• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Representation of the ENSO Combination Mode and its Asymmetric SST Response in Di ff erent Resolutions of HadGEM3

    2018-06-20 01:50:20JianghuaWANHongliRENandPeiliWU
    Advances in Atmospheric Sciences 2018年8期

    Jianghua WAN,Hongli REN?,2,and Peili WU

    1 Laboratory for Climate Studies,and CMA-NJU Joint Laboratory for Climate Prediction Studies,National Climate Center,China Meteorological Administration,Beijing 100081,China

    2 Department of Atmospheric Sciences,School of Environment Studies University of Geoscience,Wuhan 430074,China

    3 Met Office Hadley Center,Exeter EX1 3PB,UK

    1.Introduction

    The El Ni?o–Southern Oscillation(ENSO)is a dominant mode of interannual climate variability and has pronounced impacts on global climate(Ropelewski and Halpert,1987;Trenberth et al.,1998;Wallace et al.,1998;Trenberth and Caron,2000).Recent studies have shown that nonlinear interactions between ENSO and the background western Pacific warm pool annual cycle can generate an ENSO/annual cycle combination mode(C-mode)(Stuecker et al.,2013),which exhibits pronounced variability of near-annual combination tone periods at~10 and ~15 months.Besides,it demonstrates distinct meridionally asymmetric patterns related to the equator in atmospheric variables(Stuecker et al.,2013,2015a,2015b),as well as SST anomalies(Zhang et al.,2016b).

    This C-mode over the Pacific warm pool plays an important role in the ENSO life cycle by contributing to the southward shift of anomalous central Pacific low-level zonal winds during the rapid termination of El Ni?o events(Harrison and Vecchi,1999;Vecchi,2006;McGregor et al.,2012;Stuecker et al.,2013).In addition,it plays a considerable part in the developing and maintaining processes of the anomalous low-level Northwest Pacific anticyclone(Stuecker et al.,2015b).A distinguished annual-cycle modulation of the meridional asymmetry in the atmospheric response to Eastern Pacific El Ni?o events has been detected,which does not emerge in Central Pacific El Ni?o or La Ni?a events(Zhang et al.,2015;Zhang et al.,2016b).Moreover,the C-mode may significantly affect East Asian precipitation anomalies and remarkably improve the predictability of Yangtze River basin summer rainfall(Li et al.,2016a;Zhang et al.,2016a,2016b).

    Considering the C-mode is crucial for both ENSO seasonally modulated dynamics and the ENSO climatic influence in the tropical Pacific to the western North Pacific,it is of great importance to evaluate the performances of models in simulating the C-mode.Li et al.(2016b)found the southward shift of the anomalous westerly over the central Pacific might only occur with the annual cycle background in an AGCM.Zhang et al.(2016b)evaluated the predictive skill of the oceanic C-mode in five dynamical models that participated in Weisheimer et al.(2009),and found it to be lower than that for the Ni?o3.4 index.Ren et al.(2016)assessed the performance of capturing the observed C-mode characteristics in 27 CGCMs from CMIP5.Most of the coupled climate models in CMIP5 are able to reproduce the spatial pattern of the C-mode well in terms of the surface wind variability,and about half can reproduce the spectral power at the combination tone periodicities.In this study,both the atmospheric aspect and the oceanic response of the combination mode were examined in a model simulation,and the sensitivity to model resolution was discussed.

    2.Data and methods

    The climate model used in this study is HadGEM3-GC2,which is the latest version of the UK Met Office Hadley Centre’s coupled climate modeling system.It consists of the Met Office’s Unified Model as the atmospheric component,JULES as the land-surface component,NEMO as the ocean component,and CICE as the sea-ice model.More details of the model can be found in Hewitt et al.(2011),Williams et al.(2015)and Senior et al.(2016).We utilized three different horizontal resolution configurations to look at the sensitivity of the C-mode simulation to the resolution.The N96 horizontal resolution is 1.25?latitude×1.875?longitude,which is approximately 130 km at the surface.N216 is 0.8?latitude×0.5?longitude(approximately 60 km at the surface),and N512 is approximately 25 km.The fully coupled model was integrated for 61 years at each resolution.

    For comparison,we utilized the monthly 10-m wind data from the NCEP–NCAR reanalysis dataset(1961–2015)(Kalnay et al.,1996),NCEP–DOE data,ERA-40 data,and 20CR data.The SST anomalies(1961–2011)associated with ENSO and the C-mode are examined using the HadISST1 dataset,provided by the UK Met Office(Rayner et al.,2003),as well as the OISST and ERSST datasets.The precipitation data are from CMAP.

    The ENSO C-mode was derived following the same approach as in Stuecker et al.(2013).We first conduct a combined empirical orthogonal function(EOF)analysis on the anomalous zonal and meridional wind anomalies over the tropical Pacific region(10?S–10?N,100?E–60?W),and then regress the horizontal wind anomalies onto the first two normalized principal components(PCs),respectively.The oceanic aspect of the C-mode can be represented by the Ni?o-Asymmetry SST index(Ni?o-A index),which can comprehensively capture both the meridional asymmetry and the zonal SST asymmetry(Zhang et al.,2016b).The Ni?o-A index is defined as

    where the brackets denote the area-averaged SST anomalies over the regions SW(0?–20?S,120?–160?E),SE(0?–20?S,100?–140?W),and NC(0?–20?N,150?E–130?W).The Ni?o3.4 index is defined as the SST anomalies averaged over the region(5?S–5?N,120?–170?W).

    3.Results

    3.1.Characteristics of the C-mode in the reanalysis data

    3.1.1.Atmospheric features of the C-mode

    Figure 1 displays the first two leading EOF patterns of tropical Pacific surface wind anomalies in different reanalysis products.The datasets show considerable agreement with one another.The first EOF pattern(EOF1)is characterized by a meridionally quasi-symmetric wind distribution with equatorial westerly anomalies over the western-central Pacific,which describes the anomalous Walker circulation associated with ENSO(Figs.1a,c,e and g).The second EOF mode(EOF2)exhibits a meridionally antisymmetric circulation with a distinct anomalous Northwest Pacific anticyclone and southward shift of the equatorial central-Pacific westerly wind anomalies(Figs.1b,d,f and h),which is the characteristic atmospheric response to the C-mode(Stuecker et al.,2013,2015b).

    The PC time series are also highly correlated among the different reanalysis datasets(Fig.2).The correlation coefficient of the PCs between each dataset and the NCEP–NCAR data is higher than 0.9,except for the PC2 between ERA-40 and NCEP–NCAR,which still reaches 0.84.Hereinafter,we use the NCEP–NCAR reanalysis data to validate the model simulation of the C-mode atmospheric variability.

    The PC1 time series is highly correlated(r=0.85)with the Ni?o3.4 index(Fig.3a),further verifying that EOF1 captures the main ENSO mode in the reanalysis.To better understand the relationship between the ENSO mode and the combination mode,we followed Stuecker et al.(2013)to utilize a theoretical approximation to the C-mode time series by multiplying PC1 by a sinusoidal function with the annual cycle;that is,

    The ωain this equation denotes the angular frequency of the annual cycle,tdenotes time and ? represents a one-month shift.This time series represents the combination tones of the ENSO signal and the annual cycle by its mathematical nature.In the reanalysis,PC1cos shows remarkable agreement with the observed PC2(Fig.3b).The correlation coefficient is 0.63.

    To further understand the combination tones,we calculate the power density spectra for both the PC1 and PC2 time series in the reanalysis(Fig.4a).The spectrum for PC1 exhibits pronounced levels of variability,mostly in the interannual period band of 2–8 years,while PC2 exhibits a significant spectral peak at a period of~15 months and a weaker one at~10 months.Actually,these two peaks align well with the two shifted frequency bands of ENSO-annual cycle combination tones,which is the sum tone as 1+fEand the difference tone as 1?fE,wherefEdenotes the ENSO characteristic interannual frequency band.

    3.1.2.Asymmetric SST response of the C-mode

    Fig.1.The leading two EOF spatial patterns of tropical Pacific surface wind anomalies(units:m s?1)for(a,b)NCEP–NCAR,(c,d)NCEP–DOE,(e,f)ERA-40 and(g,h)20CR.Shading indicates the regressed zonal wind anomalies.Percentages of variance explained by the EOF patterns are given in parentheses.

    Besides the surface atmospheric response of the C-mode,the nonlinear processes in the ocean–atmosphere coupled system may also result in combination tones in oceanic variables(Jin et al.,1994;Stein et al.,2014).Zhang et al.(2016b)pointed out the Ni?o-A index can capture the SST response to the C-mode very well.Figure 5 demonstrates the SST anomalies and 850-hPa horizontal wind anomalies regressed onto the Ni?o3.4 and Ni?o-Aindices in different observational datasets.The spatial SST distribution related to ENSO is characterized as a meridionally symmetrical SSTA pattern(Figs.5a,c and e).Also,the Ni?o-A index–associated SST anomaly pattern exhibits negative SST anomalies over the northern central tropical Pacific and positive SST anomalies over the southwestern and southeastern tropical Pacific(Figs.5b,d and f),which exhibits a very similar structure to the forced C-mode SST pattern(Zhang et al.,2016b).The anomalous anticyclone over northwestern Pacific can be seen more clearly in the 850-hPa wind field.The results of different observational datasets also show great similarity.We use the HadISST dataset to validate the model simulation of the C-mode oceanic variability afterwards.

    Fig.2.(a)PC1 and(b)PC2 in different reanalysis datasets.Numbers after the colon are the correlation coefficients between each dataset and the NCEP–NCAR reanalysis.

    Fig.3.(a)PC1 and Ni?o3.4 index for the reanalysis;(b)PC1cos and PC2 for the reanalysis.PC2 and Ni?o3.4 indices for models at(c)N96,(e)N216 and(g)N512.PC1 and PC2cos for models at(d)N96,(f)N216 and(h)N512.Correlation coefficients between two curves are given in the top right.

    Fig.4.Spectra curves of PC1(blue)and PC2(red),where the dashed lines indicate the statistical significance at the 95%con fidence level.Grey rectangles indicate the near-annual combination tone frequency bands.

    Fig.5.SST(contours;units:K)and 850-hPa wind(vectors;units:m s?1)anomalies regressed onto the Ni?o3.4(left panels)and Ni?o-A(right panels)indices for(a,b)HadISST,(c,d)ERSST and(e,f)OISST data.Black dots represent the 99%confidence level of the SST.Only regions with at least either of the two components of wind at the 95%confidence level are shown.

    Fig.6.(a)PC2(NCEP–NCAR dataset)and standardized Ni?o-A(HadISST dataset)indices for the observation.(b–d)PC1 and standardized Ni?o-A indices for model outputs.Correlation coefficients between two curves are given in the top right.

    The Ni?o-A index is highly correlated with the PC2 in the reanalysis data(Fig.6a),verifying it represents the oceanic features of the C-mode.The spectral analysis indicates that the Ni?o3.4 index spectrum shows a significant 2–8-year peak,and the Ni?o-A index peaks at combination tone periods of~10 months and ~15 months(Fig.7a),which is in agreement with Fig.4.This implies the Ni?o-A index also exhibits the combination tone frequency based on the ENSO period and the annual cycle.

    3.2.Simulated C-mode in different model resolutions

    3.2.1.Simulated spatial patterns of the C-mode

    If we compare the first two leading EOFs simulated by HadGEM3(Fig.8)with the corresponding patterns in the reanalysis(Fig.1),they show significantly different spatial distributions.Unlike the equatorially symmetric EOF1 in the reanalysis,the EOF1 patterns in all three versions of the model exhibit remarkable meridionally antisymmetric structures,with strong shear of anomalous zonal wind across the equator,which bears great resemblance to the EOF2 pattern in the reanalysis,although the anomalous Philippine anticyclones in the models are weaker than in the reanalysis.Meanwhile,the EOF2 patterns in the models show a meridionally symmetric feature,resembling the EOF1 rather than the EOF2 pattern in the reanalysis.

    Fig.7.Spectra curves of standardized Ni?o3.4(blue)and Ni?o-A(red)for the observation and model results.Dashed lines indicate the statistical significance at the 95%confidence level.

    This reversed similarity relationship can be more directly seen in Table 1.The pattern correlation coefficients of the same EOF patterns between the models and the NCEP–NCAR reanalysis are very low,with an absolute value of~0.25 in the case of EOF2.On the other hand,they get much higher when we switch the order of the compared observed EOF.The correlation coefficient between the N96-simulated EOF2 and the observed EOF1 can reach 0.79,and it becomes slightly low eras the resolution getshigher.Moreover,models with better ability to reproduce the ENSO mode can also simulate the C-mode spatial pattern more realistically,which is in accordance with the CMIP5 results(Ren et al.,2016).The results indicate that HadGEM3 can capture the spatial structures of the ENSO mode and the C-mode in the surface wind field.However,it tends to emphasize the C-mode component too much,such that the C-mode turns into the dominant pattern in the tropical Pacific surface wind variability,instead of the ENSO mode as in the reanalysis.

    3.2.2.Simulated combination tone features

    As mentioned above,the ENSO mode in the simulation is represented by EOF2 instead of EOF1;thus,we compare the PC2 in the simulation with the Ni?o3.4 indices.They agree with each other well,with correlation coefficients around 0.5 in all three simulations(Figs.3c,e and g).The correlation coefficients grow slightly higher as the model resolution gets higher,which is opposite to the spatial pattern trend(Table 1).

    For the model theoretical approximation to the C-mode time series,a similar method was applied,except we used PC2 as the ENSO signal and the theoretical C-mode signal was PC2cos.The PC1s are also well correlated with the theoretical C-mode time series(Figs.3d,f and h).The middle resolution(N216)model shows the best performance,with the correlation coefficient reaching 0.41.However,the spectra of the first two leading PCs in the model simulation are difficult to distinguish from each other(Figs.4b,c and d).The ENSO signal(PC2)peaks around the 2–8-year period bands,but also exhibits high-frequency signals,especially at the 1?fEfrequency band.This is notable in the left-hand panel of Fig.3,in which the PC2s contain detectable highfrequency variability compared with either the PC1 in the reanalysis or the Ni?o3.4 indices in the simulation.The combination tones(PC1)can capture the 1?fEand 1+fEfrequency peaks well,but they also show a significant peak in the ENSO mode characteristic low-frequency band,which is not the case in the reanalysis(Fig.4a).

    3.2.3.Asymmetric SST response of the C-mode in the simulation

    Figure 9 demonstrates the SST anomalies and 850-hPa horizontal wind anomalies regressed onto the Ni?o3.4 and Ni?o-A indices in the simulations.All three configurationsof the model can capture the spatial SST distribution related to the ENSO mode and the C-mode very well,although the C-mode-related warm center over the eastern Pacific is stronger and extends to the central Pacific compared to the observation.The Ni?o-A index is highly correlated with the PC1s in the model simulations(Figs.6b–d).The correlation coefficients get higher as the resolution gets higher,which reaches 0.78 in the N512 simulation.This is similar to the relationship between the Ni?o3.4 index and PC2 in the simulation,as illustrated in the left-hand panel of Fig.3.This implies that,for both the ENSO mode and C-mode,the atmospheric responses(PCs)are more consistent with the oceanic responses(Ni?o indices)as the model resolution gets finer.

    Table 1.Pattern correlation coefficients between the first two leading EOF patterns in the models and reanalysis.The letter“m”in parentheses denotes the EOF of models,and “r”stands for the reanalysis,which is the NCEP–NCAR dataset in this table.

    Fig.8.The leading two EOF spatial patterns of tropical Pacific surface wind anomalies(units:m s?1)for HadleyGEM3 with different resolutions of(a,b)N96,(c,d)N216 and(e,f)N512.Shading indicates the regressed zonal wind anomalies.Percentages of variance explained by the EOF patterns are given in parentheses.

    We also investigate the power spectra of the Ni?o3.4 and Ni?o-A indices in the simulations(Figs.7b–d).In agreement with Fig.4,the simulated Ni?o3.4 and Ni?o-A spectra show a similar performance to PC1 and PC2;the peak frequency bands are overlapped,and therefore they are not easily distinguishable from each other.

    Fig.9.SST(contours;units:K)and 850-hPa wind(vectors;units:m s?1)anomalies regressed onto the Ni?o3.4(left panels)and Ni?o-A indices(right panels)for the model results at three resolutions.Black dots represent the 99%conifdence level of the SST.Only regions with at least either of the two components of wind at the 95%confidence level are shown.

    3.2.4.Possible mechanism of the model misrepresentationThe C-mode emerges from the nonlinear interaction between the ENSO mode and the annual cycle background.It plays an important role in ENSO’s phase-lock feature by being responsible for the sudden weakening and southward shift of equatorial westerly anomalies during the termination process of strong El Ni?o events(Stuecker et al.,2013).We evaluate the phase relationship between PC1 and PC2 by compositing the PCs with respect to the annual cycle evolution for the El Ni?o events selected by the Ni?o3.4 indices of each dataset(Fig.10).The PC1s of the simulations are able to generally capture the temporal evolution of the C-mode index represented by PC2 in the reanalysis.However,the rapid phase switch around late winter in the reanalysis is not reproduced by the models.As the ENSO mode itself is concerned,the PC2s in the models show a shift in the peak time by about three months compared to the reanalysis.The performance of the middle resolution(N216)model is relatively better,of which the PC1 also matches the theoretical C-mode the best(Fig.3f).This implies that the unrealistic periodic characteristic of the C-mode in the simulation is partly attributable to the distorted ENSO evolution.Therefore,improving the performance of the ENSO signal period in models is crucial to better simulating the C-mode.

    Previous studies have pointed out the southward shift of zonal surface wind anomalies is attributable to the meridional seasonal march of western Pacific background warm SSTs and corresponding intensification of the SPCZ due to the seasonal evolution of solar insolation(Harrison and Vecchi,1999;Spencer,2004;Lengaigne et al.,2006;McGregor et al.,2012).The reduced climatological wind speed related to the SPCZ intensification leads to anomalous boundary layer Ekman pumping and a reduced surface momentum damping of the combined boundary layer/lower-troposphere surface wind response to El Ni?o,which allows the associated zonal wind anomalies to shift south of the equator(McGregor et al.,2012).Besides,Ham and Kug(2014)used CMIP3 and CMIP5 archives to reveal that the climatological mean precipitation over the central/eastern Pacific ITCZ plays an important role in ENSO phase transition by affecting the location of the ENSO-related convection and the wind stress.Figure 11 displays the climatological annual evolution of the precipitation over the central Pacific.The models simulate excessive mean precipitation over the ITCZ through late spring to winter.Also,the SPCZ intensification starts in October in the simulation,while in the observation it occurs in winter.The unrealistic simulation of the climatological precipitation over the central Pacific could be a factor in the relatively poor representation of the ENSO phase-lock(Fig.10),and affects the C-mode dynamic process by providing a distorted annual cycle background.

    Fig.10.PC1(solid)and PC2(dashed)composites of the El Ni?o events for the reanalysis and the model results.In the composite,year(0)denotes the developing phase and year(1)the decaying phase.

    3.3.Simulated C-mode climate impacts on East Asian rainfall

    Previous studies have indicated the C-mode is essential to the linkage between the East Asian climate and ENSO(Li et al.,2016a;Zhang et al.,2016a,2016b),especially the Yangtze River summer rainfall(Zhang et al.,2016b).Taking the C-mode signal into consideration could improve the predictability of the summer precipitation in El Ni?o events.We use the middle resolution(N216)results as an example to check the ability of HadGEM3 to reproduce this connection between the East Asian summer rainfall and ENSO(Fig.12).Figure 12a demonstrates the average precipitation anomalies in the decaying summer(June–July–August)of the two strongest El Ni?o events in the N216 simulation,with increased rainfall over the Yangtze River Valley and decreased rainfall over the southeast of China.Using the Ni?o3.4 index alone can only reconstructa small fraction of the precipitation anomaly(Fig.12b).Including the Ni?o-A index can significantly improve the rainfall reconstruction,especially over the Yangtze River Valley.Therefore,this linkage is reproducible in HadGEM3,which gives us a suggested method to improve the prediction of East Asian summer precipitation associated with ENSO when applying the model outputs.

    4.Summary and discussion

    Fig.11.Climatological annual evolution of the zonal mean(between 160?E and 160?W)precipitation(units:mm d?1)from the CMAP dataset and the model simulation.

    Fig.12.(a)Precipitation anomalies during the decaying summer of the two strongest El Ni?o events in the N216 simulation.Reconstruction of precipitation anomalies using linear regression with(b)Ni?o3.4 index,(c)Ni?o-A index,and(d)both Ni?o3.4 and Ni?o-A indices.Units:mm d?1.

    Fig.13.Spectra curves of PC1(blue)and PC2(red)for six models from CMIP5.Dashed lines indicate statistical significance at the 95%confidence level.

    Fig.14.Spectra curves of standardized Ni?o3.4(blue)and Ni?o-A(red)for six models from CMIP5.Dashed lines indicate statistical significance at the 95%confidence level.

    In this study,we compare the performance of the UK Met Office Hadley Center’s HadGEM3 in representing the ENSO-annual cycle C-mode and the asymmetric SST response with three different resolutions:N96,N216 and N512,respectively.The results indicate that HadGEM3 can capture the spatial characteristics of ENSO and the ENSO-annual cycle C-mode,but it overestimates the C-mode accounted variance such that the C-mode turns into the dominant pattern in the surface wind fields.Meanwhile,the model can reproduce the spectral peaks of the C-mode at periods of about 10 and 15 months,which are the ENSO-annual cycle combined frequency.However,its behavior is not ideal on longer time scales,perhaps due to the relatively unrealistic simulation of the basic ENSO mode with a shorter period and shifted seasonal evolution peak during the El Ni?o event,which affects the nonlinear coupled process.Also,the model cannot simulate well the rapid PC2 phase transition near late winter.The simulated basic ENSO signal also exhibits a strong signal near the combination frequency both in SST and surface wind variability,implying the model cannot unambiguously tell the difference between the ENSO signal and the C-mode signal.

    Ren et al.(2016)compared the atmospheric features of the C-mode simulated by 27 CGCMs from CMIP5,demonstrating that most of them are able to reproduce the spatial pattern of the C-mode well with the correct order of the first two EOFs.Figure 13 illustrates the PC1 and PC2 spectra of the six best performing models in CMIP5,selected according to the correlation coefficients between the observed EOF2 and the simulated EOF2 of the surface wind(Ren etal.,2016).All PC2s show two distinctive combination frequencies without an unrealistic low-frequency peak.The ENSO mode and the C-mode can be distinguished from each other clearly.The circumstances are generaly similar in the oceanic characteristics(Fig.14),but with relatively weak combination frequency peaks of the Ni?o-A indices than the PC2s,which is also the case for the observation.These models capture the C-mode better than Had GEM3,possibly because of the more realistic simulation of the ENSO mode.

    The C-mode not only plays an important role in the intrinsic dynamical mechanism of ENSO evolution,but also in the process of ENSO affecting climate globally,especially the East Asian summer climate.It is valuable to keep bettering the ability of models in reproducing the C-mode variability,as well as its influences on global climate.To achieve such progress,it is helpful to improve the simulation of the precipitation climatology as well as the basic ENSO variability,including the spatial pattern,the frequency,the temporal evolution,and other properties.

    Acknowledgements.This work and its contributors were jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506013),the China National Science Foundation(Grant No.41606019),and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    REFERENCES

    Ham,Y.G.,and J.S.Kug,2014:Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition.Environmental Research Letters,9(6),064008,https://doi.org/10.1088/1748-9326/9/6/064008.

    Harrison,D.E.,and G.A.Vecchi,1999:On the termination of El Ni?o.Geophys.Res.Lett.,26(11),1593–1596,https://doi.org/10.1029/1999GL900316.

    Hewitt,H.T.,D.Copsey,I.D.Culver well,C.M.Harris,R.S.R.Hill,A.B.Keen,A.J.McLaren,and E.C.Hunke,2011:Design and implementation of the infrastructure of HadGEM3:The next-generation Met Office climate modelling system.Geoscientific Model Development,4(2),223–253,https://doi.org/10.5194/gmd-4-223-2011.

    Jin,F.-F.,J.D.Neelin,and M.Ghil,1994:El Ni?o on the devil’s staircase:Annual subharmonic steps to chaos.Science,264(5155),70–72,https://doi.org/10.1126/science.264.5155.70.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-Year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Lengaigne,M.,J.-P.Boulanger,C.Menkes,and H.Spencer,2006:Influence of the seasonal cycle on the termination of El Ni?o Events in a coupled general circulation model.J.Climate,19(9),1850–1868,https://doi.org/10.1175/JCLI3706.1.

    Li,H.,W.J.Zhang,and J.H.He,2016a:Influences of ENSO and its combination mode on seasonal precipitation over eastern China.Acta Meteorologica Sinica,74(3),322–334,https://doi.org/10.11676/qxxb2016.025.(in Chinese with English abstract)

    Li,H.Y.,W.J.Zhang,J.H.He,and Y.L.Wang,2016b:Influence of SST annual cycle on local air-sea processes during El Ni?o events.Haiyang Xuebao,38(1),56–58,https://doi.org/10.3969/j.issn.0253-4193.2016.01.006.(in Chinese with English abstract)

    McGregor,S.,A.Timmermann,N.Schneider,M.F.Stuecker,and M.H.England,2012:The effect of the South Pacific convergence zone on the termination of El Ni?o events and the meridional asymmetry of ENSO.J.Climate,25(16),5566–5586,https://doi.org/10.1175/JCLI-D-11-00332.1.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L.V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplan,2003:Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century.J.Geophys.Res.,108(D14),4407,https://doi.org/10.1029/2002 JD002670.

    Ren,H.L.,J.Q.Zuo,F.F.Jin,and M.F.Stuecker,2016:ENSO and annual cycle interaction:the combination mode representation in CMIP5 models.Climate Dyn.,46,3753–3765,https://doi.org/10.1007/s00382-015-2802-z.

    Ropelewski,C.F.,and M.S.Halpert,1987:Global and regional scale precipitation patterns associated with the El Ni?o/Southern oscillation.Mon.Wea.Rev.,115(8),1606–1626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    Senior,C.A.,and Coauthors,2016:Idealized climate change simulations with a high-resolution physical model:HadGEM3-GC2.Journal of Advances in Modeling Earth Systems,8,813–830,https://doi.org/10.1002/2015MS000614.

    Spencer,H.,2004:Role of the atmosphere in seasonal phase locking of El Ni?o.Geophys.Res.Lett.,31,L24104,https://doi.org/10.1029/2004GL021619.

    Stein,K.,A.Timmermann,N.Schneider,F.F.Jin,and M.F.Stuecker,2014:ENSO seasonal synchronization theory.J.Climate,27(14),5285–5310,https://doi.org/10.1175/JCLID-13-00525.1.

    Stuecker,M.F.,F.F.Jin,and A.Timmermann,2015a:El Ni?o-Southern Oscillation frequency cascade.Proceedings of the National Academy of Sciences of the United States of America,112(44),13 490–13 495,https://doi.org/10.1073/pnas.1508622112.

    Stuecker,M.F.,F.F.Jin,A.Timmermann,and S.McGregor,2015b:Combination mode dynamics of the anomalous Northwest Pacific anticyclone.J.Climate,28(3),1093–1111,https://doi.org/10.1175/JCLI-D-14-00225.1.

    Stuecker,M.F.,A.Timmermann,F.F.Jin,S.McGregor,and H.L.Ren,2013:A combination mode of the annual cycle and the El Ni?o/Southern Oscillation.Nature Geoscience,6(7),540–544,https://doi.org/10.1038/ngeo1826.

    Trenberth,K.E.,and J.M.Caron,2000:The Southern Oscillation revisited:Sea level pressures,surface temperatures,and precipitation.J.Climate,13(24),4358–4365,https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    Trenberth,K.E.,G.W.Branstator,D.Karoly,A.Kumar,N.C.Lau,and C.Ropelewski,1998:Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures.J.Geophys.Res.,103(C7),14 291–14 324,https://doi.org/10.1029/97JC01444.

    Vecchi,G.A.,2006:The Termination of the 1997–98 El Ni?o.Part II:Mechanisms of atmospheric change.J.Climate,19(12),2647–2664,https://doi.org/10.1175/JCLI3780.1.

    Wallace,J.M.,E.M.Rasmusson,T.P.Mitchell,V.E.Kousky,E.S.Sarachik,and H.von Storch,1998:On the structure and evolution of ENSO-related climate variability in the tropical Pacific:Lessons from TOGA.J.Geophys.Res.,103(C7),14 241–14 259,https://doi.org/10.1029/97JC02905.

    Weisheimer,A.,and Coauthors,2009:ENSEMBLES:A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs.Geophys.Res.Lett.,36(21),L21711,https://doi.org/10.1029/2009GL040896.

    Williams,K.D.,and Coauthors,2015:The Met Office Global Coupled model 2.0(GC2)configuration.Geoscientific Model Development,8,1509–1524,https://doi.org/10.5194/gmd-8-1509-2015.

    Zhang,W.J.,H.Y.Li,M.F.Stuecker,F.F.Jin,and A.G.Turner,2016a:A new understanding of El Ni?o’s Impact over East Asia:Dominance of the ENSO Combination Mode.J.Climate,29(12),4347–4359,https://doi.org/10.1175/JCLID-15-0104.1.

    Zhang,W.J.,H.Y.Li,F.F.Jin,M.F.Stuecker,A.G.Turner,and N.P.Klingaman,2015:The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO Zonal Structure.J.Climate,28(14),5795–5812,https://doi.org/10.1175/JCLI-D-14-00724.1.

    Zhang,W.J.,and Coauthors,2016b:Unraveling El Ni?o’s impact on the East Asian Monsoon and Yangtze River summer flooding.Geophys.Res.Lett.,43(21),11 375–11 382,https://doi.org/10.1002/2016GL071190.

    你懂的网址亚洲精品在线观看| 欧美激情国产日韩精品一区| 美女被艹到高潮喷水动态| 国产在线男女| 欧美激情国产日韩精品一区| 色网站视频免费| 免费无遮挡裸体视频| 国产一区二区三区综合在线观看 | 亚洲怡红院男人天堂| 在线免费观看的www视频| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻夜夜爽99麻豆av| 国产av在哪里看| 少妇被粗大猛烈的视频| 丰满人妻一区二区三区视频av| 99久久中文字幕三级久久日本| 色综合亚洲欧美另类图片| 久久久久久伊人网av| 国国产精品蜜臀av免费| 校园人妻丝袜中文字幕| 欧美成人一区二区免费高清观看| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 晚上一个人看的免费电影| 国产亚洲av片在线观看秒播厂 | 自拍偷自拍亚洲精品老妇| av免费在线看不卡| 激情 狠狠 欧美| 国模一区二区三区四区视频| 在线免费观看不下载黄p国产| 亚洲人成网站在线播| 成人一区二区视频在线观看| 十八禁网站网址无遮挡 | 97超视频在线观看视频| 99九九线精品视频在线观看视频| 免费观看无遮挡的男女| 韩国高清视频一区二区三区| 久久久久性生活片| 亚洲图色成人| 一级毛片aaaaaa免费看小| 欧美+日韩+精品| 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 天堂√8在线中文| 日日干狠狠操夜夜爽| 亚洲国产色片| 丝瓜视频免费看黄片| 欧美高清成人免费视频www| 亚洲av二区三区四区| 国产乱人视频| 亚洲美女视频黄频| 激情五月婷婷亚洲| 亚洲精品影视一区二区三区av| 99热6这里只有精品| 高清在线视频一区二区三区| 高清视频免费观看一区二区 | 性插视频无遮挡在线免费观看| 最近2019中文字幕mv第一页| 直男gayav资源| 尾随美女入室| 国产精品一区二区性色av| 26uuu在线亚洲综合色| 成人特级av手机在线观看| 午夜免费激情av| 久热久热在线精品观看| 欧美潮喷喷水| 国产老妇女一区| 91av网一区二区| 久久精品综合一区二区三区| 丰满少妇做爰视频| 国产一级毛片在线| 日韩一区二区视频免费看| 免费av不卡在线播放| 亚洲欧美精品专区久久| 高清av免费在线| 国产成人a∨麻豆精品| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 女人久久www免费人成看片| 日韩欧美 国产精品| 日韩精品有码人妻一区| 乱人视频在线观看| 久久国内精品自在自线图片| 蜜桃久久精品国产亚洲av| 亚洲无线观看免费| ponron亚洲| 一级毛片 在线播放| 午夜亚洲福利在线播放| 国产美女午夜福利| 别揉我奶头 嗯啊视频| 人妻一区二区av| ponron亚洲| 亚洲精品乱久久久久久| 亚洲国产精品成人综合色| 天堂俺去俺来也www色官网 | 日日啪夜夜撸| 只有这里有精品99| 男女下面进入的视频免费午夜| 久久久久久久久大av| 一级片'在线观看视频| 丰满少妇做爰视频| 久久久久久久国产电影| 国产亚洲精品av在线| 亚洲精品aⅴ在线观看| 日日撸夜夜添| 69av精品久久久久久| 免费看av在线观看网站| 波多野结衣巨乳人妻| 亚洲欧美精品自产自拍| 亚洲美女视频黄频| 久久6这里有精品| 欧美3d第一页| 人人妻人人看人人澡| 国产高潮美女av| 久久久久久久久大av| 亚洲国产精品成人综合色| 亚洲成人一二三区av| 中文字幕av在线有码专区| 国产老妇女一区| 少妇被粗大猛烈的视频| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线| 日韩欧美国产在线观看| 精品酒店卫生间| 亚洲自拍偷在线| 成人特级av手机在线观看| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 国产毛片a区久久久久| 深夜a级毛片| 国产高清国产精品国产三级 | 亚洲av.av天堂| 色播亚洲综合网| 干丝袜人妻中文字幕| 看黄色毛片网站| 亚洲第一区二区三区不卡| 久久精品夜夜夜夜夜久久蜜豆| 日韩成人av中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 2018国产大陆天天弄谢| 春色校园在线视频观看| 狠狠精品人妻久久久久久综合| 97超碰精品成人国产| 男女啪啪激烈高潮av片| 精品久久久久久久久av| 国产片特级美女逼逼视频| 成年av动漫网址| 欧美+日韩+精品| 久久久亚洲精品成人影院| 日韩伦理黄色片| 一级毛片久久久久久久久女| 少妇人妻精品综合一区二区| 日韩一区二区视频免费看| 日韩欧美 国产精品| 97超视频在线观看视频| 一区二区三区乱码不卡18| av线在线观看网站| 国产白丝娇喘喷水9色精品| 精华霜和精华液先用哪个| 日本爱情动作片www.在线观看| 天堂俺去俺来也www色官网 | 91aial.com中文字幕在线观看| 国产高清国产精品国产三级 | 日韩欧美三级三区| 视频中文字幕在线观看| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 国产av在哪里看| 国产视频首页在线观看| 少妇人妻精品综合一区二区| 小蜜桃在线观看免费完整版高清| 永久免费av网站大全| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 成人欧美大片| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 水蜜桃什么品种好| 99久久精品一区二区三区| 22中文网久久字幕| 精品久久久久久久久av| 乱系列少妇在线播放| av专区在线播放| 在线观看av片永久免费下载| 国产黄a三级三级三级人| av国产久精品久网站免费入址| 别揉我奶头 嗯啊视频| 国产精品.久久久| 久久久久精品久久久久真实原创| 欧美激情在线99| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 亚洲av成人精品一二三区| 亚洲婷婷狠狠爱综合网| 亚洲精品一区蜜桃| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 天堂网av新在线| 国产精品一区二区性色av| 一级a做视频免费观看| 亚洲成人久久爱视频| 欧美变态另类bdsm刘玥| 亚洲av国产av综合av卡| 男女国产视频网站| 国产精品国产三级国产专区5o| 18+在线观看网站| 久久99精品国语久久久| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| 九草在线视频观看| 婷婷六月久久综合丁香| 午夜免费激情av| 免费观看精品视频网站| 午夜福利高清视频| 欧美另类一区| 少妇人妻精品综合一区二区| 在线播放无遮挡| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 亚洲不卡免费看| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 黄色欧美视频在线观看| 国内精品美女久久久久久| 一级a做视频免费观看| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 亚洲真实伦在线观看| 久久99热这里只频精品6学生| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 美女黄网站色视频| 国产片特级美女逼逼视频| 成人综合一区亚洲| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 男人狂女人下面高潮的视频| www.av在线官网国产| 亚洲国产av新网站| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 国产永久视频网站| 乱人视频在线观看| 又爽又黄无遮挡网站| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 男女视频在线观看网站免费| 日日啪夜夜爽| 身体一侧抽搐| 激情 狠狠 欧美| 极品教师在线视频| 一个人看的www免费观看视频| 色吧在线观看| 国产精品久久久久久精品电影小说 | 亚洲不卡免费看| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 日韩中字成人| 午夜老司机福利剧场| 成年女人在线观看亚洲视频 | 亚洲怡红院男人天堂| 99久国产av精品国产电影| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 亚洲国产精品国产精品| 国产一级毛片七仙女欲春2| 国国产精品蜜臀av免费| 韩国高清视频一区二区三区| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 91av网一区二区| 一夜夜www| 亚洲图色成人| h日本视频在线播放| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 成年女人在线观看亚洲视频 | 黄片wwwwww| 高清欧美精品videossex| 99久久精品一区二区三区| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| 亚洲在线观看片| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 高清在线视频一区二区三区| ponron亚洲| 听说在线观看完整版免费高清| 成人二区视频| 精品不卡国产一区二区三区| 天堂√8在线中文| 国产视频内射| 白带黄色成豆腐渣| 国产成年人精品一区二区| 99热6这里只有精品| 亚洲最大成人中文| 久久99热这里只有精品18| 在线免费十八禁| 搞女人的毛片| 亚洲av免费在线观看| 国产精品美女特级片免费视频播放器| 十八禁网站网址无遮挡 | 国产片特级美女逼逼视频| 欧美+日韩+精品| 日韩大片免费观看网站| 秋霞在线观看毛片| 三级经典国产精品| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 亚洲欧美一区二区三区黑人 | 大片免费播放器 马上看| 成年女人在线观看亚洲视频 | av又黄又爽大尺度在线免费看| 久久99热6这里只有精品| 亚洲成人av在线免费| 国产亚洲最大av| 伊人久久国产一区二区| 久久久午夜欧美精品| 能在线免费看毛片的网站| 国产成人午夜福利电影在线观看| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 国产亚洲一区二区精品| 免费av不卡在线播放| 激情五月婷婷亚洲| 日本三级黄在线观看| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 亚洲成人精品中文字幕电影| 老司机影院成人| 免费看光身美女| 亚洲国产欧美在线一区| 成人二区视频| 国产一级毛片七仙女欲春2| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 国产成人a区在线观看| 黄片无遮挡物在线观看| 毛片女人毛片| 久久鲁丝午夜福利片| 国产av不卡久久| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频| 青春草视频在线免费观看| 五月伊人婷婷丁香| 久久久久网色| 成人亚洲精品一区在线观看 | 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| av线在线观看网站| 一区二区三区高清视频在线| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验| 亚洲av男天堂| 天堂俺去俺来也www色官网 | 亚洲国产欧美人成| 欧美成人午夜免费资源| 婷婷色麻豆天堂久久| 午夜老司机福利剧场| 欧美+日韩+精品| 麻豆国产97在线/欧美| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 久久久久久久久久成人| 一级片'在线观看视频| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 禁无遮挡网站| 欧美激情久久久久久爽电影| av一本久久久久| 国产日韩欧美在线精品| 久久国产乱子免费精品| 国产黄色视频一区二区在线观看| 熟女电影av网| 嫩草影院新地址| 人人妻人人看人人澡| 国产成年人精品一区二区| 国产91av在线免费观看| av在线观看视频网站免费| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 深爱激情五月婷婷| 欧美97在线视频| 精品一区二区免费观看| 天堂俺去俺来也www色官网 | 国产高清国产精品国产三级 | 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 成人毛片60女人毛片免费| 一区二区三区免费毛片| 亚洲在久久综合| 色综合站精品国产| 亚洲人成网站高清观看| 精品国产三级普通话版| 国产亚洲一区二区精品| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 国产成人精品福利久久| 国产精品精品国产色婷婷| 可以在线观看毛片的网站| 在线免费观看的www视频| 午夜老司机福利剧场| 伦精品一区二区三区| 久久久久久久午夜电影| av黄色大香蕉| 五月伊人婷婷丁香| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 国产午夜精品久久久久久一区二区三区| 精品一区二区三区视频在线| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频 | 在线天堂最新版资源| 男女视频在线观看网站免费| 搞女人的毛片| 嫩草影院精品99| 99久久精品一区二区三区| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 黄片wwwwww| 亚洲精品中文字幕在线视频 | 精品国产三级普通话版| 蜜桃亚洲精品一区二区三区| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 国内精品美女久久久久久| 国产在视频线精品| 久久久久久久久久人人人人人人| 国产黄片视频在线免费观看| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 国产精品麻豆人妻色哟哟久久 | 久久久成人免费电影| 18禁在线无遮挡免费观看视频| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人手机在线| 全区人妻精品视频| 好男人视频免费观看在线| 久久久久久久久久久免费av| 国精品久久久久久国模美| 内射极品少妇av片p| 乱人视频在线观看| 久久久欧美国产精品| 一级毛片电影观看| 秋霞伦理黄片| 精品久久国产蜜桃| 免费人成在线观看视频色| 一级片'在线观看视频| 欧美一级a爱片免费观看看| 国产成年人精品一区二区| 国产色爽女视频免费观看| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 亚洲精品日韩av片在线观看| 免费看日本二区| av免费观看日本| 国产v大片淫在线免费观看| 亚洲熟女精品中文字幕| 成人二区视频| 深夜a级毛片| 又爽又黄无遮挡网站| 精品人妻视频免费看| 国产精品国产三级国产专区5o| freevideosex欧美| 国产视频内射| av在线观看视频网站免费| 久久久久性生活片| 人人妻人人澡欧美一区二区| 国产精品国产三级国产专区5o| 午夜福利在线在线| 少妇熟女欧美另类| av在线蜜桃| 成人性生交大片免费视频hd| 国内少妇人妻偷人精品xxx网站| 中文乱码字字幕精品一区二区三区 | 婷婷色综合大香蕉| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 成人鲁丝片一二三区免费| 久久国产乱子免费精品| 极品教师在线视频| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 在线观看一区二区三区| 高清毛片免费看| 精品久久久久久电影网| 国产乱人偷精品视频| 亚洲av男天堂| 亚洲av成人精品一区久久| 欧美精品国产亚洲| 日韩电影二区| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 丰满乱子伦码专区| 国产精品不卡视频一区二区| 免费看美女性在线毛片视频| 日本熟妇午夜| 久久韩国三级中文字幕| 黄色日韩在线| 最近手机中文字幕大全| 国产精品一区二区性色av| 久久久久精品性色| 久久精品人妻少妇| 韩国av在线不卡| 欧美日韩在线观看h| 久久久久久久大尺度免费视频| 亚洲av成人精品一二三区| 伊人久久国产一区二区| 国产成人91sexporn| 日本一本二区三区精品| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 97精品久久久久久久久久精品| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 国产亚洲5aaaaa淫片| 免费看日本二区| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 777米奇影视久久| 波多野结衣巨乳人妻| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 嫩草影院精品99| 亚洲在久久综合| 六月丁香七月| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| 国产视频内射| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 久久这里只有精品中国| 亚洲人成网站高清观看| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 丰满乱子伦码专区| 国产成人一区二区在线| 成人午夜高清在线视频| 日韩,欧美,国产一区二区三区| 天天躁日日操中文字幕| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 亚洲av中文av极速乱| 国产v大片淫在线免费观看| 99久久精品热视频| 国产成人a区在线观看| 男女边吃奶边做爰视频| 麻豆成人av视频| 六月丁香七月| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 国产乱来视频区| 美女大奶头视频| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 亚洲欧美成人精品一区二区| 亚洲性久久影院| 91久久精品国产一区二区成人| 精品国产一区二区三区久久久樱花 | 国产亚洲一区二区精品| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂 | 亚洲一区高清亚洲精品| 九九久久精品国产亚洲av麻豆| 免费少妇av软件| 我要看日韩黄色一级片| 免费大片黄手机在线观看| 午夜福利视频1000在线观看| 精品人妻偷拍中文字幕| 超碰97精品在线观看| 美女国产视频在线观看| 日韩欧美一区视频在线观看 | 亚洲美女搞黄在线观看| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 一个人观看的视频www高清免费观看| 国产免费福利视频在线观看| 三级国产精品片| 日本wwww免费看| 午夜免费观看性视频| 日日干狠狠操夜夜爽| 欧美三级亚洲精品| 国产中年淑女户外野战色| 久久久久精品久久久久真实原创| 国产成人a区在线观看| 深爱激情五月婷婷| av天堂中文字幕网| 久久精品夜色国产| 亚洲欧美成人综合另类久久久| 精品国内亚洲2022精品成人| 校园人妻丝袜中文字幕|