.,2012).Since the 2009/10 drought,a further six years of spring drought have also occurred in Yunnan Province(China Meteorological Administration,http://news.sciencenet.cn/htmlnews/2014/12/310444.shtm).

    A further key characteristic of Southwest China is its terrain.This is complex and mountainous,with an average height of 1500 m above sea level and varying between 100 m and 6000 m(Fig.1).This often enhances the impacts of the most intense convective rainfall episodes,frequently causing landslides and flash floods,such as a series of events that caused devastation in Gongshan County(a mudslide triggered by torrential rain left 67 people missing),Yunnan,during August 2010.(http://www.reuters.com/article/us-china-landslide-idUSTRE67H0KL20100818).

    Fig.1.Location of the Southwest China drought region(shaded:surface elevation;units:m)and the wet season(summer and autumn)precipitation proportion to the annual precipitation amount averaged from 1961–2013(contours;units:%).The target area is marked by a rectangle and the 142 rain gauge stations in this area are indicated by black dots.

    Drought and floods are the principal meteorological disasters in this region and account for 70%of total economic losses from meteorological disasters(Qin et al.,1997;Cheng et al.,2009).By virtue of the dual challenges of drought and flood,Southwest China is particularly vulnerable to changes in long-term climate variability and anthropogenic climate change.By occurring separately,for example in di ff erent years,both could potentially become more frequent in future.

    Increasing precipitation extremes against a drying climate background is a new phenomenon and poses new challenges for climate adaptation and water resources management.Awareness and scientific understanding of these challenges are thus clearly beneficial to policymakers,as well as the general public,for this predominantly rural,relatively poor region of China,heavily dependent on agriculture(Qiu,2010;Wang et al.,2015a).A combined assessment of the dual drought and flood challenges is largely absent in the literature and thus forms a key aim of this paper.Section 2 describes data and methods;section 3 presents the main findings.The whole paper is summarized in section 4 with conclusions.

    2.Data and methods

    Southwest China is defined here as the geographical area bounded by the rectangle(22?–29?N,96?–106?E)as shown in Fig.1.This particular region is the focus here in light of recent impacts and its already high vulnerability to natural disasters.Rain gauge data are taken from the National Meteorological Information Center(NMIC),China Meteorological Administration,which runs a nationwide observational network of over 2400 weather stations.There are 142 stations(shown as dotted in Fig.1)in our target region for the years 1971–2013.To describe changes in extreme aspects of this rainfall requires analysis of hourly observations rather than of daily,24-h means used in most studies.Of the 142 stations,61 have hourly observations.Rainfall accumulations were recorded using either siphon or tipping bucket rain gauges up to the year 2000 and automatic meteorological stations thereafter.Daily values were compiled from manual observations of six-hourly accumulations.Both hourly and daily data were quality controlled by the NMIC using extreme value and consistency tests.Further quality control involved a consistency test between the hourly daily and quality-controlled daily data(NMIC,2012,2013;Zhang et al.,2016).The crop areas affected by floods and droughts from 1971 to 2013 were supplied by the Chinese Ministry of Agriculture(http://202.127.42.157/moazzys/zaiqing.aspx).

    3.Results

    Fig.2.Annual(a)drought-affected and(b) flood-affected crop area(units:103 km2)in Yunnan Province,1971–2013.Black lines show corresponding linear trends.Note:there is no drought-affected crop area data in 1971 and no flood-affected crop area data in 1982.

    Figure 2 shows the historical records of crop areas affected by drought(Fig.2a)and floods(Fig.2b)for the period 1971–2013 in Yunnan Province based on annual statistics from the Chinese Ministry of Agriculture.It is clear that impacts from drought have significantly increased during the past 43 years,with the extreme 2009/10 drought(affecting an area about four times greater than that in a normal year)consistent with analysis by Zhang et al.(2013).The drought affected crop area has more than doubled since 1971.In the meantime,the crop area affected by floods has also increased dramatically.For the same period,the flood-affected crop area has increased by 96%,statistically significant at the 1%level(Fig.2b).It is also noted here that the increase in floods has not been as steady as drought,with a strong interdecadal signal.

    Figure 3 shows observed annual and wet season(summer and autumn)precipitation accumulations(red and black lines,respectively)area-averaged for Southwest China.A significant(at the 90%level,based on the Student’st-test)decreasing trend in annual total precipitation of 18.2 mm(10 yr)?1is clearly shown.This correlates well(r= ?0.37)with the increasing drought occurrence shown in Fig.2a.The wet season rainfall total(black line,of an average 797 mm)accounts for 80%of the annual total.This large contribution is clearly reflected in the consistency between the interannual variability of the annual and wet season totals.The decreasing annual trend is clearly dominated by a similar trend in the wet season[of?18.9 mm(10 yr)?1or?2.4%(10 yr)?1,also significant at the 10%level].

    Acleardrying is seen in both the annualtotal and wet sea-son precipitation experience after about 2000,which accelerated the overall trend,and which has attracted some concern(Wang et al.,2015a).Our results support the findings of Xu et al.(2015)and Wang et al.(2015b).Xu et al.(2015)and Wang et al.(2015b)pointed out this rainfall variation and its possible cause over Southwest China in summer and autumn,respectively.Xu et al.(2015)suggested strong contributions to the drying from changes in the northwestern Pacific subtropical and South Asian anticyclones.These key circulation patterns heavily influence water vapor convergence and vertical motion over Southwest China.They also suggested how warming in the tropical Atlantic warming,via wave activity anomalies over Eurasia,could have played a role.There remains,however,much uncertainty regarding the robustness of such mechanisms.

    Figure 3 also shows the high contribution to the annual rainfall from that during the wet season.Any increase in dry season rainfall is unlikely to significantly reverse the annual total trend,since rainfall during this season contributes little to the annual total.Most recent studies on Chinese drought have tended to focus on the reasons for winter and spring season droughts in Southwest China.Tan et al.(2017),for example,suggested a role of decadal Arctic Oscillation and El Ni?o variability as contributors to winter drought.The trends shown above,however,suggest a stronger focus is needed on summer drought trends,whose causes currently remain unexplained.

    Fig.3.Observed area(22?–29?N,96?–106?E)averaged wet season(summer and autumn)rainfall(left axis;black line;units:mm),annual mean rainfall(left axis;red line;units:mm)and contributions from the wettest 5%summer hours(right axis;blue line;units:%)during 1971–2013.Dashed lines show corresponding linear trends.

    We now consider the wettest 5%of hours,in view of their impacts mentioned earlier.The threshold of the wettest 5%of hours was determined by pooling together all summer hours from the whole period.The blue line in Fig.3 shows the percentage proportion of the summer accumulation from rainfall that fell during the wettest 5%of summer hours since 1971.A significant(at the 90%level)increasing trend is present.A linear upward trend of 1.4%(10 yr)?1is statistically significant at the 10%level.Interestingly,this is of an opposite sign to that of the drying trend in summer season totals,despite both occurring during summer.The opposing trends strongly match those,described earlier,of the drought and flood affected areas in Fig.2.This is a key finding of this study and explains the observed increases in damages from both drought and floods.

    In order to ensure that the trends shown in Fig.3 are not dominated by a small subset of stations,Fig.4 shows the spatial distribution of trends in summer rainfall(Fig.4a)and the proportion of total summer rainfall from the wettest 5%of hours(Fig.4b).Decreasing trends of total summer rainfall(significant in the south)are seen from almost all stations in the region.However,similar to what we have seen from Fig.3 above,this trend is contradicted by a positive trend in the contribution to these totals from the wettest 5%of hours(for the stations from which hourly data were available).To examine the extent of this contradiction in terms of the rainfall distribution,the lower panels of Fig.4 show the trends in rainfall totals from hours of low(<2 mm)and high(>20 mm)intensity rainfall.For the low intensity,Fig.4c shows a widespread decreasing trend,particularly in the west,of up to 8 mm(10 yr)?1.The decreasing trend at most stations is statistically significant at the 10%level.In contrast,an increasing trend is seen(Fig.4d)in the high intensity rainfall.

    It is also useful to examine how rainfall of differing intensity contributes to the overall total.We do this here by considering categories of contribution to total seasonal rainfall,conditioned on hourly intensity.For this,the hourly intensities were initially ranked from driest to wettest.Then,starting from the driest hour,hours were collated together until their sum of rainfall reached 10%of the seasonal total.The observed trend for this first 10%(“category of contribution conditioned on intensity 1”)was then calculated.The process was then repeated for a further nine,progressively wetter 10%categories.Figure 5 shows the rainfall totals and frequency trends for all 10 categories.

    Fig.4.Linear trends[units:mm(10 yr)?1]for the period 1971–2013 of the(a)summer rainfall,(b)proportion of total summer rainfall that fell during the wettest 5%of summer hours,and(c,d)summer rainfall during hours of rainfall intensity(c)<2 mm h?1 and(d)>20 mm h?1.Filled circles denote trends statistically significant at the 10%level.

    Decreasing trends dominate the six lightest intensity categories,which summed together account for 60%of the total.For the high intensity categories,increases are seen.Overall,the results suggest that the decreasing low intensity rainfall more than off sets the increase in high intensity rainfall culminating in the decrease in total rainfall.The positive trend in high intensity rainfall,however,suggests a greater risk of flash floods.

    The results shown here support similar recent findings in the literature using daily mean observations.For instance,Li et al.(2012)showed significant increasing regional trends in 99th percentile and maximum one-day precipitation values concomitant with shorter periods of consecutive wet days.Chen and Zhai(2014)reported fewer wet days and wet periods of longer than three days but more frequent wet periods of less than three.However,a recent study by Ma et al.(2015)found that almost all precipitation categories showed decreasing trends for both precipitation amount and frequency from 1960–2013 over Southwest China.Taken together with the literature,however,our analysis shows that against the obviously decreasing rainfall background over Southwest China,low intensity events are becoming significantly dryer whilst heavy rainfall intensity events are increasing.

    4.Conclusions

    Fig.5.Linear trends[units:%(10 yr)?1],relative to the climatological mean of each category,of observed summer(a)rainfall and(b)frequency for categories of contribution to total rainfall,conditioned on intensity.Each category contributes 10%to the total.Rainfall intensity is smallest for the leftmost categories and greatest for the rightmost.

    It is generally expected that global warming will strengthen the hydrological cycle with increased precipitation globally.The increase,however,is highly inhomogeneous,with the tropics and polar regions getting wetter whilst the subtropics are becoming drier.Southwest China,in the subtropics,southeast of the Tibetan Plateau,consequently faces a generally drying future.Annual precipitation is dominated by the wet season and characterized by convective rainfall.Using annual statistical records from the Chinese Ministry of Agriculture,this paper documents an increasing trend of drought and floods.By analyzing high-resolution precipitation observations,the annual and wet season precipitation over Southwest China is shown to have decreased during the period 1971–2013.A significant downward trend[?2.4%(10 yr)?1]is found for the wet season’s rainfall.However,precipitation extremes over the region have increased.Rainfall during the wettest 5%of hours has increased,with a trend of 1.4%(10 yr)?1.Rainfall during hours with at least 20 mm has also shown an increasing trend,at the expense of decreasing low-intensity rainfall.

    The combination of decreasing annual and wet season total rainfall with increasing extremes poses an increasing risk of flash floods with a drying climate for the region.If these trends continue in the future,as suggested by Wang et al.(2014)and Wu et al.(2015),based on CMIP5 model projections,policymakers and the general public in the region will have to deal with the dual challenge of not only preparing for drought-related water shortages and agricultural stress,but also increasingly frequent and extreme flash floods and landslides.Further research along this direction is clearly required to build on the findings presented here.This includes improving understanding of the mechanisms,as well as the quantification and reduction of uncertainties,ultimately allowing reliable future climate projections for the region.

    Acknowledgements.This work was jointly supported by the National Key R&D Program of China(Grant Nos.2016YFE0102400 and 2017YFC1502701)and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    REFERENCES

    Chen,Y.,and P.M.Zhai,2014:Changing structure of wet periods across southwest China during 1961–2012.Climate Research,61,123–131,https://doi.org/10.3354/cr01247.

    Cheng,J.G.,H.M.Yan,H.S.Yan,and M.E.Xie,2009:Analysis on Characteristic and Cause of Severe Climate Disaster in Yunnan.China Meteorology Press,250 pp.(in Chinese)

    Chou,C.,and J.D.Neelin,2004:Mechanisms of global warming impacts on regional tropical precipitation.J.Climate,17,2688–2701,https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    Chou,C.,J.D.Neelin,C.A.Chen,and J.Y.Tu,2009:Evaluating the “rich-get-richer”mechanism in tropical precipitation change under global warming.J Climate,22,1982–2005,https://doi.org/10.1175/2008JCLI2471.1.

    Dai,A.G.,2012:Increasing drought under global warming in observations and models.Nature Climate Change,3,52–58,https://doi.org/10.1038/nclimate1633.

    Huang,R.H.,Y.Liu,L.Wang,and L.Wang,2012:Analyses ofthe causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010.Chinese Journal of Atmospheric Sciences,36(3),443–457,https://doi.org/10.3878/j.issn.1006-9895.2011.11101.(in Chinese with English abstract)

    IPCC,2013:Summary for policymakers.T.F.Stocker et al.,Eds.,Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge and New York.

    Li,Y.H.,H.M.Xu,and D.Liu,2009:Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006.Acta Meteorologica Sinica,67,122–132,https://doi.org/10.11676/qxxb2009.013.(in Chinese with English abstract)

    Li,Z.X.,and Coauthors,2012:Changes of daily climate extremes in southwestern China during 1961–2008.Global and Planetary Change,80-81,255–272,https://doi.org/10.1016/j.gloplacha.2011.06.008.

    Ma,S.M.,T.J.Zhou,A.G.Dai,and Z.Y.Han,2015:Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013.J.Climate,28,6960–6978,https://doi.org/10.1175/JCLI-D-15-0011.1.

    NMIC(National Meteorological Information Center),2012:Assessment Report of Chinese national meteorological stations’basic meteorological element daily data sets Version3.0.(in Chinese)

    NMIC(National Meteorological Information Center),2013:Quality Assessment Report of Chinese national meteorological stations’hourly precipitation data sets Version1.0.(in Chinese)

    Qin,J.,J.H.Ju,and M.E.Xie,1997:Weather&Climate over Low Latitudes Plateau.China Meteorology Press,210 pp.(in Chinese)

    Qiu,J.,2010:China drought highlights future climate threats.Nature,465,142–143,https://doi.org/10.1038/465142a.

    Sun,L.,F.M.Ren,Z.Y.Wang,Y.Y.Liu,Y.J.Liu,P.L.Wang,and D.Q.Wang,2012:Analysis of climate anomaly and causation in August 2011.Meteorological Monthly,38,615–622.(in Chinese with English abstract)

    Tan,H.J.,R.S.Cai,J.L.Chen,and R.H.Huang,2017:Decadal winter drought in Southwest China since the late 1990s and its atmospheric teleconnection.International Journal of Climatology,37,455-467,https://doi.org/10.1002/joc.4718.

    Wang,L.,W.Chen,and W.Zhou,2014:Assessment of future drought in Southwest China based on CMIP5 multi model projections.Adv.Atmos.Sci.,31(5),1035–1050,https://doi.org/10.1007/s00376-014-3223-3.

    Wang,L.,W.Chen,W.Zhou,and G.Huang,2015a:Drought in Southwest China:A review.Atmospheric and OceanicScience Letters,8,339–344,https://doi.org/10.3878/AOSL 20150043.

    Wang,L.,W.Chen,W.Zhou,and G.Huang,2015b:Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China.Climate Dyn.,45,2527–2539,https://doi.org/10.1007/s00382-015-2490-8.

    Wu,J.,B.T.Zhou,and Y.Xu,2015:Response of precipitation and its extremes over China to warming:CMIP5 simulation and projection.Chinese Journal of Geophysics,58(5),461–473,https://doi.org/10.1002/cjg2.20187.

    Wu,P.L.,R.Wood,J.Ridley,and J.Lowe,2010:Temporary acceleration of the hydrological cycle in response to a CO2 rampdown.Geophys.Res.Lett.,37,L12705,https://doi.org/10.1029/2010GL043730.

    Xu,Z.Q.,K.Fan,and H.J.Wang,2015:Decadal Variation of Summer Precipitation over China and Associated Atmospheric Circulation afterthe Late 1990s.J.Climate,28,4086–4106,https://doi.org/10.1175/JCLI-D-14-00464.1.

    Zhang,M.J.,J.Y.He,B.L.Wang,S.J.Wang,S.S.Li,W.L.Liu,and X.N.Ma,2013:Extreme drought changes in Southwest China from 1960 to 2009.Journal of Geographical Sciences,23(1),3–16,https://doi.org/10.1007/s11442-013-0989-7.

    Zhang,Q.,Y.F.Zhao,and S.H.Fan,2016:Development of hourly precipitation datasets for national meteorological stations in China.Torrential Rain and Disasters,35(2),182–186,https://doi.org/10.3969/j.issn.1004-9045.2016.02.011.(in Chinese with English abstract)

    国产成人91sexporn| 国产激情偷乱视频一区二区| 精品人妻熟女av久视频| av免费在线看不卡| 日本五十路高清| 一级av片app| 国产亚洲av嫩草精品影院| 国产精品,欧美在线| 色噜噜av男人的天堂激情| 变态另类成人亚洲欧美熟女| 亚洲,欧美,日韩| 欧美日本视频| 99久久久亚洲精品蜜臀av| www.色视频.com| 69人妻影院| 久久精品国产亚洲网站| 国产在线精品亚洲第一网站| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| av在线观看视频网站免费| 少妇被粗大猛烈的视频| 国产三级在线视频| 亚洲一区二区三区色噜噜| 在线a可以看的网站| 伦精品一区二区三区| 99久久成人亚洲精品观看| 久久久久性生活片| 一本久久中文字幕| 变态另类丝袜制服| 神马国产精品三级电影在线观看| 精品久久久噜噜| 成年免费大片在线观看| 韩国av在线不卡| 亚洲七黄色美女视频| 国产高清激情床上av| 国产av在哪里看| 国产午夜福利久久久久久| 欧美日韩国产亚洲二区| 国产欧美日韩精品一区二区| 久久人人爽人人片av| 给我免费播放毛片高清在线观看| 嫩草影院新地址| 亚洲七黄色美女视频| 一夜夜www| 搡老妇女老女人老熟妇| 免费看美女性在线毛片视频| 卡戴珊不雅视频在线播放| 欧美bdsm另类| 国产精品av视频在线免费观看| 亚洲精品乱码久久久久久按摩| 久久人人精品亚洲av| 国产极品精品免费视频能看的| 蜜桃久久精品国产亚洲av| 成人漫画全彩无遮挡| 草草在线视频免费看| 亚洲成人精品中文字幕电影| 伦理电影大哥的女人| 成人欧美大片| 中文在线观看免费www的网站| 91精品国产九色| 99在线视频只有这里精品首页| 免费在线观看成人毛片| 免费黄网站久久成人精品| 国产亚洲欧美98| 美女国产视频在线观看| 久久精品国产清高在天天线| 日韩欧美三级三区| 国产精品一二三区在线看| 一边亲一边摸免费视频| 乱人视频在线观看| 成人漫画全彩无遮挡| 在线观看午夜福利视频| 午夜福利视频1000在线观看| 精品久久久久久久末码| 天天躁日日操中文字幕| 精品久久久久久久久av| 国产视频首页在线观看| 91在线精品国自产拍蜜月| 国产精品三级大全| 成人漫画全彩无遮挡| 国产成人影院久久av| 99热6这里只有精品| 免费观看的影片在线观看| 国产真实乱freesex| 午夜福利成人在线免费观看| 麻豆av噜噜一区二区三区| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 亚洲乱码一区二区免费版| 亚洲av成人av| 天美传媒精品一区二区| 一本久久中文字幕| 51国产日韩欧美| 乱系列少妇在线播放| 日本黄色片子视频| 国产高清三级在线| 亚洲国产精品国产精品| 99热这里只有是精品50| kizo精华| 成人毛片60女人毛片免费| 国产高清激情床上av| 中文精品一卡2卡3卡4更新| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| 国产女主播在线喷水免费视频网站 | 欧美xxxx性猛交bbbb| 久久6这里有精品| 久久久久九九精品影院| 国产精品久久久久久久久免| 成人美女网站在线观看视频| 夫妻性生交免费视频一级片| 男人舔奶头视频| 亚洲欧洲国产日韩| 嫩草影院精品99| 午夜老司机福利剧场| 少妇人妻精品综合一区二区 | 国产精品乱码一区二三区的特点| 欧美精品一区二区大全| 亚洲18禁久久av| 岛国在线免费视频观看| 两个人视频免费观看高清| 性色avwww在线观看| 国产黄色视频一区二区在线观看 | 欧美日韩乱码在线| 一区二区三区免费毛片| 人妻系列 视频| 一级毛片我不卡| 一本久久精品| 欧美色视频一区免费| 国产私拍福利视频在线观看| 亚洲成人中文字幕在线播放| 在线观看av片永久免费下载| 国产精品一及| 一级毛片我不卡| 午夜福利成人在线免费观看| 国产视频首页在线观看| 国产高清有码在线观看视频| 性色avwww在线观看| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| 一个人观看的视频www高清免费观看| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| 大香蕉久久网| 日韩av不卡免费在线播放| 国产av在哪里看| 国产白丝娇喘喷水9色精品| 色综合色国产| 91aial.com中文字幕在线观看| 97在线视频观看| 综合色丁香网| 午夜精品在线福利| 国产老妇伦熟女老妇高清| 成人亚洲精品av一区二区| 欧美色欧美亚洲另类二区| 国产av麻豆久久久久久久| 免费无遮挡裸体视频| eeuss影院久久| 最近中文字幕高清免费大全6| 欧美成人一区二区免费高清观看| 婷婷色av中文字幕| 成人二区视频| 国产免费男女视频| 日韩精品青青久久久久久| 99久久精品热视频| 日日摸夜夜添夜夜爱| 色视频www国产| 国内精品久久久久精免费| 搞女人的毛片| 欧美区成人在线视频| ponron亚洲| 国产成年人精品一区二区| 久久久久久久午夜电影| 色播亚洲综合网| 嫩草影院精品99| 成人无遮挡网站| 国产精华一区二区三区| 春色校园在线视频观看| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 久久精品国产自在天天线| 久久久精品94久久精品| 久久久久九九精品影院| 美女 人体艺术 gogo| 久久久久久久久大av| 深爱激情五月婷婷| 日本撒尿小便嘘嘘汇集6| 波多野结衣巨乳人妻| 国产三级在线视频| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 日本熟妇午夜| 欧美日本亚洲视频在线播放| or卡值多少钱| 国产美女午夜福利| 日韩欧美在线乱码| 永久网站在线| 日韩精品青青久久久久久| 又粗又硬又长又爽又黄的视频 | 久久国内精品自在自线图片| 99久久成人亚洲精品观看| 国内精品一区二区在线观看| 欧美bdsm另类| 青青草视频在线视频观看| 蜜桃亚洲精品一区二区三区| 亚洲在久久综合| 欧美一区二区精品小视频在线| 我的女老师完整版在线观看| 亚洲国产精品成人综合色| 精品日产1卡2卡| 亚洲欧美日韩东京热| 三级国产精品欧美在线观看| 免费电影在线观看免费观看| 欧美激情在线99| 久久99热6这里只有精品| 最近最新中文字幕大全电影3| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 97在线视频观看| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 免费看av在线观看网站| 直男gayav资源| 色综合色国产| 精品国产三级普通话版| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| 欧美人与善性xxx| 悠悠久久av| 男人舔奶头视频| 最新中文字幕久久久久| 亚洲欧洲日产国产| 午夜激情福利司机影院| 尾随美女入室| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 亚洲va在线va天堂va国产| 最近的中文字幕免费完整| 中文字幕久久专区| 毛片女人毛片| 高清毛片免费看| 日韩欧美在线乱码| 看十八女毛片水多多多| 久久久午夜欧美精品| 久久久成人免费电影| 日本免费a在线| 晚上一个人看的免费电影| 成年免费大片在线观看| 亚洲av免费在线观看| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 精品日产1卡2卡| 免费看日本二区| 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 亚洲欧美日韩高清在线视频| 亚洲成av人片在线播放无| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 亚洲18禁久久av| 激情 狠狠 欧美| 成人午夜高清在线视频| 能在线免费看毛片的网站| 美女xxoo啪啪120秒动态图| 午夜精品在线福利| 欧美高清性xxxxhd video| 亚洲精品456在线播放app| 老司机福利观看| 国产亚洲5aaaaa淫片| 久久国产乱子免费精品| 亚洲av男天堂| 久久精品国产自在天天线| 97超视频在线观看视频| 免费观看的影片在线观看| 国产 一区 欧美 日韩| 在线观看66精品国产| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 国产一级毛片在线| 一本精品99久久精品77| 在线观看午夜福利视频| 性欧美人与动物交配| 又爽又黄无遮挡网站| 免费黄网站久久成人精品| 久久久久免费精品人妻一区二区| .国产精品久久| 精华霜和精华液先用哪个| 国产乱人视频| 日韩三级伦理在线观看| 六月丁香七月| 免费黄网站久久成人精品| 黄色一级大片看看| av天堂在线播放| 国产高清视频在线观看网站| 一本一本综合久久| 国产成人a区在线观看| 男的添女的下面高潮视频| 国产精品一及| 18禁在线无遮挡免费观看视频| 国产亚洲欧美98| 国产单亲对白刺激| 国产乱人偷精品视频| 搞女人的毛片| 国产 一区精品| 我要搜黄色片| 亚洲高清免费不卡视频| 日本在线视频免费播放| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 九色成人免费人妻av| 在线免费十八禁| 国产精品永久免费网站| 久久久欧美国产精品| 少妇的逼水好多| 亚洲国产精品sss在线观看| 亚洲七黄色美女视频| 51国产日韩欧美| 欧美潮喷喷水| 国产精品99久久久久久久久| 亚洲av男天堂| 一边摸一边抽搐一进一小说| 成人无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站 | 99久久久亚洲精品蜜臀av| 日产精品乱码卡一卡2卡三| 欧美一区二区亚洲| 亚洲图色成人| 国产亚洲精品久久久久久毛片| av免费观看日本| 亚洲欧美日韩卡通动漫| 最近的中文字幕免费完整| 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 亚洲精品亚洲一区二区| 成人特级av手机在线观看| 桃色一区二区三区在线观看| 日本熟妇午夜| 在线观看一区二区三区| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 小说图片视频综合网站| 国产午夜精品久久久久久一区二区三区| 亚洲无线在线观看| 久久午夜亚洲精品久久| 极品教师在线视频| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 欧美bdsm另类| 日日摸夜夜添夜夜爱| 国产探花在线观看一区二区| 亚洲电影在线观看av| 国产精品人妻久久久影院| 国产亚洲av嫩草精品影院| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 伊人久久精品亚洲午夜| 看片在线看免费视频| 亚洲av中文字字幕乱码综合| 三级国产精品欧美在线观看| 亚洲综合色惰| 亚洲四区av| 99久久人妻综合| 欧美日韩综合久久久久久| 国产蜜桃级精品一区二区三区| 久久午夜福利片| 日韩一区二区三区影片| 观看免费一级毛片| 国产极品天堂在线| 午夜亚洲福利在线播放| 国产精品久久久久久精品电影小说 | 高清毛片免费看| 黄色配什么色好看| 男女下面进入的视频免费午夜| 色播亚洲综合网| 亚洲不卡免费看| 色综合色国产| 激情 狠狠 欧美| 干丝袜人妻中文字幕| 天堂av国产一区二区熟女人妻| 一区二区三区高清视频在线| 五月玫瑰六月丁香| 老司机影院成人| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| АⅤ资源中文在线天堂| 色视频www国产| 白带黄色成豆腐渣| 91久久精品国产一区二区三区| 久久99热6这里只有精品| 日韩欧美在线乱码| 少妇被粗大猛烈的视频| 给我免费播放毛片高清在线观看| 天堂av国产一区二区熟女人妻| 免费看a级黄色片| 国产视频首页在线观看| 国产真实乱freesex| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 禁无遮挡网站| 天堂网av新在线| 国产av在哪里看| 欧美成人a在线观看| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 一本一本综合久久| 亚洲在线自拍视频| 精品人妻视频免费看| 好男人在线观看高清免费视频| av在线亚洲专区| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 波多野结衣高清无吗| 深爱激情五月婷婷| 国产精品永久免费网站| 免费看光身美女| 变态另类丝袜制服| 中文字幕精品亚洲无线码一区| 亚洲国产日韩欧美精品在线观看| 26uuu在线亚洲综合色| 久久99热6这里只有精品| 黄色日韩在线| 亚州av有码| 最近2019中文字幕mv第一页| 国产毛片a区久久久久| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 久久久久国产网址| 国产黄a三级三级三级人| 国产美女午夜福利| 久久鲁丝午夜福利片| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说 | 岛国毛片在线播放| 免费av毛片视频| 在线免费观看不下载黄p国产| 日韩国内少妇激情av| 搡女人真爽免费视频火全软件| 嫩草影院新地址| 国产色爽女视频免费观看| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 亚洲国产欧洲综合997久久,| 99热这里只有是精品在线观看| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 国产亚洲精品av在线| 免费观看a级毛片全部| 99久久精品国产国产毛片| 国产精品人妻久久久久久| 99热网站在线观看| 国产精品伦人一区二区| 亚洲电影在线观看av| 一夜夜www| 91狼人影院| 国产高清视频在线观看网站| 99热6这里只有精品| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 成年版毛片免费区| 舔av片在线| av黄色大香蕉| 久久精品夜夜夜夜夜久久蜜豆| 1024手机看黄色片| 欧美日韩国产亚洲二区| 久久久久久大精品| 久久精品国产鲁丝片午夜精品| ponron亚洲| 在线观看美女被高潮喷水网站| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 在线播放无遮挡| 亚洲精品成人久久久久久| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 国产一区二区三区av在线 | 中文字幕制服av| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩高清专用| 国产亚洲精品av在线| 精品午夜福利在线看| 麻豆乱淫一区二区| 亚洲成人av在线免费| 成人午夜高清在线视频| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 欧美3d第一页| 我的老师免费观看完整版| av女优亚洲男人天堂| 国产 一区精品| 免费看日本二区| 日韩三级伦理在线观看| 啦啦啦观看免费观看视频高清| 欧美一区二区亚洲| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 精品熟女少妇av免费看| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 久久婷婷人人爽人人干人人爱| 日韩一区二区三区影片| 亚洲人成网站在线播放欧美日韩| 免费av毛片视频| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 亚洲国产色片| 日本成人三级电影网站| 欧美性猛交黑人性爽| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 亚洲av免费在线观看| 国内久久婷婷六月综合欲色啪| 欧美日韩在线观看h| 最近的中文字幕免费完整| 天堂av国产一区二区熟女人妻| 丰满的人妻完整版| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 欧美色视频一区免费| 免费观看在线日韩| 超碰av人人做人人爽久久| 日韩大尺度精品在线看网址| 久久久久久久久大av| 免费看日本二区| av天堂中文字幕网| 99热这里只有是精品在线观看| 小说图片视频综合网站| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 中文亚洲av片在线观看爽| 国产av不卡久久| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 久久久国产成人精品二区| 国产 一区精品| 麻豆精品久久久久久蜜桃| 91久久精品电影网| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 久久久久网色| 欧美又色又爽又黄视频| 国产片特级美女逼逼视频| 女同久久另类99精品国产91| 好男人在线观看高清免费视频| 色哟哟哟哟哟哟| 一级黄片播放器| 亚洲av中文av极速乱| 亚洲国产色片| 国产色婷婷99| 亚洲av二区三区四区| 国产精品女同一区二区软件| 成人欧美大片| 哪里可以看免费的av片| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 麻豆国产av国片精品| 成人毛片a级毛片在线播放| 久久午夜福利片| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 亚洲天堂国产精品一区在线| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 久久精品国产99精品国产亚洲性色| www.色视频.com| 尤物成人国产欧美一区二区三区| АⅤ资源中文在线天堂| 内射极品少妇av片p| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 深夜精品福利| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 国产精品99久久久久久久久| 综合色丁香网| 欧美3d第一页| 国产伦理片在线播放av一区 | 少妇高潮的动态图| 欧美在线一区亚洲| 天天一区二区日本电影三级| 最后的刺客免费高清国语| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 亚洲精品亚洲一区二区| 久久国内精品自在自线图片| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频 | 中国美白少妇内射xxxbb| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女|