• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Representation of the ENSO Combination Mode and its Asymmetric SST Response in Di ff erent Resolutions of HadGEM3

    2018-06-20 01:50:20JianghuaWANHongliRENandPeiliWU
    Advances in Atmospheric Sciences 2018年8期

    Jianghua WAN,Hongli REN?,2,and Peili WU

    1 Laboratory for Climate Studies,and CMA-NJU Joint Laboratory for Climate Prediction Studies,National Climate Center,China Meteorological Administration,Beijing 100081,China

    2 Department of Atmospheric Sciences,School of Environment Studies University of Geoscience,Wuhan 430074,China

    3 Met Office Hadley Center,Exeter EX1 3PB,UK

    1.Introduction

    The El Ni?o–Southern Oscillation(ENSO)is a dominant mode of interannual climate variability and has pronounced impacts on global climate(Ropelewski and Halpert,1987;Trenberth et al.,1998;Wallace et al.,1998;Trenberth and Caron,2000).Recent studies have shown that nonlinear interactions between ENSO and the background western Pacific warm pool annual cycle can generate an ENSO/annual cycle combination mode(C-mode)(Stuecker et al.,2013),which exhibits pronounced variability of near-annual combination tone periods at~10 and ~15 months.Besides,it demonstrates distinct meridionally asymmetric patterns related to the equator in atmospheric variables(Stuecker et al.,2013,2015a,2015b),as well as SST anomalies(Zhang et al.,2016b).

    This C-mode over the Pacific warm pool plays an important role in the ENSO life cycle by contributing to the southward shift of anomalous central Pacific low-level zonal winds during the rapid termination of El Ni?o events(Harrison and Vecchi,1999;Vecchi,2006;McGregor et al.,2012;Stuecker et al.,2013).In addition,it plays a considerable part in the developing and maintaining processes of the anomalous low-level Northwest Pacific anticyclone(Stuecker et al.,2015b).A distinguished annual-cycle modulation of the meridional asymmetry in the atmospheric response to Eastern Pacific El Ni?o events has been detected,which does not emerge in Central Pacific El Ni?o or La Ni?a events(Zhang et al.,2015;Zhang et al.,2016b).Moreover,the C-mode may significantly affect East Asian precipitation anomalies and remarkably improve the predictability of Yangtze River basin summer rainfall(Li et al.,2016a;Zhang et al.,2016a,2016b).

    Considering the C-mode is crucial for both ENSO seasonally modulated dynamics and the ENSO climatic influence in the tropical Pacific to the western North Pacific,it is of great importance to evaluate the performances of models in simulating the C-mode.Li et al.(2016b)found the southward shift of the anomalous westerly over the central Pacific might only occur with the annual cycle background in an AGCM.Zhang et al.(2016b)evaluated the predictive skill of the oceanic C-mode in five dynamical models that participated in Weisheimer et al.(2009),and found it to be lower than that for the Ni?o3.4 index.Ren et al.(2016)assessed the performance of capturing the observed C-mode characteristics in 27 CGCMs from CMIP5.Most of the coupled climate models in CMIP5 are able to reproduce the spatial pattern of the C-mode well in terms of the surface wind variability,and about half can reproduce the spectral power at the combination tone periodicities.In this study,both the atmospheric aspect and the oceanic response of the combination mode were examined in a model simulation,and the sensitivity to model resolution was discussed.

    2.Data and methods

    The climate model used in this study is HadGEM3-GC2,which is the latest version of the UK Met Office Hadley Centre’s coupled climate modeling system.It consists of the Met Office’s Unified Model as the atmospheric component,JULES as the land-surface component,NEMO as the ocean component,and CICE as the sea-ice model.More details of the model can be found in Hewitt et al.(2011),Williams et al.(2015)and Senior et al.(2016).We utilized three different horizontal resolution configurations to look at the sensitivity of the C-mode simulation to the resolution.The N96 horizontal resolution is 1.25?latitude×1.875?longitude,which is approximately 130 km at the surface.N216 is 0.8?latitude×0.5?longitude(approximately 60 km at the surface),and N512 is approximately 25 km.The fully coupled model was integrated for 61 years at each resolution.

    For comparison,we utilized the monthly 10-m wind data from the NCEP–NCAR reanalysis dataset(1961–2015)(Kalnay et al.,1996),NCEP–DOE data,ERA-40 data,and 20CR data.The SST anomalies(1961–2011)associated with ENSO and the C-mode are examined using the HadISST1 dataset,provided by the UK Met Office(Rayner et al.,2003),as well as the OISST and ERSST datasets.The precipitation data are from CMAP.

    The ENSO C-mode was derived following the same approach as in Stuecker et al.(2013).We first conduct a combined empirical orthogonal function(EOF)analysis on the anomalous zonal and meridional wind anomalies over the tropical Pacific region(10?S–10?N,100?E–60?W),and then regress the horizontal wind anomalies onto the first two normalized principal components(PCs),respectively.The oceanic aspect of the C-mode can be represented by the Ni?o-Asymmetry SST index(Ni?o-A index),which can comprehensively capture both the meridional asymmetry and the zonal SST asymmetry(Zhang et al.,2016b).The Ni?o-A index is defined as

    where the brackets denote the area-averaged SST anomalies over the regions SW(0?–20?S,120?–160?E),SE(0?–20?S,100?–140?W),and NC(0?–20?N,150?E–130?W).The Ni?o3.4 index is defined as the SST anomalies averaged over the region(5?S–5?N,120?–170?W).

    3.Results

    3.1.Characteristics of the C-mode in the reanalysis data

    3.1.1.Atmospheric features of the C-mode

    Figure 1 displays the first two leading EOF patterns of tropical Pacific surface wind anomalies in different reanalysis products.The datasets show considerable agreement with one another.The first EOF pattern(EOF1)is characterized by a meridionally quasi-symmetric wind distribution with equatorial westerly anomalies over the western-central Pacific,which describes the anomalous Walker circulation associated with ENSO(Figs.1a,c,e and g).The second EOF mode(EOF2)exhibits a meridionally antisymmetric circulation with a distinct anomalous Northwest Pacific anticyclone and southward shift of the equatorial central-Pacific westerly wind anomalies(Figs.1b,d,f and h),which is the characteristic atmospheric response to the C-mode(Stuecker et al.,2013,2015b).

    The PC time series are also highly correlated among the different reanalysis datasets(Fig.2).The correlation coefficient of the PCs between each dataset and the NCEP–NCAR data is higher than 0.9,except for the PC2 between ERA-40 and NCEP–NCAR,which still reaches 0.84.Hereinafter,we use the NCEP–NCAR reanalysis data to validate the model simulation of the C-mode atmospheric variability.

    The PC1 time series is highly correlated(r=0.85)with the Ni?o3.4 index(Fig.3a),further verifying that EOF1 captures the main ENSO mode in the reanalysis.To better understand the relationship between the ENSO mode and the combination mode,we followed Stuecker et al.(2013)to utilize a theoretical approximation to the C-mode time series by multiplying PC1 by a sinusoidal function with the annual cycle;that is,

    The ωain this equation denotes the angular frequency of the annual cycle,tdenotes time and ? represents a one-month shift.This time series represents the combination tones of the ENSO signal and the annual cycle by its mathematical nature.In the reanalysis,PC1cos shows remarkable agreement with the observed PC2(Fig.3b).The correlation coefficient is 0.63.

    To further understand the combination tones,we calculate the power density spectra for both the PC1 and PC2 time series in the reanalysis(Fig.4a).The spectrum for PC1 exhibits pronounced levels of variability,mostly in the interannual period band of 2–8 years,while PC2 exhibits a significant spectral peak at a period of~15 months and a weaker one at~10 months.Actually,these two peaks align well with the two shifted frequency bands of ENSO-annual cycle combination tones,which is the sum tone as 1+fEand the difference tone as 1?fE,wherefEdenotes the ENSO characteristic interannual frequency band.

    3.1.2.Asymmetric SST response of the C-mode

    Fig.1.The leading two EOF spatial patterns of tropical Pacific surface wind anomalies(units:m s?1)for(a,b)NCEP–NCAR,(c,d)NCEP–DOE,(e,f)ERA-40 and(g,h)20CR.Shading indicates the regressed zonal wind anomalies.Percentages of variance explained by the EOF patterns are given in parentheses.

    Besides the surface atmospheric response of the C-mode,the nonlinear processes in the ocean–atmosphere coupled system may also result in combination tones in oceanic variables(Jin et al.,1994;Stein et al.,2014).Zhang et al.(2016b)pointed out the Ni?o-A index can capture the SST response to the C-mode very well.Figure 5 demonstrates the SST anomalies and 850-hPa horizontal wind anomalies regressed onto the Ni?o3.4 and Ni?o-Aindices in different observational datasets.The spatial SST distribution related to ENSO is characterized as a meridionally symmetrical SSTA pattern(Figs.5a,c and e).Also,the Ni?o-A index–associated SST anomaly pattern exhibits negative SST anomalies over the northern central tropical Pacific and positive SST anomalies over the southwestern and southeastern tropical Pacific(Figs.5b,d and f),which exhibits a very similar structure to the forced C-mode SST pattern(Zhang et al.,2016b).The anomalous anticyclone over northwestern Pacific can be seen more clearly in the 850-hPa wind field.The results of different observational datasets also show great similarity.We use the HadISST dataset to validate the model simulation of the C-mode oceanic variability afterwards.

    Fig.2.(a)PC1 and(b)PC2 in different reanalysis datasets.Numbers after the colon are the correlation coefficients between each dataset and the NCEP–NCAR reanalysis.

    Fig.3.(a)PC1 and Ni?o3.4 index for the reanalysis;(b)PC1cos and PC2 for the reanalysis.PC2 and Ni?o3.4 indices for models at(c)N96,(e)N216 and(g)N512.PC1 and PC2cos for models at(d)N96,(f)N216 and(h)N512.Correlation coefficients between two curves are given in the top right.

    Fig.4.Spectra curves of PC1(blue)and PC2(red),where the dashed lines indicate the statistical significance at the 95%con fidence level.Grey rectangles indicate the near-annual combination tone frequency bands.

    Fig.5.SST(contours;units:K)and 850-hPa wind(vectors;units:m s?1)anomalies regressed onto the Ni?o3.4(left panels)and Ni?o-A(right panels)indices for(a,b)HadISST,(c,d)ERSST and(e,f)OISST data.Black dots represent the 99%confidence level of the SST.Only regions with at least either of the two components of wind at the 95%confidence level are shown.

    Fig.6.(a)PC2(NCEP–NCAR dataset)and standardized Ni?o-A(HadISST dataset)indices for the observation.(b–d)PC1 and standardized Ni?o-A indices for model outputs.Correlation coefficients between two curves are given in the top right.

    The Ni?o-A index is highly correlated with the PC2 in the reanalysis data(Fig.6a),verifying it represents the oceanic features of the C-mode.The spectral analysis indicates that the Ni?o3.4 index spectrum shows a significant 2–8-year peak,and the Ni?o-A index peaks at combination tone periods of~10 months and ~15 months(Fig.7a),which is in agreement with Fig.4.This implies the Ni?o-A index also exhibits the combination tone frequency based on the ENSO period and the annual cycle.

    3.2.Simulated C-mode in different model resolutions

    3.2.1.Simulated spatial patterns of the C-mode

    If we compare the first two leading EOFs simulated by HadGEM3(Fig.8)with the corresponding patterns in the reanalysis(Fig.1),they show significantly different spatial distributions.Unlike the equatorially symmetric EOF1 in the reanalysis,the EOF1 patterns in all three versions of the model exhibit remarkable meridionally antisymmetric structures,with strong shear of anomalous zonal wind across the equator,which bears great resemblance to the EOF2 pattern in the reanalysis,although the anomalous Philippine anticyclones in the models are weaker than in the reanalysis.Meanwhile,the EOF2 patterns in the models show a meridionally symmetric feature,resembling the EOF1 rather than the EOF2 pattern in the reanalysis.

    Fig.7.Spectra curves of standardized Ni?o3.4(blue)and Ni?o-A(red)for the observation and model results.Dashed lines indicate the statistical significance at the 95%confidence level.

    This reversed similarity relationship can be more directly seen in Table 1.The pattern correlation coefficients of the same EOF patterns between the models and the NCEP–NCAR reanalysis are very low,with an absolute value of~0.25 in the case of EOF2.On the other hand,they get much higher when we switch the order of the compared observed EOF.The correlation coefficient between the N96-simulated EOF2 and the observed EOF1 can reach 0.79,and it becomes slightly low eras the resolution getshigher.Moreover,models with better ability to reproduce the ENSO mode can also simulate the C-mode spatial pattern more realistically,which is in accordance with the CMIP5 results(Ren et al.,2016).The results indicate that HadGEM3 can capture the spatial structures of the ENSO mode and the C-mode in the surface wind field.However,it tends to emphasize the C-mode component too much,such that the C-mode turns into the dominant pattern in the tropical Pacific surface wind variability,instead of the ENSO mode as in the reanalysis.

    3.2.2.Simulated combination tone features

    As mentioned above,the ENSO mode in the simulation is represented by EOF2 instead of EOF1;thus,we compare the PC2 in the simulation with the Ni?o3.4 indices.They agree with each other well,with correlation coefficients around 0.5 in all three simulations(Figs.3c,e and g).The correlation coefficients grow slightly higher as the model resolution gets higher,which is opposite to the spatial pattern trend(Table 1).

    For the model theoretical approximation to the C-mode time series,a similar method was applied,except we used PC2 as the ENSO signal and the theoretical C-mode signal was PC2cos.The PC1s are also well correlated with the theoretical C-mode time series(Figs.3d,f and h).The middle resolution(N216)model shows the best performance,with the correlation coefficient reaching 0.41.However,the spectra of the first two leading PCs in the model simulation are difficult to distinguish from each other(Figs.4b,c and d).The ENSO signal(PC2)peaks around the 2–8-year period bands,but also exhibits high-frequency signals,especially at the 1?fEfrequency band.This is notable in the left-hand panel of Fig.3,in which the PC2s contain detectable highfrequency variability compared with either the PC1 in the reanalysis or the Ni?o3.4 indices in the simulation.The combination tones(PC1)can capture the 1?fEand 1+fEfrequency peaks well,but they also show a significant peak in the ENSO mode characteristic low-frequency band,which is not the case in the reanalysis(Fig.4a).

    3.2.3.Asymmetric SST response of the C-mode in the simulation

    Figure 9 demonstrates the SST anomalies and 850-hPa horizontal wind anomalies regressed onto the Ni?o3.4 and Ni?o-A indices in the simulations.All three configurationsof the model can capture the spatial SST distribution related to the ENSO mode and the C-mode very well,although the C-mode-related warm center over the eastern Pacific is stronger and extends to the central Pacific compared to the observation.The Ni?o-A index is highly correlated with the PC1s in the model simulations(Figs.6b–d).The correlation coefficients get higher as the resolution gets higher,which reaches 0.78 in the N512 simulation.This is similar to the relationship between the Ni?o3.4 index and PC2 in the simulation,as illustrated in the left-hand panel of Fig.3.This implies that,for both the ENSO mode and C-mode,the atmospheric responses(PCs)are more consistent with the oceanic responses(Ni?o indices)as the model resolution gets finer.

    Table 1.Pattern correlation coefficients between the first two leading EOF patterns in the models and reanalysis.The letter“m”in parentheses denotes the EOF of models,and “r”stands for the reanalysis,which is the NCEP–NCAR dataset in this table.

    Fig.8.The leading two EOF spatial patterns of tropical Pacific surface wind anomalies(units:m s?1)for HadleyGEM3 with different resolutions of(a,b)N96,(c,d)N216 and(e,f)N512.Shading indicates the regressed zonal wind anomalies.Percentages of variance explained by the EOF patterns are given in parentheses.

    We also investigate the power spectra of the Ni?o3.4 and Ni?o-A indices in the simulations(Figs.7b–d).In agreement with Fig.4,the simulated Ni?o3.4 and Ni?o-A spectra show a similar performance to PC1 and PC2;the peak frequency bands are overlapped,and therefore they are not easily distinguishable from each other.

    Fig.9.SST(contours;units:K)and 850-hPa wind(vectors;units:m s?1)anomalies regressed onto the Ni?o3.4(left panels)and Ni?o-A indices(right panels)for the model results at three resolutions.Black dots represent the 99%conifdence level of the SST.Only regions with at least either of the two components of wind at the 95%confidence level are shown.

    3.2.4.Possible mechanism of the model misrepresentationThe C-mode emerges from the nonlinear interaction between the ENSO mode and the annual cycle background.It plays an important role in ENSO’s phase-lock feature by being responsible for the sudden weakening and southward shift of equatorial westerly anomalies during the termination process of strong El Ni?o events(Stuecker et al.,2013).We evaluate the phase relationship between PC1 and PC2 by compositing the PCs with respect to the annual cycle evolution for the El Ni?o events selected by the Ni?o3.4 indices of each dataset(Fig.10).The PC1s of the simulations are able to generally capture the temporal evolution of the C-mode index represented by PC2 in the reanalysis.However,the rapid phase switch around late winter in the reanalysis is not reproduced by the models.As the ENSO mode itself is concerned,the PC2s in the models show a shift in the peak time by about three months compared to the reanalysis.The performance of the middle resolution(N216)model is relatively better,of which the PC1 also matches the theoretical C-mode the best(Fig.3f).This implies that the unrealistic periodic characteristic of the C-mode in the simulation is partly attributable to the distorted ENSO evolution.Therefore,improving the performance of the ENSO signal period in models is crucial to better simulating the C-mode.

    Previous studies have pointed out the southward shift of zonal surface wind anomalies is attributable to the meridional seasonal march of western Pacific background warm SSTs and corresponding intensification of the SPCZ due to the seasonal evolution of solar insolation(Harrison and Vecchi,1999;Spencer,2004;Lengaigne et al.,2006;McGregor et al.,2012).The reduced climatological wind speed related to the SPCZ intensification leads to anomalous boundary layer Ekman pumping and a reduced surface momentum damping of the combined boundary layer/lower-troposphere surface wind response to El Ni?o,which allows the associated zonal wind anomalies to shift south of the equator(McGregor et al.,2012).Besides,Ham and Kug(2014)used CMIP3 and CMIP5 archives to reveal that the climatological mean precipitation over the central/eastern Pacific ITCZ plays an important role in ENSO phase transition by affecting the location of the ENSO-related convection and the wind stress.Figure 11 displays the climatological annual evolution of the precipitation over the central Pacific.The models simulate excessive mean precipitation over the ITCZ through late spring to winter.Also,the SPCZ intensification starts in October in the simulation,while in the observation it occurs in winter.The unrealistic simulation of the climatological precipitation over the central Pacific could be a factor in the relatively poor representation of the ENSO phase-lock(Fig.10),and affects the C-mode dynamic process by providing a distorted annual cycle background.

    Fig.10.PC1(solid)and PC2(dashed)composites of the El Ni?o events for the reanalysis and the model results.In the composite,year(0)denotes the developing phase and year(1)the decaying phase.

    3.3.Simulated C-mode climate impacts on East Asian rainfall

    Previous studies have indicated the C-mode is essential to the linkage between the East Asian climate and ENSO(Li et al.,2016a;Zhang et al.,2016a,2016b),especially the Yangtze River summer rainfall(Zhang et al.,2016b).Taking the C-mode signal into consideration could improve the predictability of the summer precipitation in El Ni?o events.We use the middle resolution(N216)results as an example to check the ability of HadGEM3 to reproduce this connection between the East Asian summer rainfall and ENSO(Fig.12).Figure 12a demonstrates the average precipitation anomalies in the decaying summer(June–July–August)of the two strongest El Ni?o events in the N216 simulation,with increased rainfall over the Yangtze River Valley and decreased rainfall over the southeast of China.Using the Ni?o3.4 index alone can only reconstructa small fraction of the precipitation anomaly(Fig.12b).Including the Ni?o-A index can significantly improve the rainfall reconstruction,especially over the Yangtze River Valley.Therefore,this linkage is reproducible in HadGEM3,which gives us a suggested method to improve the prediction of East Asian summer precipitation associated with ENSO when applying the model outputs.

    4.Summary and discussion

    Fig.11.Climatological annual evolution of the zonal mean(between 160?E and 160?W)precipitation(units:mm d?1)from the CMAP dataset and the model simulation.

    Fig.12.(a)Precipitation anomalies during the decaying summer of the two strongest El Ni?o events in the N216 simulation.Reconstruction of precipitation anomalies using linear regression with(b)Ni?o3.4 index,(c)Ni?o-A index,and(d)both Ni?o3.4 and Ni?o-A indices.Units:mm d?1.

    Fig.13.Spectra curves of PC1(blue)and PC2(red)for six models from CMIP5.Dashed lines indicate statistical significance at the 95%confidence level.

    Fig.14.Spectra curves of standardized Ni?o3.4(blue)and Ni?o-A(red)for six models from CMIP5.Dashed lines indicate statistical significance at the 95%confidence level.

    In this study,we compare the performance of the UK Met Office Hadley Center’s HadGEM3 in representing the ENSO-annual cycle C-mode and the asymmetric SST response with three different resolutions:N96,N216 and N512,respectively.The results indicate that HadGEM3 can capture the spatial characteristics of ENSO and the ENSO-annual cycle C-mode,but it overestimates the C-mode accounted variance such that the C-mode turns into the dominant pattern in the surface wind fields.Meanwhile,the model can reproduce the spectral peaks of the C-mode at periods of about 10 and 15 months,which are the ENSO-annual cycle combined frequency.However,its behavior is not ideal on longer time scales,perhaps due to the relatively unrealistic simulation of the basic ENSO mode with a shorter period and shifted seasonal evolution peak during the El Ni?o event,which affects the nonlinear coupled process.Also,the model cannot simulate well the rapid PC2 phase transition near late winter.The simulated basic ENSO signal also exhibits a strong signal near the combination frequency both in SST and surface wind variability,implying the model cannot unambiguously tell the difference between the ENSO signal and the C-mode signal.

    Ren et al.(2016)compared the atmospheric features of the C-mode simulated by 27 CGCMs from CMIP5,demonstrating that most of them are able to reproduce the spatial pattern of the C-mode well with the correct order of the first two EOFs.Figure 13 illustrates the PC1 and PC2 spectra of the six best performing models in CMIP5,selected according to the correlation coefficients between the observed EOF2 and the simulated EOF2 of the surface wind(Ren etal.,2016).All PC2s show two distinctive combination frequencies without an unrealistic low-frequency peak.The ENSO mode and the C-mode can be distinguished from each other clearly.The circumstances are generaly similar in the oceanic characteristics(Fig.14),but with relatively weak combination frequency peaks of the Ni?o-A indices than the PC2s,which is also the case for the observation.These models capture the C-mode better than Had GEM3,possibly because of the more realistic simulation of the ENSO mode.

    The C-mode not only plays an important role in the intrinsic dynamical mechanism of ENSO evolution,but also in the process of ENSO affecting climate globally,especially the East Asian summer climate.It is valuable to keep bettering the ability of models in reproducing the C-mode variability,as well as its influences on global climate.To achieve such progress,it is helpful to improve the simulation of the precipitation climatology as well as the basic ENSO variability,including the spatial pattern,the frequency,the temporal evolution,and other properties.

    Acknowledgements.This work and its contributors were jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506013),the China National Science Foundation(Grant No.41606019),and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    REFERENCES

    Ham,Y.G.,and J.S.Kug,2014:Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition.Environmental Research Letters,9(6),064008,https://doi.org/10.1088/1748-9326/9/6/064008.

    Harrison,D.E.,and G.A.Vecchi,1999:On the termination of El Ni?o.Geophys.Res.Lett.,26(11),1593–1596,https://doi.org/10.1029/1999GL900316.

    Hewitt,H.T.,D.Copsey,I.D.Culver well,C.M.Harris,R.S.R.Hill,A.B.Keen,A.J.McLaren,and E.C.Hunke,2011:Design and implementation of the infrastructure of HadGEM3:The next-generation Met Office climate modelling system.Geoscientific Model Development,4(2),223–253,https://doi.org/10.5194/gmd-4-223-2011.

    Jin,F.-F.,J.D.Neelin,and M.Ghil,1994:El Ni?o on the devil’s staircase:Annual subharmonic steps to chaos.Science,264(5155),70–72,https://doi.org/10.1126/science.264.5155.70.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-Year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Lengaigne,M.,J.-P.Boulanger,C.Menkes,and H.Spencer,2006:Influence of the seasonal cycle on the termination of El Ni?o Events in a coupled general circulation model.J.Climate,19(9),1850–1868,https://doi.org/10.1175/JCLI3706.1.

    Li,H.,W.J.Zhang,and J.H.He,2016a:Influences of ENSO and its combination mode on seasonal precipitation over eastern China.Acta Meteorologica Sinica,74(3),322–334,https://doi.org/10.11676/qxxb2016.025.(in Chinese with English abstract)

    Li,H.Y.,W.J.Zhang,J.H.He,and Y.L.Wang,2016b:Influence of SST annual cycle on local air-sea processes during El Ni?o events.Haiyang Xuebao,38(1),56–58,https://doi.org/10.3969/j.issn.0253-4193.2016.01.006.(in Chinese with English abstract)

    McGregor,S.,A.Timmermann,N.Schneider,M.F.Stuecker,and M.H.England,2012:The effect of the South Pacific convergence zone on the termination of El Ni?o events and the meridional asymmetry of ENSO.J.Climate,25(16),5566–5586,https://doi.org/10.1175/JCLI-D-11-00332.1.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L.V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplan,2003:Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century.J.Geophys.Res.,108(D14),4407,https://doi.org/10.1029/2002 JD002670.

    Ren,H.L.,J.Q.Zuo,F.F.Jin,and M.F.Stuecker,2016:ENSO and annual cycle interaction:the combination mode representation in CMIP5 models.Climate Dyn.,46,3753–3765,https://doi.org/10.1007/s00382-015-2802-z.

    Ropelewski,C.F.,and M.S.Halpert,1987:Global and regional scale precipitation patterns associated with the El Ni?o/Southern oscillation.Mon.Wea.Rev.,115(8),1606–1626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    Senior,C.A.,and Coauthors,2016:Idealized climate change simulations with a high-resolution physical model:HadGEM3-GC2.Journal of Advances in Modeling Earth Systems,8,813–830,https://doi.org/10.1002/2015MS000614.

    Spencer,H.,2004:Role of the atmosphere in seasonal phase locking of El Ni?o.Geophys.Res.Lett.,31,L24104,https://doi.org/10.1029/2004GL021619.

    Stein,K.,A.Timmermann,N.Schneider,F.F.Jin,and M.F.Stuecker,2014:ENSO seasonal synchronization theory.J.Climate,27(14),5285–5310,https://doi.org/10.1175/JCLID-13-00525.1.

    Stuecker,M.F.,F.F.Jin,and A.Timmermann,2015a:El Ni?o-Southern Oscillation frequency cascade.Proceedings of the National Academy of Sciences of the United States of America,112(44),13 490–13 495,https://doi.org/10.1073/pnas.1508622112.

    Stuecker,M.F.,F.F.Jin,A.Timmermann,and S.McGregor,2015b:Combination mode dynamics of the anomalous Northwest Pacific anticyclone.J.Climate,28(3),1093–1111,https://doi.org/10.1175/JCLI-D-14-00225.1.

    Stuecker,M.F.,A.Timmermann,F.F.Jin,S.McGregor,and H.L.Ren,2013:A combination mode of the annual cycle and the El Ni?o/Southern Oscillation.Nature Geoscience,6(7),540–544,https://doi.org/10.1038/ngeo1826.

    Trenberth,K.E.,and J.M.Caron,2000:The Southern Oscillation revisited:Sea level pressures,surface temperatures,and precipitation.J.Climate,13(24),4358–4365,https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    Trenberth,K.E.,G.W.Branstator,D.Karoly,A.Kumar,N.C.Lau,and C.Ropelewski,1998:Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures.J.Geophys.Res.,103(C7),14 291–14 324,https://doi.org/10.1029/97JC01444.

    Vecchi,G.A.,2006:The Termination of the 1997–98 El Ni?o.Part II:Mechanisms of atmospheric change.J.Climate,19(12),2647–2664,https://doi.org/10.1175/JCLI3780.1.

    Wallace,J.M.,E.M.Rasmusson,T.P.Mitchell,V.E.Kousky,E.S.Sarachik,and H.von Storch,1998:On the structure and evolution of ENSO-related climate variability in the tropical Pacific:Lessons from TOGA.J.Geophys.Res.,103(C7),14 241–14 259,https://doi.org/10.1029/97JC02905.

    Weisheimer,A.,and Coauthors,2009:ENSEMBLES:A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs.Geophys.Res.Lett.,36(21),L21711,https://doi.org/10.1029/2009GL040896.

    Williams,K.D.,and Coauthors,2015:The Met Office Global Coupled model 2.0(GC2)configuration.Geoscientific Model Development,8,1509–1524,https://doi.org/10.5194/gmd-8-1509-2015.

    Zhang,W.J.,H.Y.Li,M.F.Stuecker,F.F.Jin,and A.G.Turner,2016a:A new understanding of El Ni?o’s Impact over East Asia:Dominance of the ENSO Combination Mode.J.Climate,29(12),4347–4359,https://doi.org/10.1175/JCLID-15-0104.1.

    Zhang,W.J.,H.Y.Li,F.F.Jin,M.F.Stuecker,A.G.Turner,and N.P.Klingaman,2015:The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO Zonal Structure.J.Climate,28(14),5795–5812,https://doi.org/10.1175/JCLI-D-14-00724.1.

    Zhang,W.J.,and Coauthors,2016b:Unraveling El Ni?o’s impact on the East Asian Monsoon and Yangtze River summer flooding.Geophys.Res.Lett.,43(21),11 375–11 382,https://doi.org/10.1002/2016GL071190.

    黄片小视频在线播放| 女警被强在线播放| 亚洲av日韩精品久久久久久密 | 久久精品国产a三级三级三级| 日本欧美国产在线视频| av又黄又爽大尺度在线免费看| 纵有疾风起免费观看全集完整版| 久热这里只有精品99| 欧美成人午夜精品| 久久热在线av| 老司机午夜十八禁免费视频| 午夜老司机福利片| 国产亚洲精品久久久久5区| 91精品三级在线观看| 国产主播在线观看一区二区 | 电影成人av| 捣出白浆h1v1| 国产又爽黄色视频| 国产黄色视频一区二区在线观看| 99久久99久久久精品蜜桃| 丰满人妻熟妇乱又伦精品不卡| 最黄视频免费看| 18在线观看网站| 亚洲av日韩精品久久久久久密 | 免费女性裸体啪啪无遮挡网站| 啦啦啦 在线观看视频| 国产日韩欧美亚洲二区| 热re99久久精品国产66热6| 国产日韩欧美在线精品| 欧美国产精品va在线观看不卡| av在线播放精品| 黑人猛操日本美女一级片| av片东京热男人的天堂| 亚洲人成电影观看| 亚洲av电影在线进入| 免费在线观看完整版高清| 久久国产精品男人的天堂亚洲| 激情视频va一区二区三区| 欧美精品啪啪一区二区三区 | 男的添女的下面高潮视频| 亚洲av电影在线进入| 久久精品国产亚洲av涩爱| 亚洲第一av免费看| 999久久久国产精品视频| 精品人妻一区二区三区麻豆| 免费日韩欧美在线观看| 日日夜夜操网爽| 国产视频首页在线观看| 日日夜夜操网爽| 国产激情久久老熟女| 99热国产这里只有精品6| 亚洲一区二区三区欧美精品| 午夜福利乱码中文字幕| 女人高潮潮喷娇喘18禁视频| 另类精品久久| 另类精品久久| 在线观看www视频免费| 一级a爱视频在线免费观看| 一本久久精品| av在线播放精品| 99久久99久久久精品蜜桃| 国产99久久九九免费精品| 大片电影免费在线观看免费| 免费观看a级毛片全部| 成人亚洲欧美一区二区av| 亚洲成人国产一区在线观看 | 国产黄色免费在线视频| 在线看a的网站| 日本色播在线视频| 亚洲人成电影观看| 国产成人精品久久久久久| videosex国产| 十八禁网站网址无遮挡| 国产午夜精品一二区理论片| 精品视频人人做人人爽| 亚洲欧美色中文字幕在线| 国产欧美日韩一区二区三 | 老司机影院成人| 丝袜脚勾引网站| 成年人午夜在线观看视频| 日本欧美国产在线视频| 老司机深夜福利视频在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产99久久九九免费精品| 精品少妇久久久久久888优播| 大片电影免费在线观看免费| 国产97色在线日韩免费| 女警被强在线播放| 99香蕉大伊视频| 两性夫妻黄色片| 在线看a的网站| 性色av乱码一区二区三区2| 成年美女黄网站色视频大全免费| videosex国产| 亚洲成色77777| 久久国产精品大桥未久av| 久久女婷五月综合色啪小说| 国产av精品麻豆| 久久天躁狠狠躁夜夜2o2o | 久久ye,这里只有精品| 一边亲一边摸免费视频| 18禁裸乳无遮挡动漫免费视频| av片东京热男人的天堂| 老司机午夜十八禁免费视频| 成年女人毛片免费观看观看9 | 欧美日韩亚洲综合一区二区三区_| 欧美日韩亚洲综合一区二区三区_| 叶爱在线成人免费视频播放| 香蕉丝袜av| 国产亚洲精品久久久久5区| 久久人妻福利社区极品人妻图片 | 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 一级毛片电影观看| 久久久久精品国产欧美久久久 | 精品免费久久久久久久清纯 | 国产成人精品久久二区二区91| 欧美xxⅹ黑人| 老鸭窝网址在线观看| 伊人亚洲综合成人网| 精品福利永久在线观看| 久久精品国产亚洲av高清一级| 高清黄色对白视频在线免费看| 麻豆av在线久日| 欧美亚洲 丝袜 人妻 在线| 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 18在线观看网站| 十八禁人妻一区二区| 日韩大码丰满熟妇| 十八禁人妻一区二区| 成人黄色视频免费在线看| 男人操女人黄网站| 欧美日韩福利视频一区二区| 亚洲欧美成人综合另类久久久| 精品一区二区三区四区五区乱码 | 国产黄色免费在线视频| 51午夜福利影视在线观看| 久久人妻熟女aⅴ| 性色av乱码一区二区三区2| 51午夜福利影视在线观看| 日本a在线网址| 亚洲黑人精品在线| 人成视频在线观看免费观看| 欧美在线一区亚洲| 美女大奶头黄色视频| 永久免费av网站大全| 国产成人精品久久二区二区91| 国产精品 国内视频| 视频区图区小说| 最黄视频免费看| 少妇人妻 视频| 色婷婷av一区二区三区视频| 日韩大片免费观看网站| 日韩大片免费观看网站| av又黄又爽大尺度在线免费看| 爱豆传媒免费全集在线观看| 亚洲精品乱久久久久久| 国产精品亚洲av一区麻豆| 国产男人的电影天堂91| 制服人妻中文乱码| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| av网站在线播放免费| 天堂8中文在线网| 国产高清国产精品国产三级| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品一区三区| 成人18禁高潮啪啪吃奶动态图| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 久久久久久久精品精品| 亚洲色图综合在线观看| 午夜日韩欧美国产| 女性被躁到高潮视频| 亚洲欧美清纯卡通| 久久精品亚洲熟妇少妇任你| 国产黄色视频一区二区在线观看| 日韩一区二区三区影片| 老汉色∧v一级毛片| av线在线观看网站| 亚洲国产毛片av蜜桃av| 美女中出高潮动态图| 两个人免费观看高清视频| 欧美激情 高清一区二区三区| 国产成人一区二区在线| 九草在线视频观看| 色网站视频免费| 伊人亚洲综合成人网| 色综合欧美亚洲国产小说| 精品第一国产精品| 国产日韩欧美视频二区| 黑人巨大精品欧美一区二区蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区日韩欧美中文字幕| 免费在线观看完整版高清| 国产精品九九99| av有码第一页| 天堂中文最新版在线下载| 欧美亚洲 丝袜 人妻 在线| 免费在线观看黄色视频的| 国产一区二区在线观看av| 精品欧美一区二区三区在线| 精品一区在线观看国产| 制服人妻中文乱码| 91精品国产国语对白视频| 最近手机中文字幕大全| 五月天丁香电影| 国产亚洲一区二区精品| 又紧又爽又黄一区二区| 午夜视频精品福利| 日本欧美视频一区| 国产不卡av网站在线观看| 岛国毛片在线播放| 精品免费久久久久久久清纯 | 国产亚洲欧美在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| a级毛片在线看网站| 69精品国产乱码久久久| 日本wwww免费看| 日本猛色少妇xxxxx猛交久久| netflix在线观看网站| 9热在线视频观看99| 亚洲精品中文字幕在线视频| 亚洲成人免费av在线播放| 国产精品国产av在线观看| 捣出白浆h1v1| 男女之事视频高清在线观看 | 日韩中文字幕视频在线看片| 成人影院久久| 一级毛片我不卡| 国产亚洲av高清不卡| 国产深夜福利视频在线观看| 久久精品人人爽人人爽视色| 男女午夜视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产爽快片一区二区三区| 日韩视频在线欧美| 亚洲男人天堂网一区| 天堂中文最新版在线下载| 欧美人与性动交α欧美精品济南到| 各种免费的搞黄视频| 亚洲av电影在线观看一区二区三区| netflix在线观看网站| 侵犯人妻中文字幕一二三四区| 晚上一个人看的免费电影| 亚洲第一av免费看| 亚洲精品美女久久久久99蜜臀 | 久久精品久久精品一区二区三区| 一区二区三区乱码不卡18| 久久国产精品影院| 无遮挡黄片免费观看| 久久av网站| 性色av乱码一区二区三区2| 青草久久国产| 91麻豆av在线| 日日夜夜操网爽| 欧美日韩av久久| 91字幕亚洲| a级片在线免费高清观看视频| 成人免费观看视频高清| 麻豆av在线久日| 两人在一起打扑克的视频| 天堂8中文在线网| www日本在线高清视频| 热re99久久精品国产66热6| 欧美av亚洲av综合av国产av| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 9色porny在线观看| 久久久久网色| tube8黄色片| 九草在线视频观看| 中国美女看黄片| 99热网站在线观看| 久久久久久久久免费视频了| 欧美成人精品欧美一级黄| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 只有这里有精品99| 男女高潮啪啪啪动态图| 久热爱精品视频在线9| 极品少妇高潮喷水抽搐| 老汉色av国产亚洲站长工具| 亚洲国产欧美一区二区综合| 亚洲国产av新网站| av天堂久久9| 热99国产精品久久久久久7| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 你懂的网址亚洲精品在线观看| 成人黄色视频免费在线看| 免费av中文字幕在线| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 日本黄色日本黄色录像| 婷婷色麻豆天堂久久| 国产精品人妻久久久影院| 少妇猛男粗大的猛烈进出视频| 亚洲五月色婷婷综合| 日韩电影二区| 亚洲国产欧美一区二区综合| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜爱| 亚洲成人免费电影在线观看 | 人人妻人人澡人人看| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区国产| av在线app专区| 大香蕉久久网| 亚洲熟女精品中文字幕| av天堂久久9| 亚洲欧美精品综合一区二区三区| 一个人免费看片子| 99精国产麻豆久久婷婷| 观看av在线不卡| 9色porny在线观看| 97精品久久久久久久久久精品| 美女午夜性视频免费| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 男人操女人黄网站| 我的亚洲天堂| 建设人人有责人人尽责人人享有的| 在线观看免费视频网站a站| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 国产精品久久久人人做人人爽| 女警被强在线播放| 最近手机中文字幕大全| 美女午夜性视频免费| 成人手机av| 亚洲欧美一区二区三区久久| 久久久精品免费免费高清| 极品人妻少妇av视频| 亚洲自偷自拍图片 自拍| 国产亚洲精品第一综合不卡| 午夜福利在线免费观看网站| bbb黄色大片| 午夜福利视频精品| 18禁观看日本| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 美女午夜性视频免费| 日本a在线网址| 中文精品一卡2卡3卡4更新| av电影中文网址| 女人久久www免费人成看片| 国产国语露脸激情在线看| 一级毛片女人18水好多 | 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 免费观看av网站的网址| 少妇人妻久久综合中文| 欧美乱码精品一区二区三区| 乱人伦中国视频| 亚洲成色77777| 老司机午夜十八禁免费视频| 色播在线永久视频| av天堂在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲av成人精品一二三区| 美女福利国产在线| 国产在线一区二区三区精| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 午夜福利影视在线免费观看| 亚洲成人免费av在线播放| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 欧美 亚洲 国产 日韩一| 欧美在线黄色| 欧美精品一区二区大全| 欧美国产精品一级二级三级| 亚洲精品第二区| 少妇被粗大的猛进出69影院| 国产精品成人在线| 一级毛片女人18水好多 | 丝袜人妻中文字幕| 我的亚洲天堂| 十八禁高潮呻吟视频| 免费观看人在逋| 国产男女内射视频| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 美女主播在线视频| 亚洲成人手机| 久久久国产欧美日韩av| 久久99一区二区三区| 久久ye,这里只有精品| 亚洲 国产 在线| 欧美xxⅹ黑人| 中文字幕高清在线视频| 亚洲精品一二三| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| cao死你这个sao货| 久久国产精品人妻蜜桃| 纯流量卡能插随身wifi吗| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 午夜精品国产一区二区电影| 又大又爽又粗| 黄色毛片三级朝国网站| 一区福利在线观看| 久久精品成人免费网站| 日本av手机在线免费观看| 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 99九九在线精品视频| 看免费成人av毛片| 欧美中文综合在线视频| 丝瓜视频免费看黄片| 久久99精品国语久久久| 久久精品亚洲熟妇少妇任你| 久久久久精品人妻al黑| 亚洲国产精品一区三区| 97在线人人人人妻| av福利片在线| www.精华液| 91精品伊人久久大香线蕉| 热99久久久久精品小说推荐| 777米奇影视久久| 美女视频免费永久观看网站| 国产精品 国内视频| 在现免费观看毛片| 国产av精品麻豆| 一边亲一边摸免费视频| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲综合一区二区三区_| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| www.999成人在线观看| 一本色道久久久久久精品综合| 国产黄色视频一区二区在线观看| 日韩熟女老妇一区二区性免费视频| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美| av网站免费在线观看视频| 久久 成人 亚洲| 国产av一区二区精品久久| 国产麻豆69| 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 久久人人爽av亚洲精品天堂| av在线老鸭窝| 后天国语完整版免费观看| 老司机亚洲免费影院| 19禁男女啪啪无遮挡网站| 婷婷丁香在线五月| 人妻人人澡人人爽人人| a级片在线免费高清观看视频| 国产麻豆69| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | xxx大片免费视频| av线在线观看网站| 日本午夜av视频| 超碰97精品在线观看| 国产精品国产三级专区第一集| 美女国产高潮福利片在线看| 免费观看人在逋| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀 | 久久久久久久国产电影| 精品福利永久在线观看| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 一级毛片电影观看| 午夜免费成人在线视频| 1024视频免费在线观看| 好男人视频免费观看在线| 成人午夜精彩视频在线观看| 欧美成狂野欧美在线观看| 热99国产精品久久久久久7| 精品人妻熟女毛片av久久网站| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频精品福利| 免费看十八禁软件| 一本综合久久免费| 欧美日本中文国产一区发布| 2018国产大陆天天弄谢| 伊人久久大香线蕉亚洲五| 亚洲精品久久久久久婷婷小说| 一本久久精品| 日本黄色日本黄色录像| 日韩av免费高清视频| 亚洲av成人不卡在线观看播放网 | 一级毛片黄色毛片免费观看视频| 亚洲欧美日韩高清在线视频 | e午夜精品久久久久久久| 啦啦啦啦在线视频资源| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 久久天堂一区二区三区四区| 国产国语露脸激情在线看| 国产视频一区二区在线看| 丝袜美腿诱惑在线| 午夜日韩欧美国产| 夫妻性生交免费视频一级片| 丝袜美足系列| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 日本av免费视频播放| 黄色视频在线播放观看不卡| 99国产综合亚洲精品| 高清不卡的av网站| 18禁国产床啪视频网站| 成人三级做爰电影| 精品亚洲成a人片在线观看| 久9热在线精品视频| 欧美成人午夜精品| cao死你这个sao货| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 少妇人妻 视频| 99久久人妻综合| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 国产精品一区二区在线观看99| 高清不卡的av网站| 亚洲,欧美,日韩| 伦理电影免费视频| 亚洲国产看品久久| 首页视频小说图片口味搜索 | 亚洲精品久久久久久婷婷小说| 久久久久网色| 国产伦人伦偷精品视频| 久久精品亚洲熟妇少妇任你| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 男女之事视频高清在线观看 | 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 99国产精品一区二区三区| 波野结衣二区三区在线| 久久 成人 亚洲| 日本黄色日本黄色录像| 9色porny在线观看| 亚洲视频免费观看视频| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 国产精品亚洲av一区麻豆| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 日本欧美视频一区| 日韩av免费高清视频| 亚洲人成网站在线观看播放| 久久久久久久久免费视频了| 美女高潮到喷水免费观看| 高清不卡的av网站| 九草在线视频观看| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 免费日韩欧美在线观看| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 少妇 在线观看| 母亲3免费完整高清在线观看| 老司机亚洲免费影院| 国产免费福利视频在线观看| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 女人爽到高潮嗷嗷叫在线视频| 色网站视频免费| 天天躁日日躁夜夜躁夜夜| 欧美日韩综合久久久久久| 99久久99久久久精品蜜桃| 夫妻性生交免费视频一级片| 精品卡一卡二卡四卡免费| 波野结衣二区三区在线| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 亚洲成人手机| 夫妻性生交免费视频一级片| 色播在线永久视频| 美女脱内裤让男人舔精品视频| 一区二区三区乱码不卡18| 国产亚洲精品久久久久5区| 国产精品久久久久成人av| 满18在线观看网站| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 亚洲欧美日韩另类电影网站| 汤姆久久久久久久影院中文字幕| 一级黄片播放器| 91国产中文字幕| 欧美 日韩 精品 国产| 免费在线观看黄色视频的| 成人国产一区最新在线观看 | 日韩一区二区三区影片| 成人手机av| 中文字幕亚洲精品专区| 女警被强在线播放| 亚洲少妇的诱惑av| 国产精品人妻久久久影院|