• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5

    2018-06-20 01:50:00ChaofanLIRiyuLUPhilipBETTAdamSCAIFEandNicolaMARTIN
    Advances in Atmospheric Sciences 2018年8期

    Chaofan LI,Riyu LU,Philip E.BETT,Adam A.SCAIFE,5,and Nicola MARTIN

    1 Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2 State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3 University of the Chinese Academy of Sciences,Beijing 100029,China

    4 Met Office Hadley Centre,FitzRoy Road,Exeter EX1 3PB,UK

    5 College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter,Devon EX4 4QF,UK

    1.Introduction

    Surface air temperature(SAT)is a very important hydrological and climatic variable in western China.In contrast to the monsoon regions in eastern China,most regions in western China are arid,semi-arid or subject to snow cover.Variations of the SAT in western China are thus recognized as key in connecting with heat waves,water resources,agriculture and ecosystems(Qin et al.,2006;Chen et al.,2009;Wei and Chen,2009).For example,the arid Turpan Basin in northwestern China,produces fruit and cotton but suffers from excessive heat and shortage of water resources,relying heavily on seasonal changes of SAT and the resulting water from snow melt.Thus,a skillful prediction of summer SAT in western China is in great demand.

    Variation of SAT over western China is directly modulated by local ascent rates caused by surrounding anomalous circulations(Qian et al.,2004;Chen et al.,2009).A warm SAT anomaly tends to occur in association with anomalous descending air motion,increased low-level geopotential height and anticyclonic circulation,and vice versa.Factors that relate to changes in these circulation anomalies,like tropical air–sea interactions(Ding and Wang,2005;Huang et al.,2011),potentially imply a remote teleconnection with the variation of SAT over western China,but are not yet well demonstrated.In addition,variation of SAT over western China is quite sensitive to climate change,and shows remarkable warming since the 1980s(Zhou and Huang,2003,2010).As a result,this variation links with a strong increase of extreme heat days in northwestern China during the last 40 years(Wei and Chen,2009).

    Along with recent advances in climate models and longrange forecasting,skillful seasonal predictions for some variables have been possible(e.g.,Wang,2008;Li et al.,2012;Scaife et al.,2014)and are becoming more useful in economic planning and disaster mitigation(Ma et al.,2015;Svensson et al.,2015;Palin et al.,2016;Clark et al.,2017;Li et al.,2017).Nevertheless,seasonal forecast skill and reliability of SAT in western China have until recently been elusive.Recently,Bett et al.(2017)assessed the overall seasonal forecast skill of the climate variables relevant to the energy sector in China and showed possible skillful summer prediction of SAT in western China.However,they did not analyze quantitatively the prediction skill of SAT in western China,nor identify the sources of predictability.Further investigations of this predictability and its sources are presented here.

    We use the latest Met Office seasonal forecast system—namely,Global Seasonal Forecast System version 5(GloSea5)(MacLachlan et al.,2015)—to present estimates of summer prediction of the SAT in western China.GloSea5 is a high-resolution,fully coupled atmosphere–ocean forecast system,with initialized stratosphere and sea ice.It has demonstrated considerable capability in predicting the North Atlantic Oscillation(Scaife et al.,2014),Yangtze River valley summer rainfall(Li et al.,2016),winter precipitation over southeastern China(Lu et al.,2017),tropical storms(Camp et al.,2015),as well as wind speed and temperature in the UK and Europe(Clark et al.,2017).As an operational forecast system,GloSea5 has already been effectively applied in China in-real time seasonal forecasts of monsoon rainfall for the Yangtze River Basin(Li et al.,2016;Bett et al.,2018).A better identification in GloSea5 of the summer prediction for SAT in western China will potentially deliver further climate services for this region.

    Two main questions will be answered in this study:How well do current coupled models perform in predicting the SAT in western China?And what are the main sources of skill?We first describe the data and hindcast experiments in section 2,then assess the prediction skill and identify the prediction sources in sections 3 and 4,considering the warming trend and interannual variation of the SAT.We finally present our conclusions and discussions in section 5.

    2.Data and hindcast experiments

    The GloSea5 forecast system is developed based on the second global coupled configuration of HadGEM3(Williams et al.,2015).The atmospheric resolution is N216(0.83?in latitude and 0.55?in longitude)and L85(85 vertical levels reaching to 85 km height).It is coupled with the JULES land surface model(Best et al.,2011),the CICE sea ice model(Rae et al.,2015)and the NEMO ocean model(Megann et al.,2014).The ocean resolution is 0.25?in both latitude and longitude,with 75 levels.More details of the GloSea5 forecast system are given in MacLachlan et al.(2015).We use a set of hindcasts produced by GloSea5 covering 1992 to 2011 for each summer(JJA:June–July–August).There are 24 ensemble members in total,with eight members initialized on each of 25 April,1 May and 9 May.We use the ensemble mean of these hindcasts in this study.

    To verify the model prediction,we use the summer SAT and geopotential height from the ERA-Interim reanalysis(Dee et al.,2011)from 1992 to 2011 as observations.For the summer variation of SAT,we have compared the reanalysis results with an observed 160-station temperature dataset from the China Meteorological Administration,and found that ERA-Interim follows the station data quite well(not shown),as found in previous studies(e.g.,Inoue and Matsumoto,2004;Wu et al.,2005).As the stations are relatively sparse in western China,the spatially complete ERA-Interim reanalysis data are thus a good substitute.Two other datasets,including the monthly precipitation data obtained from GPCP(Adler et al.,2003)and SST data from ERSST.v4(Huang et al.,2015),were also used for observational verification.

    3.Prediction skill of the SAT in western China

    We firstly assess the capability of GloSea5 to describe the summer SAT in western China.Figure 1 shows the climatology and interannual variability of JJA-mean SAT in observations and GloSea5.In observations,in addition to the monsoon region in the east,northwestern China suffers from quite hot summers,with the mean temperature exceeding 28?C around the Taklimakan Desert.These high temperatures in northwestern China are the result of dry air adiabatic warming from subsidence associated with surrounding large-scale circulations(Gamo,1996;Wu and Liu,2003;Qian et al.,2004).Further south,the mean temperature on the Tibetan Plateau is low because of the high altitude.Temperatures in northern and western China exhibitlarge interannual variability(Fig.1c),including both northwestern China and around the Tibetan Plateau,implying an important role for SAT variability in the summer climate.Considering the model predictions,we find that the summer mean and interannual variability are generally well reproduced in GloSea5(Fig.1b and 1d).

    Figure 2 displays the spatial distribution of prediction skill for SAT in China.The skill score used here is the temporal correlation coefficient between the ensemble mean model prediction and observation at each grid point.It is clear that skillful predictions of SAT are demonstrated by GloSea5 in western China.The prediction skill is significant over most areas of western China and exceeds 0.6 for large areas.This distribution agrees well with Bett et al.(2017),who assessed the skill of temperature for energy demand forecasts,considering the potential for future climate service development.Furthermore,this skill pattern is similar to the longer leadtime prediction correlation of DePreSys3[version 3 of the UK Met Office Decadal Prediction System;Figs.1a and c in Monerie et al.(2017)].This uses the same coupled model as GloSea5 and has a longer hindcast time period from 1960 to 2014.This suggests that the skill of forecasts of SAT in western China achieved by GloSea5 is robust.

    Fig.1.The(a,b)climatology and(c,d)interannual variability of summer(JJA)mean near-surface air temperature(units:?C)for(a,c)ERA-Interim,as observation,and(b,d)the prediction from GloSea5,from 1992 to 2011.The interannual variability in(d)is characterized by the interannual standard deviation,calculated from all ensemble members and all years.The green boxes indicate the domains of northwestern China(35?–45?N,80?–105?E)and the Tibetan Plateau(30?–35?N,85?–105?E).

    To achieve a better understanding of the predictability,we divide western China into two regions,including northwestern China(35?–45?N,80?–105?E)and the Tibetan Plateau(30?–35?N,85?–105?E),and define their temperature indices as the area-averaged SAT over these two regions.The reason for us to choose these two regions is their variations of SAT are relatively independent of each other.The correlation coefficient between the two regions is 0.58(0.42 after detrending)from 1992 to 2011 in observations.Although 0.58 is significant at the 95%confidence level,it still implies that most of the variance is independent between the two regions.Moreover,we have also examined the first two EOFs of SAT in western China.These patterns exhibit anomalies mainly over northwestern China and the Tibetan Plateau,respectively(not shown),further supporting the separate investigation of their sources of skill.

    Fig.2.Prediction skill(temporal correlation coefficient)of summer SAT for the GloSea5 hindcasts.The yellow contours represent gridpoint statistical significance exceeding the 5%significance level.The green boxes indicate the domains of northwestern China(35?–45?N,80?–105?E)and the Tibetan Plateau(30?–35?N,85?–105?E).

    Figure 3 shows the year to year variation of the average summer SAT in northwestern China and the Tibetan Plateau for observations and the predictions.The temperature anomalies are successfully reproduced in most of the years from 1992 to 2011.The correlation coefficients of SAT between the model prediction and observation in northwestern China and the Tibetan Plateau are 0.76 and 0.64,respectively.These are both significant at the 1%significance level according to the Student’st-test.These values correspond well to the spatial distribution of prediction skill(Fig.2)and suggest useful predictions with potentially useful skill levels in the current operational forecast system.In addition,the signal-to-noise ratio,which is defined as the ensemble mean standard deviation divided by the standard deviation of individual members(e.g.Kumar,2009),is 0.64 for the temperature in these two regions.This is similar to the correlation scores,as it should be for a well calibrated system(Kumar,2009;Eade et al.,2014)and there is no discrepancy in signal-to-noise ratio in these predictions.Furthermore,systematic warming during the hindcast period is found in these two regions and is well reproduced by the model predictions.The SAT in northwestern China(the Tibetan Plateau)has been increasing at a rate of 0.83?C(0.37?C)per decade in observations,and is reproduced as 0.49?C±0.17?C(0.41?C±0.16?C)perdecade in GloSea5.The warming trend is suggested to be an important contributor to the prediction skill of SAT in western China,and will be discussed in the following section.

    Fig.3.Normalized time series ofSAT in(a)northwestern China and(b)the Tibetan Plateau from observation(bars)and the prediction of GloSea5(red solid line).The correlation coefficient between the prediction and observation is 0.76(0.64)over northwestern China(the Tibetan Plateau).Dashed lines represent the linear warming trends.

    4.Sources of the prediction skill

    4.1.Warming trend

    Systematic warming associated with skillful prediction is detected in the temperature of western China(Fig.3).But to what extent does this warming trend contribute to the prediction skill of SAT in western China?Figure 4 shows the spatial distribution of prediction skill for SAT after removing the linear trend.The prediction skill decreases over most regions of China(c.f.Fig.2).In northwestern China,the correlation coefficient of SAT between the model output and observation declines to 0.45,compared to 0.76 with the trend included(Fig.3a).It suggests a contribution of the warming trend to the skill of seasonal prediction in this region.Nevertheless,the skill is still generally positive(0.45 just exceeds the 95%confidence level)and is highly significant(>95%)in South Xinjiang,which is an extremely arid desert area in northwestern China.

    The skill around the Tibetan Plateau also remains significant after removing the linear trend.The correlation coefficient of SAT in the Tibetan Plateau between the model prediction and observation is 0.58,similar to the non-detrended result(0.64;Fig.3b).This implies that the warming trend does not play an important role in the prediction skill of SAT around the Tibetan Plateau,in contrast to the situation in northwestern China.Instead,interannual variations of other factors potentially dominate,and this will be discussed later.

    Changes of the prediction skill after detrending are well reflected by the spatial distribution of the linear trend of SAT in China(Fig.5a).Apparent warming of SAT is found over northwestern China in observations,especially in the northeast with an increase of more than 0.1?C yr?1(corresponding to the regions with large changes of prediction skill when detrending).The regions with strong warming are consistent with those that have a large decrease of prediction skill(Fig.5b),implying an important role of the warming trend in the prediction skill of SAT in these regions.This also applies to the summer prediction of SAT in Inner Mongolia and the middle–lower reaches of the Yangtze River Valley,where there is significant skill(Fig.2)and a large warming trend(Fig.5).

    Fig.4.As in Fig.2 but for the prediction skill of detrended SAT.

    Fig.5.Spatial distribution for(a)the linear trend of SAT in?C/year and(b)the change of prediction skill when detrending(difference between Figs.2 and 4).

    The tropical SST has a longer memory than the atmosphere and this imparts predictable signals to the tropical atmosphere on seasonal time scales(Wang et al.,2009;Kumar et al.,2013;Scaife et al.,2017);therefore,we search for teleconnections between the SAT in northwestern China and the variations of tropical SST.Figure 6 shows the regressed SST anomalies onto the original and detrended SAT in northwestern China.In association with warm conditions in northwestern China,significant positive SST anomalies in the western Pacific are found in the tropics.These SST anomalies disappear when the warming trend is removed,implying an important role of the warming trend in modulating the teleconnection of SAT in northwestern China to the SST in the tropical Pacific.To identify the sources of predictability,the ensemble mean of all members,which contains more predictable signals,is used as the model prediction.For the SST anomalies in model predictions,the effect of the warming trend can be reasonably reproduced,and shows east–west dipole SST anomalies in the tropical Pacific with or without detrending.

    The linear trend in SST during the hindcast period from 1992 to 2011 displays a warming of the tropical western Pacific and cooling of the tropical eastern Pacific that is well captured by the forecast system(Fig.7).This pattern closely resembles the SST teleconnection pattern associated with high SAT in northwestern China(Fig.6a)and may therefore explain some of the rapid warming in northwestern China.It further implies the importance of reasonable ocean data assimilation for skillful prediction of SAT in northwestern China,especially in the tropical Pacific Ocean.On seasonal timescales there is very high skill in tropical SST(Wang et al.,2009;Yan et al.,2010;Li et al.,2012)and the ENSO-like pattern shown here.The cooling of the eastern Pacific over this period is likely related to the negative Pacific Decadal Oscillation present in the early 21st century(Ding et al.,2013;Kosaka and Xie,2016;Smith et al.,2016).

    Fig.6.Regression of SST anomalies onto the(a,c)original and(b,d)detrended SAT in northwestern China for(a,b)observations and(c,d)seasonal predictions.Shading indicates regions where anomalies exceed the 5%significance level.The contour interval is 0.1?C and a positive(negative)anomaly is represented by a solid(dashed)contour.

    Fig.7.Spatial distribution for the linear trend of SST(units:?C yr?1)from(a)observations and(b)GloSea5.

    Fig.8.As in Fig.6 but for the SAT in the Tibetan Plateau.The green box indicates the key domain of SST anomalies in the western Pacific(10?S–10?N,110?–150?E).

    4.2.Interannual variation of SST in the western Pacific

    As described earlier,the prediction skill of SAT in the Tibetan Plateau remains high even after removing the linear trend,suggesting that this prediction skill arises mainly from its interannual component.Figure 8 shows the regression of simultaneous SST anomalies onto the SAT in the Tibetan Plateau.Significant warm SST anomalies are detected in the western Pacific related to the SAT on the Tibetan Plateau.The SAT on the Tibetan Plateau tends to be warm(cold)when there are positive(negative)SST anomalies in the western Pacific.This positive relationship does not decline even when the linear trend is removed,which is quite different to the variation of SAT in northwestern China.The corresponding correlation coefficient between SAT in the Tibetan Plateau and SST in the western Pacific(10?S–10?N,110?–150?E)is 0.64(0.62)before(after)detrending.In contrast,the SST in the tropical eastern Pacific has a relative weak impact on the SAT in western China.The correlation coefficient between SAT in the Tibetan Plateau and the Ni?o3.4 index is?0.39(?0.33)in observations.GloSea5 demonstrates quite good performance in reproducing this positive relationship,with significantly warm SST in the western Pacific being related to both the original and detrended SAT in the Tibetan Plateau.The significant correlation around the tropical eastern Pacific in the model predictions corresponds to the usage of the ensemble mean result with more predictable signals.

    Fig.9.Scatterplots showing the prediction skill of the(a)original and(b)detrended SAT in the Tibetan Plateau and its relationship with the SST in the western Pacific(box in Fig.8).The skill is represented by the prediction correlation between the model hindcast and observations,and observations are assumed perfect with a skill of 1.The red solid dot is for the observation;the blue solid dot is for the ensemble mean of GloSea5;and the black hollow dots are for the 24 ensemble members in GloSea5.

    Figure 9 shows the scatterplots for the prediction skill of SAT in the Tibetan Plateau and its relationship with the SST in the western Pacific for observation and prediction from model members.It shows the good performance of the model in capturing the teleconnection of SST in the western Pacific and SAT in the Tibetan Plateau,in associated with the skillful prediction of SAT.The scatter distribution shows a good linear correspondence and suggests that a better description of the teleconnection with the SST in the western Pacific favors a better prediction of SAT in the Tibetan Plateau.The linear correspondence agrees well before and after detrending.

    Interannual variation of SST in the western Pacific may modulate the variation of SAT in the Tibetan Plateau and give rise to skillful predictions.Figure 10 illustrates the summer anomalies related to this western Pacific anomalous SST.The SST anomalies in the western Pacific are averaged over the region given by(10?S–10?N,110?–150?E).Corresponding to an anomalously warm SST in the western Pacific,there is more rainfall around the Maritime Continent and enhanced 500-hPa geopotential height and SAT anomalies around the Indochina Peninsula and the Tibetan Plateau in observations.This kind of pattern is known as a Matsuno–Gill response(Matsuno,1966;Gill,1980)forced by the warm SST in the western Pacific.Anomalous condensational heating associated with the increased precipitation around the Maritime Continent,caused by the warming in the western Pacific,tends to excite a warm tropospheric Kelvin wave to the east and an anomalous increase of the 500-hPa geopotential height to the northwest.The surface air around the Tibetan Plateau can thus be warmed by subsidence induced by the increased surrounding geopotential height.In the seasonal predictions,the regression of model members is performed on allthe ensemble members in GloSea5,to verify the above process in observation with sufficient sample size.In the model predictions,a related similar response to the warm SST anomalies in the western Pacific occurs,consistent with the above process operating in the model as in observations,and thus effectively giving rise to the high levels of skill in SAT in the Tibetan Plateau.

    Moreover,to identify the extent to which the skill of SAT in the Tibetan Plateau can be explained by the western Pacific SST,a cross-validated reforecast is performed using the western Pacific SST as the only predictor.The cross-validated reforecast is built by a statistical linear regression method,leaving one target year out for prediction.After calculation,the cross-validated reforecast result achieves a temporal correlation coefficient of 0.58.It is close to the skill of direct model prediction(0.64)and verifies the western Pacific SST as one of the main sources of the high skill of SAT in the Tibetan Plateau.

    5.Summary and discussion

    Fig.10.Regression of(a,b)precipitation,(c,d)500-hPa geopotential height,and(e,f)SAT anomalies onto the normalized SST anomalies in the western Pacific(box in Fig.8)for(a,c,e)observations and(b,d,f)the seasonal predictions of all ensemble members in GloSea5.The anomalies are detrended before regression.Shading indicates regions where anomalies exceed the 5%significance level.The contour intervals are 0.5 mm d?1,10 m,and 0.05?C for the three variables,respectively.

    Improved understanding of climate dynamics to enhance regional climate predictions is one of the key research topics in the Climate Science for Service Partnership China(CSSP China)programme,and is crucial to underpin the development of climate services.In this study,we assess the prediction skill of summer SAT in western China and analyze the dynamical processes that contribute to that predictability,using the GloSea5 forecast system with a 20-year reforecast from 1992 to 2011.We find that the summer variation of SAT is quite skillfully predicted by the forecast system,with considerable temporal correlation coefficients in most regions of western China.The correlation between the model output and observation reaches 0.76 for the SAT averaged over northwestern China,and 0.64 for the Tibetan Plateau.

    For the sources of predictability,two important signals are detected:the linear trend and interannual variation of SST in the western Pacific.The SST trend in the tropical Pacific during these 20 years relates closely to the warming trend of SAT in northwestern China.The prediction skill in northwestern China contains a large component from the trend.This implies the importance of reasonable ocean assimilation in skillful prediction of SAT in northwestern China,es-pecially that over the tropical west Pacific.In contrast,for the Tibetan Plateau,the prediction skill remains high after removing the linear trend.A close teleconnection between the SST variability in the western Pacific and summer SAT around the Tibetan Plateau is revealed.The anomalously warm SST in the western Pacific appears to excite a Matsuno–Gill response with enhanced convection around the Maritime Continent and surface air warming and positive geopotential height over the Tibetan Plateau.

    Some midlatitude factors,such as the teleconnection pattern along the Asian upper-tropospheric westerly jet(Hong and Lu,2016;Lin and Lu,2016;Lin et al.,2017),which are modulated by atmospheric internal variation and are thus unpredictable(Kosaka et al.,2012),can also affect SAT in western China.This internal“noise”factor may limit the prediction of SAT in western China.The prediction sources identified in this study further confirm that the prediction skill of the current coupled model relies largely on tropical air–sea interactions.

    The skillful prediction achieved here suggests a positive outlook for future climate services for disaster mitigation and economic planning.The results presented here also have relevance beyond China:The contribution of interannual SST variation in the western Pacific also helps explain the prediction skill of SAT around the Indochina Peninsula,where skillful predictions with significant impact from the western Pacific SST are also detected(Figs.2,4 and 9).

    Acknowledgements.This work was supported by the National Key R&D Program of China(Grant No.2016YFA0600603)and the National Natural Science Foundation of China(Grant Nos.U1502233,41320104007 and 41775083).This work and its contributors were also supported by the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The Version-2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979–Present).Journal of Hydrometeorology,4,1147–1167,https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Best,M.J.,and Coauthors,2011:The joint UK land environment simulator(JULES),model description–part 1:Energy and water fluxes.Geoscientific model Development,4,677–699,https://doi.org/10.5194/gmd-4-677-2011.

    Bett,P.E.,and Coauthors,2017:Skill and reliability of seasonal forecasts for the Chinese energy sector.Journal of Applied Meteorology and Climatology,56,3099–3114,https://doi.org/10.1175/jamc-d-17-0070.1.

    Bett,P.E.,and Coauthors,2018:Seasonal forecasts of the summer 2016 Yangtze River basin rainfall.Atmospheric and Oceanic Physics,https://doi.org/10.1007/s00376-018-7210-y.

    Camp,J.,M.Roberts,C.MacLachlan,E.Wallace,L.Hermanson,A.Brookshaw,A.Arribas,and A.A.Scaife,2015:Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system.Quart.J.Roy.Meteor.Soc.,141,2206–2219,https://doi.org/10.1002/qj.2516.

    Chen,J.M.,P.Zhao,H.L.Liu,and X.Y.Guo,2009:Modeling impacts of vegetation in western China on the summer climate of northwestern China.Adv.Atmos.Sci.,26,803–812,https://doi.org/10.1007/s00376-009-9018-2.

    Clark,R.T.,P.E.Bett,H.E.Thornton,and A.A.Scaife,2017:Skilful seasonal predictions for the European energy industry.Environmental Research Letters,12,024002,https://doi.org/10.1088/1748-9326/aa57ab.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.1002/qj.828.

    Ding,H.,R.J.Greatbatch,M.Latif,W.Park,and R.Gerdes,2013:Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific.J.Climate,26,7650–7661,https://doi.org/10.1175/jclid-12-00626.1.

    Ding,Q.H.,and B.Wang,2005:Circumglobal teleconnection in the Northern Hemisphere summer.J.Climate,18,3483–3505,https://doi.org/10.1175/jcli3473.1.

    Eade,R.,D.Smith,A.Scaife,E.Wallace,N.Dunstone,L.Hermanson,and N.Robinson,2014:Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?Geophys.Res.Lett.,41,5620–5628,https://doi.org/10.1002/2014GL061146.

    Gamo,M.,1996:Thickness of the dry convection and large-scale subsidence above deserts.Bound.-Layer Meteor.,79,265–278,https://doi.org/10.1007/bf00119441.

    Gill,A.E.,1980:Some simple solutions for heat-induced tropical circulation.Quart.J.Roy.Meteor.Soc.,106,447–462,https://doi.org/10.1002/qj.49710644905.

    Hong,X.W.,and R.Lu,2016:The meridional displacement of the summer Asian jet,Silk Road Pattern,and tropical SST anomalies.J.Climate,29,3753–3766,https://doi.org/10.1175/jcli-d-15-0541.1.

    Huang,B.,and Coauthors,2015:Extended reconstructed sea surface temperature version 4(ERSST.v4).Part I:Upgrades and intercomparisons.J.Climate,28,911–930,https://doi.org/10.1175/jcli-d-14-00006.1.

    Huang,G.,X.Qu,and K.Hu,2011:The impact of the tropical Indian Ocean on South Asian high in boreal summer.Adv.Atmos.Sci.,28,421–432,https://doi.org/10.1007/s00376-010-9224-y.

    Inoue,T.,and J.Matsumoto,2004:A Comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960–99.J.Meteor.Soc.Japan.,82,951–958,https://doi.org/10.2151/jmsj.2004.951.

    Kosaka,Y.,and S.-P.Xie,2016:The tropical Pacific as a key pacemaker of the variable rates of global warming.Nature Geoscience,9,669–674,https://doi.org/10.1038/ngeo2770.

    Kosaka,Y.,J.S.Chowdary,S.-P.Xie,Y.-M.Min,and J.-Y.Lee,2012:Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific.J.Climate,25,7574–7589,https://doi.org/10.1175/JCLI-D-12-00009.1.

    Kumar,A.,2009:Finite samples and uncertainty estimates for skill measures for seasonal prediction.Mon.Wea.Rev.,137,2622–2631,https://doi.org/10.1175/2009MWR2814.1.

    Kumar,A.,M.Y.Chen,and W.Wang,2013:Understanding prediction skill of seasonal mean precipitation over the tropics.J.Climate,26,5674–5681,https://doi.org/10.1175/JCLI-D-12-00731.1.

    Li,C.F.,and Coauthors,2016:Skillful seasonal prediction of Yangtze river valley summer rainfall.Environmental Research Letters,11,094002.https://doi.org/10.1088/1748-9326/11/9/094002.

    Li,C.F.,R.Y.Lu,and B.W.Dong,2012:Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES.Climate Dyn.,39,329–346,https://doi.org/10.1007/s00382-011-1274-z.

    Li,C.F.,R.Y.Lu,and G.H.Chen,2017:Promising prediction of the monsoon trough and its implication for tropical cyclone activity over the western North Pacific.Environmental Research Letters,12,074027,https://doi.org/10.1088/1748-9326/aa71bd.

    Lin,Z.D.,and R.Y.Lu,2016:Impact of summer rainfall over southern-central Europe on circumglobal teleconnection.Atmospheric Science Letters,17,258–262,https://doi.org/10.1002/asl.652.

    Lin,Z.D.,F.Liu,B.Wang,R.Y.Lu,and X.Qu,2017:Southern European rainfall reshapes the early-summer circumglobal teleconnection after the late 1970s.Climate Dyn.,48,3855–3868,https://doi.org/10.1007/s00382-016-3306-1.

    Lu,B.,A.A.Scaife,N.Dunstone,D.Smith,H.-L.Ren,Y.Liu,and R.Eade,2017:Skillful seasonal predictions of winter precipitation over southern China.Environmental Research Letters,12,074021,https://doi.org/10.1088/1748-9326/aa739a.

    Ma,F.,X.Yuan,and A.Z.Ye,2015:Seasonal drought predictability and forecast skill over China.J.Geophys.Res.,120,8264–8275,https://doi.org/10.1002/2015JD023185.

    MacLachlan,C.,and Coauthors,2015:Global Seasonal forecast system version 5(GloSea5):A high-resolution seasonal forecast system.Quart.J.Roy.Meteor.Soc.,141,1072–1084,https://doi.org/10.1002/qj.2396.

    Matsuno,T.,1966:Quasi-geostrophic motions in the equatorial area.J.Meteor.Soc.Japan.,44,25–43,https://doi.org/10.2151/jmsj1965.44.1 25.

    Megann,A.,D.Storkey,Y.Aksenov,S.Alderson,D.Calvert,T.Graham,P.Hyder,J.Siddorn,and B.Sinha,2014:GO5.0:The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications.Geoscientific Model Development,7,1069–1092,https://doi.org/10.5194/gmd-7-1069-2014.

    Monerie,P.-A.,J.Robson,B.Dong,and N.Dunstone,2017:A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?Climate Dyn.,https://doi.org/10.1007/s00382-017-3935-z.

    Palin,E.J.,A.A.Scaife,E.Wallace,E.C.D.Pope,A.Arribas,and A.Brookshaw,2016:Skillful seasonal forecasts of winter disruption to the U.K.transport system.Journal of Applied Meteorology and Climatology,55,325–344,https://doi.org/10.1175/jamc-d-15-0102.1.

    Qian,Y.F.,N.F.Zhou,and Y.Bi,2004:Analyses of the impacts of upper-level temperature and height anomalies on surface air temperature and precipitation in China.Plateau Meteorology,23,417–428,https://doi.org/10.3321/j.issn:1000-0534.2004.04.001.(in Chinese)

    Qin,D.H.,S.Y.Liu,and P.J.Li,2006:Snow cover distribution,variability,and response to climate change in western China.J.Climate,19,1820–1833,https://doi.org/10.1175/jcli3694.1.

    Rae,J.G.L.,H.T.Hewitt,A.B.Keen,J.K.Ridley,A.E.West,C.M.Harris,E.C.Hunke,and D.N.Walters,2015:Development of the global sea ice 6.0 CICE configuration for the Met Office Global Coupled model.Geoscientific Model Development,8,2221–2230,https://doi.org/10.5194/gmd-8-2221-2015.

    Scaife,A.A.,and Coauthors,2014:Skillful long-range prediction of European and North American winters.Geophys.Res.Lett.,41,2514–2519,https://doi.org/10.1002/2014 GL059637.

    Scaife,A.A.,and Coauthors,2017:Tropical rainfall,Rossby waves and regional winter climate predictions.Quart.J.Roy.Meteor.Soc.,143,1–11,https://doi.org/10.1002/qj.2910.

    Smith,D.M.,and Coauthors,2016:Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown.Nature Climate Change,6,936–941,https://doi.org/10.1038/nclimate3058.

    Svensson,C.,and Coauthors,2015:Long-range forecasts of UK winter hydrology.Environmental Research Letters,10,064006,https://doi.org/10.1088/1748-9326/10/6/064006.

    Wang,B.,2008:Thrusts and prospects on understanding and predicting Asian monsoon climate.Acta Meteorologica Sinica,22,383–403.

    Wang,B.,and Coauthors,2009:Advance and prospectus of seasonal prediction:Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction(1980-2004).Climate Dyn.,33,93–117,https://doi.org/10.1007/s00382-008-0460-0.

    Wei,K.,and W.Chen,2009:Climatology and trends of high temperature extremes across China in summer.Atmospheric and Oceanic Science Letters,2,153–158,https://doi.org/10.1080/16742834.2009.11446795.

    Williams,K.D.,and Coauthors,2015:The met Office global coupled model 2.0(GC2)configuration.Geoscientific Model Development,8,1509–1524,https://doi.org/10.5194/gmd-8-1509-2015.

    Wu,G.X.,and Y.M.Liu,2003:Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation.Geophys.Res.Lett.,30,1201,https://doi.org/10.1029/2002GL016209.

    Wu,R.,J.L.Kinter III,and B.P.Kirtman,2005:Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis,objective analyses,and observations.J.Climate,18,3048–3067,https://doi.org/10.1175/jcli3465.1.

    Yan,L.,P.X.Wang,Y.Q.Yu,L.J.Li,and B.Wang,2010:Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM.Adv.Atmos.Sci.,27,921–936,https://doi.org/10.1007/s00376-009-9062-y.

    Zhou,L.-T.,and R.-H.Huang,2010:Interdecadal variability of summer rainfall in Northwest China and its possible causes.International Journal of Climatology,30,549–557,https://doi.org/10.1002/joc.1923.

    Zhou,L.T.,and R.H.Huang,2003:Research on the characteristics of interdecadal variability of summer climate in China and its possible cause.Climatic and Environmental Research,8,274–190,https://doi.org/10.3969/j.issn.1006-9585.2003.03.003.(in Chinese)

    国产精品av视频在线免费观看| 亚洲乱码一区二区免费版| 婷婷色麻豆天堂久久| kizo精华| 校园人妻丝袜中文字幕| 91精品伊人久久大香线蕉| 亚洲精品成人av观看孕妇| 中文字幕亚洲精品专区| 亚洲丝袜综合中文字幕| 伊人久久精品亚洲午夜| 纵有疾风起免费观看全集完整版 | 精品酒店卫生间| 人人妻人人澡人人爽人人夜夜 | 国产精品综合久久久久久久免费| 男女边摸边吃奶| 国产午夜精品久久久久久一区二区三区| 少妇被粗大猛烈的视频| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 性插视频无遮挡在线免费观看| 高清欧美精品videossex| 国产麻豆成人av免费视频| 亚洲精品中文字幕在线视频 | 国产精品人妻久久久久久| 久久久久免费精品人妻一区二区| 欧美区成人在线视频| 亚洲欧美精品自产自拍| eeuss影院久久| 国产成年人精品一区二区| av在线天堂中文字幕| 欧美zozozo另类| 插阴视频在线观看视频| 男人狂女人下面高潮的视频| 免费观看精品视频网站| 免费av观看视频| 男的添女的下面高潮视频| 亚洲国产精品sss在线观看| 一边亲一边摸免费视频| 欧美成人一区二区免费高清观看| 国产乱来视频区| 丝瓜视频免费看黄片| 国产免费又黄又爽又色| 伦理电影大哥的女人| 人人妻人人澡欧美一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 久久精品久久久久久久性| 男人狂女人下面高潮的视频| 亚洲av中文字字幕乱码综合| 国产黄片美女视频| 一级毛片 在线播放| 综合色av麻豆| 精品一区在线观看国产| 精品久久久精品久久久| 99热这里只有是精品在线观看| 人妻系列 视频| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 国产爱豆传媒在线观看| 久久久久久久久大av| 美女xxoo啪啪120秒动态图| 久久午夜福利片| 国产中年淑女户外野战色| 国产v大片淫在线免费观看| 国产色爽女视频免费观看| 91精品一卡2卡3卡4卡| 午夜免费观看性视频| 国产在线一区二区三区精| 少妇熟女欧美另类| 性色avwww在线观看| 男女国产视频网站| 亚洲国产精品专区欧美| 国产一区二区三区av在线| 国产女主播在线喷水免费视频网站 | 在线观看免费高清a一片| 噜噜噜噜噜久久久久久91| 亚州av有码| 国产伦精品一区二区三区视频9| 亚洲怡红院男人天堂| 麻豆国产97在线/欧美| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 欧美成人午夜免费资源| 91狼人影院| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 亚洲18禁久久av| 69av精品久久久久久| 国产美女午夜福利| 丝袜喷水一区| 老司机影院毛片| 汤姆久久久久久久影院中文字幕 | 美女内射精品一级片tv| 国产69精品久久久久777片| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版 | 97热精品久久久久久| 午夜免费激情av| av在线老鸭窝| 高清午夜精品一区二区三区| 国产精品av视频在线免费观看| 亚洲精品国产成人久久av| 久久99热这里只频精品6学生| 国产精品熟女久久久久浪| 欧美丝袜亚洲另类| 国产亚洲av片在线观看秒播厂 | 最近中文字幕2019免费版| 国产乱人视频| 中文精品一卡2卡3卡4更新| 亚洲国产最新在线播放| 国产在视频线在精品| 看黄色毛片网站| 插逼视频在线观看| 男女下面进入的视频免费午夜| 久久人人爽人人爽人人片va| 国精品久久久久久国模美| 大香蕉97超碰在线| 国产视频内射| 97超碰精品成人国产| 亚洲在线观看片| 亚洲在久久综合| 日韩人妻高清精品专区| 国产精品av视频在线免费观看| 色综合站精品国产| 91精品国产九色| a级一级毛片免费在线观看| 免费看光身美女| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 偷拍熟女少妇极品色| 欧美xxxx黑人xx丫x性爽| 免费看美女性在线毛片视频| 在线 av 中文字幕| 国语对白做爰xxxⅹ性视频网站| 亚洲精品中文字幕在线视频 | 精品少妇黑人巨大在线播放| 可以在线观看毛片的网站| 搞女人的毛片| 纵有疾风起免费观看全集完整版 | 久久久久精品性色| 国产中年淑女户外野战色| 国产精品不卡视频一区二区| 日本wwww免费看| 综合色丁香网| 亚洲精品第二区| 黄色欧美视频在线观看| 午夜视频国产福利| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 亚洲美女搞黄在线观看| 免费人成在线观看视频色| 成年女人看的毛片在线观看| av免费观看日本| 国产亚洲最大av| 亚洲精品色激情综合| 精华霜和精华液先用哪个| 欧美性感艳星| 99热全是精品| 国产视频内射| 欧美区成人在线视频| 熟妇人妻不卡中文字幕| 99视频精品全部免费 在线| 国产一区二区亚洲精品在线观看| 亚洲18禁久久av| 建设人人有责人人尽责人人享有的 | 日本一本二区三区精品| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 美女国产视频在线观看| 22中文网久久字幕| 熟妇人妻久久中文字幕3abv| 国产伦理片在线播放av一区| 网址你懂的国产日韩在线| 日韩伦理黄色片| 大话2 男鬼变身卡| av免费观看日本| 菩萨蛮人人尽说江南好唐韦庄| 国内少妇人妻偷人精品xxx网站| 天天躁夜夜躁狠狠久久av| 自拍偷自拍亚洲精品老妇| 美女主播在线视频| 精品人妻视频免费看| 久久久久国产网址| 99视频精品全部免费 在线| 只有这里有精品99| 亚洲欧洲国产日韩| or卡值多少钱| 国产精品精品国产色婷婷| 国产精品爽爽va在线观看网站| 男女啪啪激烈高潮av片| 国产三级在线视频| 日本色播在线视频| 亚洲精品aⅴ在线观看| 国产极品天堂在线| 97人妻精品一区二区三区麻豆| 日本wwww免费看| 免费av毛片视频| 日本与韩国留学比较| 国产精品综合久久久久久久免费| 中文欧美无线码| 26uuu在线亚洲综合色| 亚洲欧美成人综合另类久久久| 日韩制服骚丝袜av| 色哟哟·www| 老司机影院成人| 成人综合一区亚洲| 亚洲欧美一区二区三区黑人 | 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 国产精品一区二区性色av| 国产伦精品一区二区三区视频9| av卡一久久| 中文字幕免费在线视频6| 搞女人的毛片| 七月丁香在线播放| 美女cb高潮喷水在线观看| 亚洲图色成人| 99视频精品全部免费 在线| 久久久成人免费电影| 国产免费视频播放在线视频 | 成人综合一区亚洲| av网站免费在线观看视频 | 久久久久久久久大av| 午夜福利在线观看吧| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲国产av新网站| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 高清视频免费观看一区二区 | 国产精品伦人一区二区| 女人久久www免费人成看片| 美女大奶头视频| 欧美性感艳星| 极品教师在线视频| 欧美最新免费一区二区三区| 亚洲国产欧美在线一区| 大香蕉97超碰在线| 日韩欧美一区视频在线观看 | 美女大奶头视频| 五月天丁香电影| 大香蕉久久网| 久久精品国产自在天天线| 成年人午夜在线观看视频 | 少妇高潮的动态图| 日韩制服骚丝袜av| 成人性生交大片免费视频hd| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 91久久精品国产一区二区三区| 久热久热在线精品观看| 日本免费在线观看一区| 九色成人免费人妻av| 亚洲成人一二三区av| 一个人看视频在线观看www免费| 国产av在哪里看| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 成人国产麻豆网| 国产在视频线精品| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 亚洲精品一区蜜桃| 中文资源天堂在线| 又大又黄又爽视频免费| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 日韩av在线免费看完整版不卡| 日韩成人av中文字幕在线观看| 狠狠精品人妻久久久久久综合| 日本熟妇午夜| av免费在线看不卡| 成人漫画全彩无遮挡| 青春草国产在线视频| 欧美日本视频| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 免费看日本二区| 国产一区二区三区综合在线观看 | 大话2 男鬼变身卡| 亚洲av国产av综合av卡| 草草在线视频免费看| 欧美性感艳星| 日本欧美国产在线视频| 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久| 国产午夜精品久久久久久一区二区三区| 26uuu在线亚洲综合色| 日本猛色少妇xxxxx猛交久久| 国产精品女同一区二区软件| 午夜福利视频1000在线观看| 久久久久精品性色| 午夜久久久久精精品| 久久久精品免费免费高清| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 亚洲精品中文字幕在线视频 | 国产黄片美女视频| 亚洲18禁久久av| 久久精品国产亚洲网站| 白带黄色成豆腐渣| 国产亚洲最大av| 亚洲av不卡在线观看| 国产高清不卡午夜福利| 亚洲18禁久久av| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 婷婷六月久久综合丁香| 日本欧美国产在线视频| 80岁老熟妇乱子伦牲交| av在线观看视频网站免费| 综合色丁香网| 女的被弄到高潮叫床怎么办| 精品国产一区二区三区久久久樱花 | 亚洲av福利一区| 51国产日韩欧美| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 国产亚洲精品久久久com| 亚洲精华国产精华液的使用体验| 国产精品av视频在线免费观看| 亚洲av免费高清在线观看| 亚洲丝袜综合中文字幕| 亚洲av国产av综合av卡| 狂野欧美白嫩少妇大欣赏| 国产探花极品一区二区| 久久99热这里只有精品18| 人妻少妇偷人精品九色| 亚洲无线观看免费| 男人舔女人下体高潮全视频| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| 免费观看a级毛片全部| 午夜福利在线观看吧| 成年女人在线观看亚洲视频 | 国产成人一区二区在线| 亚洲国产精品专区欧美| 免费黄色在线免费观看| 国产日韩欧美在线精品| 日韩中字成人| 大香蕉97超碰在线| 亚洲,欧美,日韩| 国产黄色免费在线视频| 国产精品爽爽va在线观看网站| 麻豆久久精品国产亚洲av| 久久97久久精品| 男人爽女人下面视频在线观看| 高清毛片免费看| 国产伦精品一区二区三区四那| 国产乱人视频| 国产成年人精品一区二区| 日日摸夜夜添夜夜爱| 国产亚洲最大av| 人妻系列 视频| 2021少妇久久久久久久久久久| 三级国产精品片| 一个人看的www免费观看视频| 亚洲综合色惰| 日韩欧美精品免费久久| av在线老鸭窝| 2021天堂中文幕一二区在线观| xxx大片免费视频| 一级黄片播放器| 在线播放无遮挡| 国产永久视频网站| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看 | 免费黄频网站在线观看国产| 免费无遮挡裸体视频| 人人妻人人澡欧美一区二区| 色综合站精品国产| 免费黄色在线免费观看| 国产亚洲av片在线观看秒播厂 | 国产老妇女一区| 男人舔奶头视频| 精品久久久久久久久av| 在现免费观看毛片| 国产免费又黄又爽又色| 麻豆久久精品国产亚洲av| 亚洲av成人av| 国产精品久久久久久精品电影小说 | 午夜爱爱视频在线播放| 成人亚洲欧美一区二区av| 日韩成人av中文字幕在线观看| 男人狂女人下面高潮的视频| 一个人看视频在线观看www免费| 日韩欧美国产在线观看| 乱码一卡2卡4卡精品| 特级一级黄色大片| 日韩av在线免费看完整版不卡| 色综合亚洲欧美另类图片| 五月玫瑰六月丁香| 高清欧美精品videossex| 国产免费又黄又爽又色| 寂寞人妻少妇视频99o| xxx大片免费视频| 精品一区二区三区视频在线| 成人欧美大片| 亚洲av国产av综合av卡| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 日韩成人伦理影院| 国产精品无大码| 国产高清有码在线观看视频| 内地一区二区视频在线| 最近中文字幕2019免费版| 青青草视频在线视频观看| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 三级国产精品片| 身体一侧抽搐| 一级毛片我不卡| 日韩成人伦理影院| 亚洲欧洲日产国产| 午夜激情福利司机影院| 成人亚洲欧美一区二区av| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 五月天丁香电影| 国产精品一区二区在线观看99 | 久99久视频精品免费| 精品一区二区三区人妻视频| 亚洲精品成人av观看孕妇| 中文欧美无线码| 色视频www国产| 黄片无遮挡物在线观看| videossex国产| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 成人美女网站在线观看视频| 亚洲怡红院男人天堂| 一级av片app| 精品国产一区二区三区久久久樱花 | 精品少妇黑人巨大在线播放| 久久精品综合一区二区三区| 国产亚洲av片在线观看秒播厂 | 夜夜看夜夜爽夜夜摸| 久久久久网色| 免费高清在线观看视频在线观看| 久久久色成人| 国产男女超爽视频在线观看| 日日干狠狠操夜夜爽| 欧美变态另类bdsm刘玥| 久久99热这里只有精品18| 啦啦啦啦在线视频资源| 中文天堂在线官网| 大片免费播放器 马上看| 97超碰精品成人国产| 国产av不卡久久| 特大巨黑吊av在线直播| 午夜福利在线在线| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 激情 狠狠 欧美| av专区在线播放| av又黄又爽大尺度在线免费看| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 熟女人妻精品中文字幕| 国产av码专区亚洲av| 亚洲内射少妇av| 日韩一区二区三区影片| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 亚洲国产成人一精品久久久| 免费不卡的大黄色大毛片视频在线观看 | 永久免费av网站大全| 国产视频内射| 国产成人91sexporn| 天堂网av新在线| 国产视频首页在线观看| 久久久久久久久久久免费av| 国产精品熟女久久久久浪| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 波多野结衣巨乳人妻| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 男人爽女人下面视频在线观看| 久久99蜜桃精品久久| 直男gayav资源| xxx大片免费视频| 国产伦理片在线播放av一区| 国模一区二区三区四区视频| 91午夜精品亚洲一区二区三区| 欧美 日韩 精品 国产| 亚洲精品乱久久久久久| 波多野结衣巨乳人妻| 免费观看无遮挡的男女| 午夜福利网站1000一区二区三区| 亚洲精品456在线播放app| 一级毛片 在线播放| 国产午夜精品一二区理论片| 一个人观看的视频www高清免费观看| 精品一区二区三区人妻视频| 亚洲精品456在线播放app| 亚洲一级一片aⅴ在线观看| kizo精华| 丰满少妇做爰视频| 汤姆久久久久久久影院中文字幕 | 看黄色毛片网站| 色播亚洲综合网| 欧美+日韩+精品| 男女边吃奶边做爰视频| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站| 亚洲不卡免费看| 亚洲自偷自拍三级| 成年女人在线观看亚洲视频 | 在线a可以看的网站| 亚洲国产最新在线播放| 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 青春草国产在线视频| 久久99精品国语久久久| 嫩草影院入口| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲va在线va天堂va国产| 99久久九九国产精品国产免费| 欧美激情在线99| 精品酒店卫生间| 日本av手机在线免费观看| 成人午夜精彩视频在线观看| 久久99热这里只有精品18| 国产在视频线在精品| 国产黄频视频在线观看| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验| 国产精品一区二区性色av| 精品欧美国产一区二区三| 色综合色国产| 久久久久久久久久黄片| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 成人亚洲欧美一区二区av| 国产成人精品婷婷| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 综合色丁香网| 免费少妇av软件| 精品人妻视频免费看| 亚洲精品日本国产第一区| 亚洲在久久综合| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 国产午夜精品论理片| 天堂√8在线中文| 午夜爱爱视频在线播放| 精品酒店卫生间| 男女国产视频网站| 国产综合懂色| 免费高清在线观看视频在线观看| 美女内射精品一级片tv| 亚洲av二区三区四区| 久久午夜福利片| 国产有黄有色有爽视频| 男插女下体视频免费在线播放| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲高清精品| 99热网站在线观看| 一级爰片在线观看| 午夜福利网站1000一区二区三区| 干丝袜人妻中文字幕| 美女主播在线视频| 99热全是精品| 大话2 男鬼变身卡| 五月玫瑰六月丁香| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 免费av不卡在线播放| 深夜a级毛片| 欧美激情在线99| 国产欧美日韩精品一区二区| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 老司机影院毛片| 七月丁香在线播放| 久久草成人影院| 男的添女的下面高潮视频| 国产黄色小视频在线观看| 99热这里只有是精品50| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 亚洲精品一区蜜桃| 在线播放无遮挡| 美女黄网站色视频| 能在线免费观看的黄片| 美女主播在线视频| 国产精品嫩草影院av在线观看| 成人午夜精彩视频在线观看| ponron亚洲| 嫩草影院入口| 免费观看精品视频网站| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 高清欧美精品videossex| 亚洲无线观看免费| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 中文字幕久久专区| 亚洲综合色惰| videossex国产| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 亚洲av在线观看美女高潮| .国产精品久久|