• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall

    2018-06-20 01:49:56PhilipBETTAdamSCAIFEChaofanLIChrisHEWITTNicolaGOLDINGPeiqunZHANGNickDUNSTONEDougSMITHHazelTHORNTONRiyuLUandHongLiREN
    Advances in Atmospheric Sciences 2018年8期

    Philip E.BETT,Adam A.SCAIFE,Chaofan LI,Chris HEWITT,Nicola GOLDING,Peiqun ZHANG,Nick DUNSTONE,Doug M.SMITH,Hazel E.THORNTON,Riyu LU,and Hong-Li REN

    1 Met Office Hadley Centre,FitzRoy Road,Exeter EX1 3PB,UK

    2 College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter,Devon EX4 4QF,UK

    3 Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    4 Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081,China

    5 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    1.Introduction

    The Yangtze River basin cuts across central China,providing water,hydroelectricity and agricultural land for millions of people.The Yangtze has been subject to flooding throughout history(e.g.,Plate,2002;Yu et al.,2009),linked to variations in the East Asian monsoon that are sometimes driven by factors such as the El Ni?o–Southern Oscillation(ENSO;e.g.Zhang et al.,2016a,b).Large hydroelectric dams along the river and its tributaries,such as the Three Gorges Dam(Jiao et al.,2013),have flood defense as their primary responsibility.However,by lowering the water level behind the dam to protect against flooding,less electricity will be produced.There are therefore clear benefits of forecasting impactful rainfall events at long lead times,allowing mitigation planning for flooding and electricity production.

    The relationship between ENSO and the East Asian monsoon is complex and not fully understood.However,it has long been clear that a strong El Ni?o peaking in winter is likely to be followed by above-average rainfall in China the following summer(e.g.,Stuecker et al.,2015;He and Liu,2016;Xie et al.,2016;Zhang et al.,2016a,b),although this response is not symmetric under La Ni?a conditions(Hardiman et al.,2017).The extreme El Ni?o event of 1997/98 was followed by devastating floods in the Yangtze River basin(Zong and Chen,2000;Ye and Glantz,2005;Yuan et al.,2017):thousands of people died,millions were made homeless,and the economic losses ran into billions of CNY.In the subsequent years,much work has gone into better water management and flood prevention,and into improving both the accuracy and communication of climate forecasts,to prevent such a disaster happening again.

    Seasonal rainfall forecasts across China have long been produced based on statistical relationships with large-scale climate phenomena,rather than forecasting precipitation di-rectly from dynamical models.For example,Zhu et al.(2008)and Li and Lin(2015)both examined the skill of 500 hPa geopotential height(z500)data,from multi-model ensembles of dynamical seasonal forecast systems,for forecasting summer monsoon and Yangtze river valley rainfall,respectively.Tung et al.(2013),however,found that using sea level pressure performed betterthan usingz500when forecasting station-scale summer rainfall in southern China.Kwon et al.(2009),Peng et al.(2014),Wu and Yu(2016),Xing et al.(2016)and Zhang et al.(2016b)all investigated different statistical approaches to forecasting summer precipitation in China,based on various observational indices derived from sea surface temperatures(SSTs),air temperature and pressure.In many cases,these showed an improvement over dynamical models.Wang et al.(2013)found that both dynamical models and a statistical model based on SSTs and pressure were able to predict the variability in the West Pacific subtropical high,which was itself shown to be a good predictor of East Asian summer monsoon rainfall.Statistical downscaling techniques have also been shown to improve predictions of summer precipitation in China over global dynamical forecast models(e.g.,Ke et al.,2011;Liu and Fan,2012).

    Recent advances in the dynamical seasonal forecast system developed at the UK Met Office,GloSea5(MacLachlan et al.,2015),have resulted in the development of operational and prototype climate services for the UK in many sectors(e.g.,Svensson et al.,2015;Palin et al.,2016;Clark et al.,2017).Recent work has shown that GloSea5 also has useful levels of skill for various processes in China(Bettetal.,2017;Lu et al.,2017),including for summer precipitation over the Yangtze River basin(Li et al.,2016),without having to use statistical models based on larger-scale drivers.

    In parallel to these findings,Golding et al.(2017)demonstrated that there was a clear demand from users for improved seasonal forecasts for the Yangtze,both from the flood risk and hydro power production communities.The very strong El Ni?o that developed during the winter of 2015/16(Zhai et al.,2016)provided a perfect opportunity to develop a trial operational seasonal forecast using GloSea5 for the subsequent summer of 2016.

    We therefore produced forecasts for the upcoming three month period each week,from February(forecasting March–April–May)to the end of July 2016(forecasting August–September–October);our focus,however,was on forecasting the June–July–August(JJA)period,as that was where Li et al.(2016)had demonstrated skill.In the last week of each month,a forecast for the coming season was issued by the Met Office to the China Meteorological Administration(CMA).

    In this paper,we describe the observed rainfall in the Yangtze region in summer 2016,and assess how the real-time forecasts for May–June–July(MJJ)and JJA performed,with a range of lead times from zero to three months.We describe in section 2 the datasets used,and in section 3 our forecast production methodology.In section 4 we compare the forecasts to the observed behavior,and in section 5 discuss possible future developments.

    2.Datasets

    The current operational version of Glo Sea5(MacLachlan et al.,2015)is based on the Global Coupled 2(GC2)configuration of the HadGEM3 global climate model,described in detail in Williams et al.(2015)and references therein.Within HadGEM3-GC2,the atmospheric component[the Met Office Unified Model(Walters et al.,2017)]is coupled to the JULES land surface model(Best et al.,2011),the NEMO ocean model(Madec,2008;Megann et al.,2014)and the CICE sea ice model(Hunke and Lipscomb,2010;Rae et al.,2015).The atmosphere is modelled on a grid of 0.83?in longitude and 0.55?in latitude,with 85 levels vertically,including a well-resolved stratosphere;the ocean model is modelled on a 0.25?horizontal grid,with 75 levels vertically.

    Using this configuration,GloSea5 runs operationally,producing both forecasts and corresponding hindcasts(intended to bias-correct the forecasts).Each day,two initialized forecasts are produced,running out to seven months.To produce a complete forecast ensemble for a given start date,the last three weeks of individual forecasts are collected together to form a 42-member lagged forecast ensemble.

    At the same time,an ensemble of hindcasts is produced each week.As described by MacLachlan et al.(2015),three members are run from each of four fixed initialization dates in each month(the 1st,9th,17th and 25th),for each of the 14 years covering 1996–2009.The full hindcast ensemble is made by collecting together the four hindcast dates nearest to the forecast start date,yielding a 12-member,14-year hindcast.Note that the hindcast was extended at the end of April 2016 to cover 23 years(1993–2015).

    This operational hindcast is not intended to be used for skill assessments:with only 12 members,skill estimates would be biased low(Scaife et al.,2014).However,a separate,dedicated hindcast was produced for skill assessment,with 24 members and 20 years.Using that hindcast,we find a correlation skill of 0.56 for summer Yangtze rainfall,statistically indistinguishable from the previous value of 0.55 found by Li et al.(2016).

    We use precipitation data from the Global Precipitation Climatology Project(GPCP)as our observational dataset.This is derived from both satellite data and surface rain gauges,covering the period from 1979 to the present at a spatial resolution of 2.5?(Adler et al.,2003).The verification we present here uses version 2.3 of the data(Adler et al.,2016).Only version 2.2 was available when we started our operational trial,although we have confirmed that the choice of version 2.2 or 2.3 makes negligible difference to our forecasts or results.

    3.Forecast production

    Typically,when producing a seasonal forecast,the distribution of forecast ensemble members is used to repre-sent the forecast probability distribution directly.However,experience has shown that the GloSea5 ensemble members may contain anomalously small signals,such that the predictable signal only emerges through averaging a large ensemble(Eade et al.,2014;Scaife et al.,2014).While this effect is less pronounced in subtropical regions like the Yangtze Basin,it is still present(Li et al.,2016).

    We therefore implemented a simple precipitation forecasting methodology,based entirely on the historical relationship between the hindcast ensemble means and the observed precipitation,averaged over the Yangtze River basin region(25?–35?N,91?–122?E),following Li et al.(2016),for the season in question.The prediction intervals,derived from the linear regression of the hindcasts to the observations(e.g.,Wilks,2011),provide a calibrated forecast probability distribution.

    This is illustrated in Fig.1,where we show the precipitation forecasts issued in late April for MJJ,and in late May for JJA.The distribution of hindcasts and observations is shown as a scatter plot,with the ensemble mean forecast also included as a green circle.The uncertainty in the linear regression(gray)determines the forecast probabilities(green bars).The GloSea5 data are shown in standardized units—that is,the anomaly of each year from the mean,as a fraction of the standard deviation of hindcast ensemble means.The observations on the vertical axis are presented as seasonal means of monthly precipitation totals.The relationship with ENSO is indicated though color-coding of the hindcast points:years are labelled as El Ni?o(red)or La Ni?a(blue)according to whether their Oceanic Ni?o Index(http://www.cpc.noaa.gov/products/analysismonitoring/ensostuff/ensoyears.shtml),based on observed SST anomalies in the Ni?o3.4 region,is above 0.5 K or below?0.5 K,respectively.

    Fig.1.Forecasts for MJJ(produced 25 April 2016)and JJA(produced 23 May 2016),as labeled,using GPCP observations.Observation/hindcast points are color-coded according to their observed winter ENSO index:red points are El Ni?o years,blue points are La Ni?a years,and gray points are neutral.The horizontal width of the green forecast bars is the standard error on the ensemble mean,i.e.,the forecast ensemble spread divided by the number of ensemble members.The 75%and 95%prediction intervals are shown as gray shading.The variability in the observations is indicated by the pink horizontal dotted lines,at±1 and 2 standard deviations.The correlation r between hindcast and observations is marked on each panel(coincidentally the same when rounded).

    Forecasts like those shown in Fig.1 were produced each Monday starting in February 2016,using the forecast model runs initialized each day of the preceding three weeks to generate the 42-member ensemble,and the four nearest weeks of hindcast runs for the 12-member hindcast ensemble.The forecast produced near the end of each month was issued to the CMA:the MJJ release was produced on 25 April and the JJA release on 23 May.

    It is important to note that,due to the linear regression method we employ,our forecast probabilities are explicitly linked to both the hindcasts and the observations.The correlations between hindcasts and observations are biased low due to the smaller size of the hindcast ensemble compared to the forecast ensemble—a larger hindcast ensemble would not necessarily alter the gradient of the linear regression,but would reduce its uncertainty.Our forecast probabilities are therefore conservative(likely to be too small).

    The forecast information provided was designed to show very clearly and explicitly the uncertainties in the forecast system,to prevent overconfidence on the part of potential decision-makers.In addition to the scatterplot showing the forecast and the historical relationship(Fig.1),we also provided the probability of above-average precipitation as a“headline message”.This was accompanied by a contingency table showing the hit rate and false alarm rate for above-average forecasts over the hindcast period.For the MJJ and JJA forecasts,these are shown in Tables 1 and 2.

    Table 1.Contingency table for forecasts of above-average precipitation for the Yangtze region in MJJ,produced on 25 April 2016.The event counts are based on the GPCP observations and ensemble mean hindcasts shown in Fig.1.The hit rate is the ratio of the number of hits to the number of times above-average conditions were observed.The false alarm rate is the ratio of the number of false alarms to the total number of observed below-average years.

    Table 2.Contingency table for forecasts of above-average precipitation in JJA,produced on 23 May 2016,similar to Table 1.

    To assess the sensitivity of our results to individual years,we have performed leave-one-out cross-validation for the MJJ and JJA forecasts.We find that the correlation between hindcasts and observations in the case of each left-out year does not vary much:75%of the cases have correlations between 0.41 and 0.47.However,leaving out 1998 does reduce the performance,as expected:the correlation over the remaining 22 years in that case reduces tor=0.37(MJJ)andr=0.24(JJA),and the observed value falls outside the 95%prediction range of the forecasts;our procedure does require similar signals to be present in the hindcast period in order to calibrate the forecasts.Note that this cross-validation procedure is not directly analogous to our actual forecasts:with only 12 members per year,the hindcast ensemble means are much more uncertain than ouractual42-member forecasts for 2016,and our cross-validation does not account for this.

    4.Results

    The observed precipitation in May,June,July and August 2016 is shown in Fig.2.We use standardized units here to show the precipitation anomaly relative to the historical variability over the hindcast period(1993–2015).It is clear that the most anomalously high rainfall was in May and June,and largely in the eastern half of the basin.July was close to normal overall when considering the box we were forecasting for,although there were disastrous floods further north.August had anomalously low rainfall across most of the region.Yuan et al.(2017)examined the observed summer 2016 rainfall in China and the Yangtze River basin in detail,including its relationship to larger-scale drivers:the anomalously low rainfall in August 2016 is in marked contrast to the situation in 1998,and is related to the behavior of Indian Ocean temperatures and the Madden–Julian Oscillation(MJO)during the summer.

    Figures 3 and 4 show the three-month mean precipitation anomalies for MJJ and JJA respectively,for both GPCP and the forecast averages from the GloSea5 model output.While we do not expect the spatial patterns to match in detail[considering the skill maps of Li et al.(2016)],the overall signal is similar to the observations,with stronger anomalous precipitation in the eastern region in MJJ,and closer-to-average precipitation in JJA.

    We examine our forecasts for the Yangtze basin box more quantitatively in Figs.5 and 6,where we show the variation with lead time of the hindcast–observation correlation,the 2016 forecast signal,and the probability of above-average precipitation,for MJJ and JJA respectively.Neither the hindcast–observation correlation nor the forecast signal vary significantly with lead time;indeed,they are remarkably consistent back to three months before the forecast season,and when the 23-year hindcast is introduced at the end of April.

    The forecasts did a good job of giving an indication of precipitation in the coming season.For MJJ,the forecast gave a high probability of above-average precipitation(80%),and it was observed to be above average.In JJA,the mean precipitation was observed to be slightly below average,due to the strong drier-than-average signal in August,although it was within a standard deviation of the interannual variability.While our forecast marginally favored wetter than average conditions(65%probability of above-average rainfall),it was correctly near to the long-term mean,and the observed value was well within the forecast uncertainties.

    5.Discussion and conclusions

    The heavy rainfall in the Yangtze River region in early summer 2016 was at a similar level to that of 1998,and caused heavy flooding(WMO,2017;Yuan et al.,2017).While deaths due to the flooding were roughly an order of magnitude fewer than those caused by the 1998 floods(i.e.,hundreds rather than thousands of lives),the economic losses nevertheless ran into tens of billions of CNY.Furthermore,it was reported that insurance claims,mostly from agricultural losses,amounted to less than 2%of the total economic loss,suggesting significant levels of underinsurance(Podlaha et al.,2016).The prior experience of the 1998 El Ni?o-enhanced flooding,and the high levels of awareness of the strong El Ni?o in winter 2015/16,meant that dams along the Yangtze were prepared in anticipation of high levels of rain-fall.Our forecasts from GloSea5,produced using the simple methodology described here,contributed to the confidence of users adapting to the impending rainfallaGolding,N.,C.Hewitt,P.Bett,M.Liu,and P.Zhang:Co-Development of a Seasonal Forecast Climate Service:Supporting flood risk management for the Yangtze River Basin.(in preparation).

    Fig.2.Observed precipita Golding,N.,C.Hewitt,P.Bett,M.Liu,and P.Zhang:Co-Development of a Seasonal Forecast Climate Service:Supporting flood risk management for the Yangtze River Basin.(in preparation)tion from GPCP(version 2.3)for May,June,July and August(as labeled),in standardized units with respect to the 1993–2015 period.The Yangtze box used for the forecasts is marked as a red rectangle,with a pink polygon showing the physical Yangtze River catchment.Major rivers are marked in blue.

    Fig.3.Mean precipitation for 2016-MJJ in the GPCP observations and GloSea5 forecast signal,(as labeled),in standardized units.The GloSea5 data have been regridded to match the lower-resolution observations.

    Fig.4.Mean precipitation for 2016-JJA in the GPCP observations and GloSea5 forecast signal,(as labeled),in standardized units.The GloSea5 data have been regridded to match the lower-resolution observations.

    Fig.5.Time series showing the behavior of the MJJ forecasts and hindcasts with lead time:(a)Correlation between observations and the operational hindcasts available each week.The final point was produced using 23 years,whereas only 14 were available before that.The shading indicates 95%confidence intervals using the Fisher Z-transformation.(b)The forecast signal shown as 95%and 75%prediction intervals(boxes)and the ensemble mean(blue line).The observed precipitation is marked as an orange horizontal line from May.The observed historical mean and standard deviation over the hindcast period are marked as a dashed line and orange shading respectively.(c)The forecast probability of above-average precipitation.The final forecast issued for MJJ,produced 25 April,is highlighted with a gray vertical bar.

    Fig.6.Time series showing the behavior of the JJA forecasts and hindcasts with lead time,following the same format as Fig.5.In(a)(hindcast–observations correlation),the line becomes thicker when 23 years of hindcasts are available.We mark with a blue cross and error bar the correlation skill derived from the assessment hindcast(see text for details).The final forecast issued for JJA,on 23 May,is highlighted across all panels.

    Our verification has shown that our forecasts gave a good indication of the observed levels of precipitation for both MJJ and JJA averages over the large Yangtze Basin region.A greater degree of both spatial and temporal resolution—splitting the basin into upper and lower sections,and producing additional forecasts at a monthly timescale—would of course be preferable to users.However,smaller regions and shorter time periods may well be less skillful,so further work is needed to assess how best to achieve skillful forecasts in these cases.

    One significant improvement would be to increase the ensemble size of the hindcast.During 2017 the GloSea5 system was changed from three hindcast members per start date to seven.This could result in noticeable improvements in forecasts like those described here,as the hindcast–observations relationship will be less uncertain,especially when a predictable signal is present,such as from El Ni?o.Improvements in the underlying climate model,such as to parametrized convective precipitation,and the simulation of the monsoon and features like the MJO,could also improve the forecast skill.

    We will be issuing forecasts again in 2017.However,unlike 2016,in 2017 there are no strong drivers,such as El Ni?o.Nevertheless,understanding the behavior of the forecast system under such conditions will be informative,for both the users and the producers of the forecasts.Ultimately,trial climate services such as this help to drive forecast development,improve understanding of forecast uncertainties,and promote careful use by stakeholders in affected areas.

    Acknowledgements.This work and its contributors(PB,AS,ND,DS,CH,NG)were supported by the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership China as part of the Newton Fund.CL and RL were supported by the National Natural Science Foundation of China(Grant No.41320104007).HR was supported by the Project for Development of Key Techniques in Meteorological Operation Forecasting(Grant No.YBGJXM201705).The trial forecast service was first suggested by AS in 2015.The GPCP precipitation data were provided by the NOAA/OAR/ESRL PSD,Boulder,Colorado,USA,via their website at http://www.esrl.noaa.gov/psd/.The Yangtze River basin shape file used in the maps was obtained from http://worldmap.harvard.edu/data/geonode:ch_wtrshed 30mar11 and is based on the watersheds shown in the China Environmental Atlas(2000),?Chinese Academy of Sciences,Environmental Data Center.

    REFERENCES

    Adler,R.,and Coauthors,2016:The new version 2.3 of the Global Precipitation Climatology Project(GPCP)monthly analysis product.University of Maryland.[Available online from http://eagle1.umd.edu/GPCP_ICDR/GPCP_Monthly.html]

    Adler,R.F.,and Coauthors,2003:The version-2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979–Present).Journal of Hydrometeorology,4,1147–1167,https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Best,M.J.,and Coauthors,2011:The Joint UK Land Environment Simulator(JULES),model description—Part 1:Energy and water fluxes.Geoscientific Model Development,4,677–699,https://doi.org/10.5194/gmd-4-677-2011.

    Bett,P.E.,and Coauthors,2017:Skill and reliability of seasonal forecasts for the Chinese energy sector.Journal of Applied Meteorology and Climatology,56,3099–3114,https://doi.org/10.1175/jamc-d-17-0070.1.

    Clark,R.T.,P.E.Bett,H.E.Thornton,and A.A.Scaife,2017:Skillful seasonal predictions for the European energy industry.Environmental Research Letters,12,024002,https://doi.org/10.1088/1748-9326/aa57ab.

    Eade,R.,D.Smith,A.Scaife,E.Wallace,N.Dunstone,L.Hermanson,and N.Robinson,2014:Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?Geophys.Res.Lett.,41,5620–5628,https://doi.org/10.1002/2014gl061146.

    Golding,N.,C.Hewitt,P.Q.Zhang,P.Bett,X.Y.Fang,H.Z.Hu,and S.Nobert,2017:Improving user engagement and uptake of climate services in China.Climate Services,5,39–45,https://doi.org/10.1016/j.cliser.2017.03.004.

    Hardiman,S.,and Coauthors,2017:The asymmetric response of Yangtze River basin summer rainfall to El Ni?o/La Ni?a.Environmental Research Letters,https://doi.org/10.1088/1748-9326/aaa172.(in press)

    He,J.H.,and B.Q.Liu,2016:The East Asian subtropical summer monsoon:Recent progress.Journal of Meteorological Research,30,135–155,https://doi.org/10.1007/s13351-016-5222-z.

    Hunke,E.C.,and W.H.Lipscomb,2010:CICE:The Los Alamos Sea Ice model documentation and software user’s manual,version 4.1.Report LA-CC-06-012,Los Alamos National Laboratory.[Available online from http://oceans11.lanl.gov/trac/CICE]

    Jiao,M.Y.,and Coauthors,2013:Addressing the potential climate effects of China’s Three Gorges Project.WMO Bulletin,62(Special Issue),49–53.[Available online from http://library.wmo.int/opac/index.php?lvl=bulletin_display&id=2738]

    Ke,Z.J.,P.Q.Zhang,L.J.Chen,and L.M.Du,2011:An experiment of a statistical downscaling forecast model for summer precipitation over China.Atmospheric and Oceanic Science Letters,4,270–275,https://doi.org/10.1080/16742834.2011.11446941.

    Kwon,H.H.,C.Brown,K.Q.Xu,and U.Lall,2009:Seasonal and annual maximum stream flow forecasting using climate information:Application to the Three Gorges Dam in the Yangtze River basin,China.Hydrological Sciences Journal,54,582–595,https://doi.org/10.1623/hysj.54.3.582.

    Li,C.F.,and Coauthors,2016:Skillful seasonal prediction of Yangtze river valley summer rainfall.Environmental Research Letters,11,094002,https://doi.org/10.1088/1748-9326/11/9/094002.

    Li,F.,and Z.D.Lin,2015:Improving multi-model ensemble probabilistic prediction of Yangtze River valley summer rainfall.Adv.Atmos.Sci.,32,497–504,https://doi.org/10.1007/s00376-014-4073-8.

    Liu,Y.,and K.Fan,2012:Improve the prediction of summer precipitation in the Southeastern China by a hybrid statistical downscaling model.Meteor.Atmos.Phys.,117,121–134,https://doi.org/10.1007/s00703-012-0201-0.

    Lu,B.,A.A.Scaife,N.Dunstone,D.Smith,H.L.Ren,Y.Liu,and R.Eade,2017:Skillful seasonal predictions of winter precipitation over southern China.Environmental Research Letters,12,074021,https://doi.org/10.1088/1748-9326/aa739a.

    MacLachlan,C.,and Coauthors,2015:Global Seasonal forecast system version 5(GloSea5):A high-resolution seasonal forecast system.Quart.J.Roy.Meteor.Soc.,141,1072–1084,https://doi.org/10.1002/qj.2396.

    Madec,G.,2008:NEMO ocean engine.Note du P?ole de mod′elisation,Institut Pierre-Simon Laplace(IPSL).France,No.27.[Available online from http://www.nemo-ocean.eu/About-NEMO/Reference-manuals]

    Megann,A.,and Coauthors,2014:GO5.0:The joint NERCMet Office NEMO global ocean model for use in coupled and forced applications.Geoscientific Model Development,7,1069–1092,https://doi.org/10.5194/gmd-7-1069-2014.

    Palin,E.J.,A.A.Scaife,E.Wallace,E.C.D.Pope,A.Arribas,and A.Brookshaw,2016:Skillful seasonal forecasts of winter disruption to the U.K.transport system.Journal of Applied Meteorology and Climatology,55,325–344,https://doi.org/10.1175/jamc-d-15-0102.1.

    Peng,Z.L.,Q.J.Wang,J.C.Bennett,P.Pokhrel,and Z.R.Wang,2014:Seasonal precipitation forecasts over China using monthly large-scale oceanic-atmospheric indices.J.Hydrol.,519,792–802,https://doi.org/10.1016/j.jhydrol.2014.08.012.

    Plate,E.J.,2002:Flood risk and flood management.J.Hydrol.,267,2–11,https://doi.org/10.1016/s0022-1694(02)00135-x.

    Podlaha,A.,S.Bowen,and C.Darbinyan,2016:July 2016 Global Catastrophe Recap.Aon Ben field Impact Forecasting,[Available online from http://thoughtleadership.aonbenfield.com/sitepages/display.aspx?tl=601]

    Rae,J.G.L.,H.T.Hewitt,A.B.Keen,J.K.Ridley,A.E.West,C.M.Harris,E.C.Hunke,and D.N.Walters,2015:Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model.Geoscientific Model Development,8,2221–2230,https://doi.org/10.5194/gmd-8-2221-2015.

    Scaife,A.A.,and Coauthors,2014:Skillful long-range prediction of European and North American winters.Geophys.Res.Lett.,41,2514–2519,https://doi.org/10.1002/2014gl059637.

    Stuecker,M.F.,F.F.Jin,A.Timmermann,and S.McGregor,2015:Combination mode dynamics of the Anomalous Northwest Pacific Anticyclone.J.Climate,28,1093–1111,https://doi.org/10.1175/jcli-d-14-00225.1.

    Svensson,C.,and Coauthors,2015:Long-range forecasts of UK winter hydrology.Environmental Research Letters,10,064006,https://doi.org/10.1088/1748-9326/10/6/064006.

    Tung,Y.L.,C.Y.Tam,S.J.Sohn,and J.L.Chu,2013:Improv-ing the seasonal forecast for summertime South China rainfall using statistical downscaling.J.Geophys.Res.Atmos.,118,5147–5159,https://doi.org/10.1002/jgrd.50367.

    Walters,D.,and Coauthors,2017:The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations.Geoscientific Model Development,10,1487–1520,https://doi.org/10.5194/gmd-10-1487-2017.

    Wang,B.,B.Q.Xiang,and J.Y.Lee,2013:Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions.Proceedings of the National Academy of Sciences of the United States of America,110,2718–2722,https://doi.org/10.1073/pnas.1214626110.

    Wilks,D.S.,2011:Statistical forecasting.International Geophysics,100,215–300,https://doi.org/10.1016/b978-0-12-385022-5.00007-5.

    Williams,K.D.,and Coauthors,2015:The Met Office Global Coupled model 2.0(GC2)configuration.Geoscientific Model Development,8,1509–1524,https://doi.org/10.5194/gmd-8-1509-2015.

    WMO,2017:WMO statement on the state of the global climate in 2016.WMO-No.1189.Geneva:World Meteorological Organization.[Available online from http://library.wmo.int/opac/doc_num.php?explnum_id=3414]

    Wu,Z.W.,and L.L.Yu,2016:Seasonal prediction of the East Asian summer monsoon with a partial-least square model.ClimateDyn.,46,3067–3078,https://doi.org/10.1007/s00382-015-2753-4.

    Xie,S.P.,Y.Kosaka,Y.Du,K.M.Hu,J.S.Chowdary,and G.Huang,2016:Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer:A review.Adv.Atmos.Sci.,33,411–432,https://doi.org/10.1007/s00376-015-5192-6.

    Xing,W.,B.Wang,and S.Y.Yim,2016:Long-lead seasonal prediction of China summer rainfall using an EOF-PLS regression-based methodology.J.Climate,29,1783–1796,https://doi.org/10.1175/jcli-d-15-0016.1.

    Ye,Q.,and M.H.Glantz,2005:The 1998 Yangtze floods:The use of short-term forecasts in the context of seasonal to interannual water resource management.Mitigation and Adaptation Strategies for Global Change,10,159–182,https://doi.org/10.1007/s11027-005-7838-7.

    Yu,F.L.,Z.Y.Chen,X.Y.Ren,and G.F.Yang,2009:Analysis of historical floods on the Yangtze River,China:Characteristics and explanations.Geomorphology,113,210–216,https://doi.org/10.1016/j.geomorph.2009.03.008.

    Yuan,Y.,H.Gao,W.J.Li,Y.J.Liu,L.J.Chen,B.Zhou,and Y.H.Ding,2017:The 2016 summer floods in China and associated physical mechanisms:A comparison with 1998.Journal of Meteorological Research,31,261–277,https://doi.org/10.1007/s13351-017-6192-5.

    Zhai,P.M.,and Coauthors,2016:The strong El Ni?o of 2015/16 and its dominant impacts on global and China’s climate.Journal of Meteorological Research,30,283–297,https://doi.org/10.1007/s13351-016-6101-3.

    Zhang,W.J.,H.Y.Li,M.F.Stuecker,F.F.Jin,and A.G.Turner,2016a:A new understanding of El Ni?o’s impact over East Asia:Dominance of the ENSO combination mode.J.Climate,29,4347–4359,https://doi.org/10.1175/jcli-d-15-0104.1.

    Zhang,W.J.,and Coauthors,2016b:Unraveling El Ni?o’s impact on the East Asian Monsoon and Yangtze River summer flooding.Geophys.Res.Lett.,43,11 375–11 382,https://doi.org/10.1002/2016gl071190.

    Zhu,C.,C.K.Park,W.S.Lee,and W.T.Yun,2008:Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field.Adv.Atmos.Sci.,25,867–884,https://doi.org/10.1007/s00376-008-0867-x.

    Zong,Y.Q.,and X.Q.Chen,2000:The 1998 flood on the Yangtze,China.Natural Hazards,22,165–184,https://doi.org/10.1023/a:1008119805106.

    国产日韩欧美在线精品| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 晚上一个人看的免费电影| 两个人免费观看高清视频 | 久久久久久久久大av| 精品一区在线观看国产| av女优亚洲男人天堂| 日日啪夜夜爽| 美女脱内裤让男人舔精品视频| 免费观看a级毛片全部| 中国国产av一级| 精品一区二区三区视频在线| 国产欧美日韩精品一区二区| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 一区二区三区乱码不卡18| 精品99又大又爽又粗少妇毛片| 国产成人一区二区在线| 国产真实伦视频高清在线观看| 激情五月婷婷亚洲| 青春草国产在线视频| 久久这里有精品视频免费| 亚洲欧美精品自产自拍| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 中文字幕久久专区| 全区人妻精品视频| 一本—道久久a久久精品蜜桃钙片| 六月丁香七月| 自线自在国产av| 免费大片黄手机在线观看| 国产精品成人在线| 久久久久久久精品精品| 国产高清三级在线| 精品酒店卫生间| 欧美日韩精品成人综合77777| 9色porny在线观看| 免费在线观看成人毛片| 人人妻人人看人人澡| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 麻豆成人午夜福利视频| 国产又色又爽无遮挡免| 黄片无遮挡物在线观看| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 国产黄片视频在线免费观看| 乱人伦中国视频| 天美传媒精品一区二区| 午夜精品国产一区二区电影| 欧美激情极品国产一区二区三区 | 国产精品一区二区性色av| 一本—道久久a久久精品蜜桃钙片| 久久6这里有精品| 亚洲成人一二三区av| 麻豆成人av视频| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 亚洲怡红院男人天堂| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线 | 一区二区三区精品91| 一级毛片 在线播放| 日本午夜av视频| 午夜视频国产福利| 下体分泌物呈黄色| 美女视频免费永久观看网站| 国产乱人偷精品视频| 日本欧美视频一区| 亚洲精华国产精华液的使用体验| 亚洲,欧美,日韩| 亚洲电影在线观看av| freevideosex欧美| 七月丁香在线播放| 中国国产av一级| 亚洲国产最新在线播放| 最近的中文字幕免费完整| 国产中年淑女户外野战色| 亚洲av在线观看美女高潮| 国产成人午夜福利电影在线观看| 精品国产一区二区三区久久久樱花| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 少妇精品久久久久久久| 亚洲精品亚洲一区二区| 在线观看美女被高潮喷水网站| 亚洲精品中文字幕在线视频 | 少妇人妻 视频| 亚洲,一卡二卡三卡| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 国产精品秋霞免费鲁丝片| 18禁在线无遮挡免费观看视频| av黄色大香蕉| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放 | 亚洲av免费高清在线观看| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 色网站视频免费| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 久久这里有精品视频免费| freevideosex欧美| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 黄色毛片三级朝国网站 | 国产亚洲午夜精品一区二区久久| 欧美丝袜亚洲另类| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 水蜜桃什么品种好| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 国产熟女欧美一区二区| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 狂野欧美激情性xxxx在线观看| 少妇丰满av| 国产男女内射视频| 午夜福利影视在线免费观看| 日日啪夜夜爽| 国产精品.久久久| 日本午夜av视频| 日韩强制内射视频| 亚洲国产精品成人久久小说| 黄色欧美视频在线观看| 国产成人精品无人区| 看非洲黑人一级黄片| freevideosex欧美| 亚洲综合色惰| 成人漫画全彩无遮挡| 国产黄色视频一区二区在线观看| 久久久久久久亚洲中文字幕| 亚洲久久久国产精品| 亚洲欧美一区二区三区国产| 国产亚洲午夜精品一区二区久久| 久久6这里有精品| 秋霞在线观看毛片| 精品人妻一区二区三区麻豆| 亚洲无线观看免费| 国产成人精品无人区| 久久精品久久久久久噜噜老黄| 亚洲欧洲精品一区二区精品久久久 | 99热6这里只有精品| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 91精品国产国语对白视频| 99久久人妻综合| 亚洲国产精品一区二区三区在线| 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频 | 99久久综合免费| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| 日韩精品有码人妻一区| 十八禁高潮呻吟视频 | 国产精品一区二区性色av| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 三级经典国产精品| 2018国产大陆天天弄谢| 亚洲精品乱码久久久v下载方式| 大话2 男鬼变身卡| 国产高清有码在线观看视频| 99久久精品一区二区三区| 午夜av观看不卡| 成人无遮挡网站| av专区在线播放| 成人黄色视频免费在线看| 亚洲欧美清纯卡通| 九草在线视频观看| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放 | 建设人人有责人人尽责人人享有的| 精品酒店卫生间| 国产亚洲欧美精品永久| 亚洲人成网站在线播| 大话2 男鬼变身卡| 大片免费播放器 马上看| av专区在线播放| 欧美日韩精品成人综合77777| 男人和女人高潮做爰伦理| 尾随美女入室| 高清av免费在线| 成人二区视频| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 免费少妇av软件| 亚洲精品日韩av片在线观看| a 毛片基地| 免费大片黄手机在线观看| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 高清黄色对白视频在线免费看 | 一级毛片黄色毛片免费观看视频| 成人漫画全彩无遮挡| 国产日韩欧美亚洲二区| 国产 一区精品| 高清欧美精品videossex| 蜜桃在线观看..| 极品人妻少妇av视频| 久久人人爽人人片av| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 老女人水多毛片| av在线观看视频网站免费| 亚洲欧美清纯卡通| 成人免费观看视频高清| 成人特级av手机在线观看| 国产在线一区二区三区精| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 亚洲性久久影院| 最近最新中文字幕免费大全7| 天堂俺去俺来也www色官网| 国产精品久久久久久久电影| 久久6这里有精品| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区 | 国产白丝娇喘喷水9色精品| 国产精品欧美亚洲77777| 亚洲精品乱码久久久v下载方式| 亚洲av国产av综合av卡| 大香蕉97超碰在线| 亚洲经典国产精华液单| av在线播放精品| 国产淫语在线视频| 搡女人真爽免费视频火全软件| 国产黄色视频一区二区在线观看| 日本黄大片高清| 高清不卡的av网站| 久久av网站| 精品午夜福利在线看| 香蕉精品网在线| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 欧美+日韩+精品| 九色成人免费人妻av| 高清毛片免费看| 只有这里有精品99| 午夜激情福利司机影院| 久久99一区二区三区| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 亚洲国产av新网站| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 久久精品夜色国产| 国产免费一级a男人的天堂| 精品少妇内射三级| 亚洲欧美日韩东京热| 精品一区在线观看国产| 日韩一区二区视频免费看| 亚洲综合色惰| 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 男人狂女人下面高潮的视频| 国产精品福利在线免费观看| 久久精品夜色国产| 在线观看av片永久免费下载| 日本欧美国产在线视频| 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| 尾随美女入室| 久久久久人妻精品一区果冻| 国产伦精品一区二区三区四那| 日本vs欧美在线观看视频 | 99久久中文字幕三级久久日本| 亚洲av综合色区一区| 日韩人妻高清精品专区| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线观看99| 欧美日韩视频高清一区二区三区二| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 久久影院123| 日本欧美视频一区| 国产一区亚洲一区在线观看| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 亚洲精品一区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美日韩在线播放 | 亚洲图色成人| 亚洲av成人精品一二三区| 国产精品一二三区在线看| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 免费av不卡在线播放| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 久久影院123| 久久久精品免费免费高清| 777米奇影视久久| 啦啦啦啦在线视频资源| 黄色日韩在线| 爱豆传媒免费全集在线观看| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 男女免费视频国产| 成人影院久久| 国产片特级美女逼逼视频| 最近手机中文字幕大全| 黄色欧美视频在线观看| 22中文网久久字幕| 亚洲欧美日韩卡通动漫| av专区在线播放| 美女主播在线视频| 91在线精品国自产拍蜜月| 自线自在国产av| 久久久久久久久久久久大奶| 色婷婷av一区二区三区视频| 只有这里有精品99| 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃 | 成人影院久久| 亚洲精品国产av蜜桃| 午夜日本视频在线| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 亚洲人与动物交配视频| 久久久午夜欧美精品| 欧美精品亚洲一区二区| 亚洲精品视频女| 丝袜脚勾引网站| 亚洲av日韩在线播放| 亚洲四区av| 欧美区成人在线视频| 91精品伊人久久大香线蕉| 大香蕉久久网| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 一区二区三区四区激情视频| 久久久国产精品麻豆| 国产av国产精品国产| 亚洲国产日韩一区二区| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 日韩强制内射视频| 午夜福利,免费看| 久久久久人妻精品一区果冻| 欧美+日韩+精品| 国产综合精华液| 欧美人与善性xxx| 国产综合精华液| 欧美激情国产日韩精品一区| 日日爽夜夜爽网站| 国产高清不卡午夜福利| 一本久久精品| 欧美xxⅹ黑人| 乱系列少妇在线播放| 久久热精品热| 久久人人爽人人片av| 免费高清在线观看视频在线观看| 国产无遮挡羞羞视频在线观看| 街头女战士在线观看网站| 久久精品国产亚洲网站| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲网站| 日本色播在线视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日韩av片在线观看| 熟妇人妻不卡中文字幕| 亚洲国产精品专区欧美| 少妇精品久久久久久久| 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 午夜免费鲁丝| 国产精品.久久久| 美女内射精品一级片tv| 天堂中文最新版在线下载| 日韩亚洲欧美综合| 亚洲精品视频女| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 一级av片app| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 久久久久久伊人网av| av在线老鸭窝| 免费av中文字幕在线| 久久毛片免费看一区二区三区| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 久久青草综合色| 五月开心婷婷网| 久久 成人 亚洲| 久久久国产精品麻豆| 最后的刺客免费高清国语| 久久人妻熟女aⅴ| 曰老女人黄片| 国产精品成人在线| 免费黄网站久久成人精品| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 久久国产精品男人的天堂亚洲 | 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| 成人特级av手机在线观看| 色5月婷婷丁香| 最近中文字幕高清免费大全6| 精品酒店卫生间| 精品国产国语对白av| av.在线天堂| a 毛片基地| 免费高清在线观看视频在线观看| 中文字幕制服av| 国产伦精品一区二区三区视频9| 久久久国产欧美日韩av| 欧美另类一区| 精品人妻熟女毛片av久久网站| 国产成人a∨麻豆精品| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 亚洲欧美精品专区久久| 在线亚洲精品国产二区图片欧美 | 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲网站| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 国产国拍精品亚洲av在线观看| 国产成人午夜福利电影在线观看| 久久6这里有精品| 欧美区成人在线视频| 精品一区二区三区视频在线| 中文欧美无线码| 99热这里只有精品一区| xxx大片免费视频| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 久久久精品免费免费高清| 国产综合精华液| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 免费高清在线观看视频在线观看| 内地一区二区视频在线| 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 午夜福利在线观看免费完整高清在| 人妻少妇偷人精品九色| 精华霜和精华液先用哪个| videos熟女内射| 高清av免费在线| 午夜福利,免费看| 天美传媒精品一区二区| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 如日韩欧美国产精品一区二区三区 | 麻豆成人午夜福利视频| 欧美日韩在线观看h| 亚洲精品乱码久久久v下载方式| av又黄又爽大尺度在线免费看| 欧美高清成人免费视频www| 最近中文字幕高清免费大全6| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 精品久久久久久久久亚洲| 老女人水多毛片| 91久久精品国产一区二区三区| 黄色配什么色好看| 老司机影院成人| 亚洲真实伦在线观看| 丝瓜视频免费看黄片| 一边亲一边摸免费视频| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 国产黄色免费在线视频| 亚洲不卡免费看| 免费久久久久久久精品成人欧美视频 | 久久国产亚洲av麻豆专区| 你懂的网址亚洲精品在线观看| 国产成人aa在线观看| 日本色播在线视频| 日本欧美视频一区| 久久久久久久精品精品| 永久网站在线| 另类精品久久| 国产欧美另类精品又又久久亚洲欧美| 国产伦理片在线播放av一区| 插阴视频在线观看视频| 久久99精品国语久久久| 免费看日本二区| 亚洲美女黄色视频免费看| 超碰97精品在线观看| 97超碰精品成人国产| 蜜臀久久99精品久久宅男| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 久久国产亚洲av麻豆专区| 欧美激情极品国产一区二区三区 | 日韩一本色道免费dvd| 18禁动态无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 欧美+日韩+精品| 春色校园在线视频观看| 街头女战士在线观看网站| 久久久国产欧美日韩av| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 国产乱来视频区| 七月丁香在线播放| 色5月婷婷丁香| 最近手机中文字幕大全| 中文欧美无线码| av在线老鸭窝| 午夜免费鲁丝| 永久免费av网站大全| 女的被弄到高潮叫床怎么办| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| 欧美97在线视频| 久久青草综合色| 午夜福利网站1000一区二区三区| 三上悠亚av全集在线观看 | 人妻制服诱惑在线中文字幕| av女优亚洲男人天堂| 久久精品国产自在天天线| 青春草视频在线免费观看| av国产精品久久久久影院| 成人毛片60女人毛片免费| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩另类电影网站| 搡女人真爽免费视频火全软件| av视频免费观看在线观看| 毛片一级片免费看久久久久| 永久免费av网站大全| 精品99又大又爽又粗少妇毛片| √禁漫天堂资源中文www| 国产白丝娇喘喷水9色精品| 少妇 在线观看| 久久久久久伊人网av| 色5月婷婷丁香| 国产精品熟女久久久久浪| av免费观看日本| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www | 性色avwww在线观看| av天堂中文字幕网| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看| 国产午夜精品久久久久久一区二区三区| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| a级毛色黄片| 亚洲天堂av无毛| 亚洲美女搞黄在线观看| 桃花免费在线播放| 国产淫语在线视频| 久久午夜综合久久蜜桃| 看免费成人av毛片| 精品久久久精品久久久| 亚洲国产精品一区二区三区在线| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 日韩一区二区视频免费看| 一级毛片久久久久久久久女| 三级经典国产精品| 99久国产av精品国产电影| 成人毛片a级毛片在线播放| 99热这里只有是精品在线观看| 少妇丰满av| 午夜影院在线不卡| 久久ye,这里只有精品| 少妇高潮的动态图| 国产亚洲精品久久久com| 婷婷色麻豆天堂久久| 如何舔出高潮| 亚洲综合色惰| 久热这里只有精品99| 黄色怎么调成土黄色| 国产精品久久久久久久电影| 久久久久国产精品人妻一区二区| 久久久久精品久久久久真实原创| 青春草视频在线免费观看| 免费大片18禁| 色94色欧美一区二区| 一本一本综合久久| 精品国产乱码久久久久久小说| 97超碰精品成人国产| 女性被躁到高潮视频| www.色视频.com| 国产一区二区三区综合在线观看 | 我要看黄色一级片免费的| 精华霜和精华液先用哪个|