• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Further-Adjusted Long-Term Temperature Series in China Based on MASH

    2018-06-20 01:49:54ZhenLIZhongweiYANLijuanCAOandPhilJONES
    Advances in Atmospheric Sciences 2018年8期

    Zhen LI,Zhongwei YAN?,2,Lijuan CAO,and Phil D.JONES

    1 Key Laboratory of Regional Climate-Environment in Temperate East Asia,Institute of Atmospheric Physics,Beijing 100029,China

    2 University of the Chinese Academy of Sciences,Beijing 100049,China

    3 National Meteorological Information Center,China Meteorological Administration,Beijing 100081,China

    4 Climatic Research Unit,University of East Anglia,Norwich,Norfolk,NR4 7TJ,United Kingdom

    5 Center of Excellence for Climate Change Research/Department of Meteorology,King Abdulaziz University,Jeddah 21589,Saudi Arabia

    1.Introduction

    Dataset Pro file Dataset title Further-adjusted long-term temperature series in China Time range Monthly surface air temperature from the start of observation to December 2016 Geographical scope China Data format “.txt”Data volume 386 KB for the monthly temperature series;1 KB for the station information Data service system http://www.sciencedb.cn/dataSet/handle/516.DOI:10.11922/sciencedb.516 Sources of Funding Chinese Academy of Sciences International Collaboration Program(GrantNo.134111KYSB20160010);National Natural Science Foundation of China(Grant Nos.41505071 and 41475078);UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund Dataset composition The dataset contains a station information file named “station information.txt”,and 12 monthly SAT files named “M01H.txt”,“M02H.txt”,“M03H.txt”,“M04H.txt”,“M05H.txt”,“M06H.txt”,“M07H.txt”,“M08H.txt”,“M09H.txt”,“M10H.txt”,“M11H.txt”and “M12H.txt”

    Homogeneous long-term surface air temperature(SAT)observations are essential for assessing and attributing global and regional climate change.However,inhomogeneity is difficult to avoid because of non-natural changes such as those at the observing location,the environment,instruments,and algorithms for calculating any particular climate variable(Yan et al.,2014).The inhomogeneities in a climate series affect the estimation of not only the mean climate trend but also those of climate extremes in different ways(Trewin and Trevitt,1996;Li et al.,2014).Over the past decades,homogenized local observations have increasingly been applied in global SAT datasets,such as those of the Global Historical Climatology Network(Vose et al.,1992;Peterson and Vose,1997;Lawrimore et al.,2011)and the Climatic Research Unit(Jones,1994;Jones and Moberg,2003;Brohan et al.,2006;Jones et al.,2012).A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900 was recently developed(Xu et al.,2017).

    The collection,compilation and processing of long-term instrumental SAT observations in China have also been ongoing over the past few decades(Tao et al.,1991;Cao et al.,2013).A number of century-scale SAT series for China have been constructed(Zhang and Li,1982;Wang,1990;Tang and Lin,1992;Lin et al.,1995;Wang et al.,1998;Tang and Ren,2005;Tang et al.,2009;Li et al.,2010).Li et al.(2017)assessed the existing long-term SAT series for China compared with the historical climate simulations of the CMIP5 models and the 20CR reanalysis dataset.Nevertheless,the effects of scarce and missing records during the early periods,as well as inhomogeneities caused by changes to observing systems locally,were not sufficiently considered in most of the early works.For the first time,Cao et al.(2013)established a set of homogenized long-term monthly mean SAT series from 18 stations,mainly in eastern China,based on the RHtest method(Wang and Feng,2013).An extended dataset of 32 stations with improved coverage over China was recently developed(Cao et al.,2017).These undoubtedly improved the database for climate change studies in the region.

    However,some inhomogeneities remained in the recently developed dataset.For instance,as discussed by Cao et al.(2017),the SAT series at Nanjing,eastern China,remained questionable,as it showed slight cooling while all nearby stations showed significant warming during the past century.Possible reasons are as follows:First,the preconditions applied for the data processing might be too strict,e.g.,a detected break point needed to be confirmed by the metadata(Cao et al.,2013).Second,there were no reference data for many cases for the early period before 1950,due to sparse observations.Third,incomplete metadata,especially before 1950,might further increase the probability of overlooking some detected break points.Therefore,it is beneficial to further adjust the long-term SAT series in order to improve the dataset for studying large-scale climate change in the region.

    The present report introduces a further-adjusted longterm temperature series in China based on the MASH method,serving as a call for applications of the new data(available online).Section 2 describes the data and methods.Section 3 demonstrates the detected outliers,break points and inhomogeneous biases in the previously published data.Section 4 compares the new data with the previous in terms of long-term trends.Section 5 concludes the report.

    2.Data and methods

    2.1.Updated SAT series

    The monthly SAT series at 32 stations from the start of observation to 2015,homogenized by Cao et al.(2017),are available from the China Meteorological Data Service Center(CMDC,http://data.cma.cn/).We updated the time series with instrumental temperature records in 2016 collected from the CMDC,Hong Kong Observatory,Macao Meteorological and Geophysical Bureau,and Central Weather Bureau of Taiwan.The dataset that was updated is hereafter referred to as the “previous dataset”.

    The number of stations increased from 1 in 1873 to 28 in 1924 and 32 in 1942.To avoid using the early period of scarce data to facilitate application of the MASH software(Szentimrey,1999),we applied MASHto the 28 stations with continuous records since 1924.The basic information on the stations is listed in Table 1.

    2.2.MASH

    MASH is an iterative procedure designed to detect and adjust possible break points through mutual comparisons of a number of series with similar climate variability based on statistical tests of hypotheses at a given significance level.Any series is not necessarily homogeneous.Several difference series are constructed from the candidate and weighted reference series.The optimal weighting is determined by minimizing the variance of the difference series,in order to increase the efficiency of the statistical tests.The inhomogeneity of the difference series can be characterized by the test statistic,which should be smaller than the critical value via a Monte Carlo method and cases of homogeneity at the given significance level.MASH has been widely applied to homogenize climate data in many studies worldwide(Manton et al.,2001;Lakatos et al.,2008;Rasol et al.,2008;Birsan and Dumitrescu,2014).It has also been applied to homogenize temperature series in China,and proved a suitable technique via a number of applications of the homogenized data(Li and Yan,2009;Li et al.,2015b,2016).

    In the present study,the latest version of MASH(v3.03)was used.Different from previous versions,MASH v3.03 starts with a preliminary examination of the annual series and uses the detected breaks as preliminary information(used as proxy metadata)for the standard procedure of MASH for monthly data.The new developments of automatic procedures make the homogenization easier for the end user.The fourth is some developments for daily data,including some new program procedures for missing data completion and data quality control.The mathematical and technical details are introduced in the online manual at http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/. The additive model is applied to temperature series underlying a normal distribution.The significance level for testing break points via the Monte Carlo method is α=0.01.The reference system of nine nearby stations for each candidate station is determined based on their distances to the candidate station.The inhomogeneous sections areadjusted to the latest homogeneous part of the SAT series.

    Table 1.Information on the 28 stations used in the MASH analysis.

    A linear trend is estimated via the least-squares linear fitting method,to assess the long-term change in the SAT series.Thet-test is used to assess the significance of the trend at α=0.05.

    3.Inhomogeneities in the previous data

    3.1.Outliers

    Figure 1a shows the number of potential outliers in the previous data for each month at each station,estimated by the MASH procedure.To facilitate discussion,we define an erroneous outlier in the present study if the potential outlier exhibits an inhomogeneous shift from the neighboring year larger than 1.5?C.There are 33 monthly temperature records from 12 stations detected as erroneous outliers.The station HHHT in northern China contains the most(nine outliers in six monthly series).There are no outliers at the other 16 stations.

    To highlight what an outlier is,we take an example of SAT for January 1951 at XM station.As Fig.1b shows,the SAT record of January 1951 at XM is of an anomaly larger than 5?C,far beyond the average of those at the nine reference stations,which are all negative anomalies for the same month.Figure 1c shows the new SAT series compared with the previous for January at XM,highlighting the inhomogeneous record in 1951.Obviously,the further-adjusted SAT series for January at XM becomes consistent with those at the reference stations.The new series has a warming trend of 1.67?C(100 yr)?1,compared with 1.52?C(100 yr)?1in the previous data.

    3.2.Break points

    Figure 2a shows the number of inhomogeneous break points in the SAT series for each month at each station during 1924–2016.To aid understanding,we set those with an inhomogeneous shift larger than 0.5?C as a meaningful break point.There are 152 meaningful break points in the monthly SAT series at 26 stations.The MC station has the most(24 break points in 10 monthly series).There is no break point detected for the HC and TN stations in Taiwan.

    Fig.1.(a)Number of erroneous outliers in the SAT records for each month at each station.(b,c)Outlier case for January at XM:(b)SAT anomalies in the 1971–2000 climatology for January at XM and nine reference stations in the previous data;(c)the previous and new January SAT series at XM.

    To help understand the meaningful inhomogeneous biases,we draw attention to the SAT records around the 1940s at NJ.Figure 2b shows the annual SAT anomalies(from the 1971–2000 mean climatology)during 1924–2016 at NJ and nine reference stations from the previous dataset.Obviously,there are unusual warm peaks around the 1940s and the earlier years at NJ,compared with the SAT anomalies at the surrounding reference stations.Figure 2c compares the adjusted series with the previous one.The new series becomes more coherent with the surrounding series around the 1940s.The inhomogeneous biases in the previous data exist mainly before the 1950s.The new SAT series at NJ shows a warming trend of 0.82?C(100 yr)?1,compared with ?0.23?C(100 yr)?1based on the previous data.As discussed in Cao et al.(2013,2017),many stations moved from a city to a rural location,causing a drop in temperature records around that time;and hence,most of the adjusted series showed an enhanced warming trend.However,there were no metadata for Nanjing around these early times,and hence no adjustment was made for this station by Cao et al.(2013).

    Fig.2.(a)Number of break points in the SAT records for each month at each station.(b,c)Inhomogeneity case for the annual SAT series at NJ:(b)previous annual SAT anomalies at NJ and nine reference stations;(c)previous and new annual SAT series at NJ.(d)PDF of all the monthly adjustments based on MASH.

    3.3.Probability distribution of inhomogeneous biases

    There are 5673 monthly SAT records adjusted based on MASH,of which 3358 are of an absolute value larger than 0.5?C,about 10%of the total monthly records.Figure 2d shows the probability density function(PDF)of the monthly adjustments.A majority(4986 or 88%)of the adjustments are between ?1?C and 1?C,with two probability peaks around?0.5?C and 0.5?C,respectively.As most of the adjustments are for the early period,they should influence the estimation of the long-term trend in the climate series.

    4.Comparing long-term trends between the previous and new data

    Fig.3.Linear trends in the annual SAT series at 28 stations during 1924–2016 based on the(a)previous and(b)new data.(c)Regional mean series compared between the previous and new data.

    In order to show the influence of inhomogeneities remaining in the previous data on the estimation of long-term trends,Fig.3 shows the geographical patterns of the linear trends in the annual SAT series during 1924–2016,compar-ing the previous with the new data.The new data show significant warming trends at all the 28 stations;however,the previous data exhibit negative trends at CS and NJ,which are inconsistent with surrounding observations.There is a smaller range of warming trends[from 0.48?C(100 yr)?1to 3.57?C(100 yr)?1]in the new data than that in the previous data[from ?0.23?C(100 yr)?1to 4.02?C(100 yr)?1].The warming trends are large in northeastern China,up to 3.57?C(100 yr)?1,and small in south-central China,down to 0.48?C(100 yr)?1,based on the new data.Compared with the new data,the linear trends in the previous data are underestimated for 13 stations and overestimated for another 13 stations.It is therefore suggested that the further-adjusted data better represent the large-scale pattern of climate change during the last century in this region.

    In terms of the regional mean annual SAT series,the previous data exhibit a slightly higher level of SAT before the 1950s(Fig.3c).Hence,the new data lead to a slightly larger regional mean warming trend[1.65?C(100 yr)?1]than the previous result[1.57?C(100 yr)?1].

    To keep utilizing the earlier data at the longer-term stations,we adjust the earlier part of the series as a whole to the homogenized part since 1924 for the stations with earlier data.The linear trend of the annual SAT series from the starting year to 2016 at each station is calculated and compared between the previous and the new data.Two stations,CS and NJ,show negative trends[?0.15?C(100 yr)?1and?0.01?C(100 yr)?1]based on the previous data.The new data exhibit significant warming trends all over China.The further-adjusted data show a range of trends between 0.36 and 3.56?C(100 yr)?1,smaller than the previous result[between ?0.15?C(100 yr)?1and 3.98?C(100 yr)?1].Therefore,it is suggested that the previous data include more local signals and the further-adjusted long-term SAT series should be a better representation of the large-scale pattern of climate warming in China than the previous data.

    5.Summary and discussion

    A set of further-adjusted long-term temperature series in China back to the 19th century based on MASH has been established.This dataset contains 28 stations,mainly over central and eastern China,and extends from the start date of observations to December 2016.We found 33 monthly records as erroneous outliers and 152 inhomogeneous break points in the previous dataset,and hence further adjusted about 10%of the monthly records during 1924–2016 at these stations.

    The new data show a smaller range of warming trends among the 28 stations during 1924–2016[0.48?C–3.57?C(100 yr)?1]than the previous result.The further-adjusted data should therefore be a better representation of the large-scale pattern of climate change during the last century in the region.The regional mean SAT series shows a warming trend of 1.65?C(100 yr)?1during 1924-2016,larger than the previous result[1.57?C(100 yr)?1].

    It remains arguable whether multi-decadal climate variability can reverse the century-scale warming trend at individual stations.Uncertainty remains for the long-term meteorological series due to vague and incomplete data sources in earlier times,measurement biases,site relocations,urbanization in recent decades,and so on.The MASH-based adjustments are based on statistical comparative analyses with neighboring station observations.Further physical validation needs to be carried out via applications of the new data in as many regional climate studies as possible.

    While the present paper is aimed at homogenization of SAT series,MASH is also applicable to long-term series of other meteorological elements,e.g.,precipitation(Li et al.,2015a)and wind speed(Li et al.,2011)for Beijing.Homogenized long-term precipitation and wind observations in China are expected to be produced in the near future.

    Acknowledgements.This work is supported by the Chinese Academy of Sciences International Collaboration Program(Grant No.134111KYSB20160010),the National Natural Science Foundation of China(Grant Nos.41505071 and 41475078),and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use,distribution,and reproduction in any medium,provided the original author(s)and the source are credited.

    Authors and contributions

    Zhen LI:data processing and paper writing;

    Zhongwei YAN:supervising data analysis and finalizing the manuscript;

    Lijuan CAO and P.D.JONES:producing previous data and discussing the results and paper.

    REFERENCES

    Birsan,M.V.,and A.Dumitrescu,2014:Homogenization and gridding of the Romanian climatic dataset using the MASH and MISH software packages.8thSeminar for Homogenization and Quality Control in Climatological Databases and 3rd Conference on Spatial Interpolation Techniques in Climatology and Meteorology,Budapest,Hungary,Hungarian Meteorological Service,18 pp.[Available online at http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/abstractbook/.]

    Brohan,P.,J.J.Kennedy,I.Harris,S.F.B.Tett,and P.D.Jones,2006:Uncertainty estimates in regional and global observed temperature changes:A new data set from 1850.J.Geophys.Res.,111,D12106,https://doi.org/10.1029/2005JD006548.

    Cao,L.J.,P.Zhao,Z.W.Yan,P.Jones,Y.N.Zhu,Y.Yu,and G.L.Tang,2013:Instrumental temperature series in eastern and central China back to the nineteenth century.J.Geophys.Res.,118,8197–8207,https://doi.org/10.1002/jgrd.50615.

    Cao,L.J.,Z.W.Yan,P.Zhao,Y.N.Zhu,Y.Yu,G.L.Tang,and P.Jones,2017:Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records.Environmental Research Letters,12,064005,https://doi.org/10.1088/1748-9326/aa68e8.

    Jones,P.D.,1994:Hemispheric surface air temperature vari-ations:A reanalysis and an update to 1993.J.Climate,7,1794–1802,https://doi.org/10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2.

    Jones,P.D.,and A.Moberg,2003:Hemispheric and large-scale surface air temperature variations:An extensive revision and an update to 2001.J.Climate,16,206–223,https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.

    Jones,P.D.,D.H.Lister,T.J.Osborn,C.Harpham,M.Salmon,and C.P.Morice,2012:Hemispheric and large-scale landsurface air temperature variations:an extensive revision and an update to 2010.J.Geophys.Res.,117,D05127,https://doi.org/10.1029/2011JD017139.

    Lakatos,M.,T.Szentimrey,Z.Bihari,and S.Szalai,2008:Homogenization of daily data series for extreme climate indices calculation.Proceedings of the Sixth Seminar for Homogenization and Quality Control in Climatological Databases,WCDMP-No.76,Budapest,Hungary,WMO,100–109.[Available online at http://www.wmo.int/pages/prog/wcp/wcdmp/documents/WCDMP76 merged.pdf.]

    Lawrimore,J.H.,M.J.Menne,B.E.Gleason,C.N.Williams,D.B.Wuertz,R.S.Vose,and J.Rennie,2011:An overview of the Global Historical Climatology Network monthly mean temperature data set,version 3.J.Geophys.Res.,116,D19121,https://doi.org/10.1029/2011JD016187.

    Li,Q.X.,W.J.Dong,W.Li,X.R.Gao,P.Jones,J.Kennedy,and D.Parker,2010:Assessment of the uncertainties in temperature change in China during the last century.Chinese Science Bulletin,55(19),1974–1982,https://doi.org/10.1007/s11434-010-3209-1.

    Li,Q.X.,L.Zhang,W.H.Xu,T.J.Zhou,J.F.Wang,P.M.Zhai,and P.Jones,2017:Comparisons of time series of annual mean surface air temperature for china since the 1900s:Observations,model simulations,and extended reanalysis.Bull.Amer.Meteor.Soc.,98(4),699–711,https://doi.org/10.1175/BAMS-D-16-0092.1.

    Li,Z.,and Z.W.Yan,2009:Homogenized daily mean/maximum/minimum temperature series for China from 1960–2008.Atmospheric and Oceanic Science Letters,2(4),237–243,https://doi.org/10.1080/16742834.2009.11446802.

    Li,Z.,Z.W.Yan,K.Tu,W.D.Liu,and Y.C.Wang,2011:Changes in wind speed and extremes in Beijing during 1960-2008 based on homogenized observations.Adv.Atmos.Sci.,28(2),408–420,https://doi.org/10.1007/s00376-010-0018-z.

    Li,Z.,Z.W.Yan,L.J.Cao,and P.Jones,2014:Adjusting inhomogeneous daily temperature variability using wavelet analysis.Int.J.Climatol.,34,1196–1207,https://doi.org/10.1002/joc.3756.

    Li,Z.,Z.W.Yan,K.Tu,and H.Y.Wu,2015a:Changes of precipitation and extremes and the possible effect of urbanization in the Beijing metropolitan region during 1960–2012 based on homogenized observations.Adv.Atmos.Sci.,32(9),1173–1185,https://doi.org/10.1007/s00376-015-4257-x.

    Li,Z.,Z.W.Yan,H.Wu,2015b:Updated homogenized Chinese temperature series with physical consistency.Atmospheric and Oceanic Science Letters,8(1),17–22,https://doi.org/10.3878/AOSL20140062.

    Li,Z.,L.J.Cao,Y.N.Zhu,and Z.W.Yan,2016:Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013.J.Meteor.Res.,30(1),53–66,https://doi.org/10.1007/s13351-016-5054-x.

    Lin,X.C.,S.Q.Yu,and G.L.Tang,1995:Series of average air temperature over China for the last 100-year period.Scientia Atmospherica Sinica,19,525–534,https://doi.org/10.3878/j.issn.1006-9895.1995.05.02.(in Chinese with English abstract)

    Manton,M.J.,and Coauthors,2001:Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific:1961–1998.Int.J.Climatol.,21,269–284,https://doi.org/10.1002/joc.610.

    Peterson,T.C.,and R.S.Vose,1997:An overview of the global historical climatology network temperature database.Bull.Amer.Meteor.Soc.,78,2837–2850,https://doi.org/10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.

    Rasol,D.,T.Likso,and J.Milkovic′,2008:Homogenisation of temperature time series in Croatia.Proceedings of the Sixth Seminar for Homogenization and Quality Control in Climatological Databases,WCDMP-No.76,Budapest,Hungary,WMO,85–93.[Available online at http://www.wmo.int/pages/prog/wcp/wcdmp/documents/WCDMP76 merged.pdf.]

    Szentimrey,T.,1999:Multiple Analysis of Series for Homogenization(MASH).Proceedings of the Second Seminar for Homogenization of Surface Climatological Data,WCDMP-No.41,Budapest,Hungary,WMO,27–46.

    Tang,G.L.,and X.C.Lin,1992:Average air temperature series and its variations in China.Meteorological Monthly,18,3–6.(in Chinese with English abstract)

    Tang,G.L.,and G.Y.Ren,2005:Reanalysis of surface air temperature change of the last 100 years over China.Climatic and Environmental Research,10,791–798,https://doi.org/10.3969/j.issn.1006-9585.2005.04.010.(in Chinese with English abstract)

    Tang,G.L.,Y.H.Ding,S.W.Wang,G.Y.Ren,H.B.Liu,and L.Zhang,2009:Comparative analysis of the time series of surface air temperature over China for the last 100 years.Advances in Climate Change Research,5,71–78,https://doi.org/10.3969/j.issn.1673-1719.2009.02.002.(in Chinese with English abstract)

    Tao,S.Y.,C.B.Fu,Z.M.Zeng,Q.Y.Zhang,and D.P.Kaiser,1991:Two Long-Term Instrumental Climatic Data Bases of the People’s Republic of China.ORNL/CDIAC-47,Oak Ridge National Laboratory,Oak Ridge,TN,https://doi.org/10.3334/CDIAC/cli.ndp039.

    Trewin,B.C.,and A.C.F.Trevitt,1996:The development of composite temperature records.Int.J.Climatol.,16,1227–1242,https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1227::AID-JOC82>3.0.CO;2-P.

    Vose,R.S.,R.L.Schmoyer,P.M.Steurer,T.C.Peterson,R.Heim,T.R.Karl,and J.K.Eischeid,1992:The Global Historical Climatology Network:Long-Term Monthly Temperature,Precipitation,Sea Level Pressure,and Station Pressure Data.ORNL/CDIAC-53,NDP-041,325 pp.

    Wang,S.W.,1990:Variations of temperature in China for the 100 year period in comparison with global temperatures.Meteorological Monthly,16,11–15.(in Chinese with English abstract)

    Wang,S.W.,J.L.Ye,D.Y.Gong,J.H.Zhu,and T.D.Yao,1998:Construction of mean annual temperature series for the last one hundred years in China.Quarterly Journal of Applied Meteorology,9,392–401.(in Chinese with English abstract)

    Wang,X.L.,and Y.Feng,2013:RHtestsV4 User Manual.Climate Research Division,Science and Technology Branch,Environment Canada,Toronto,Ontario,Canada,26pp.[Available online at http://etccdi.pacificclimate.org/RHtest/RHtestsV4 User Manual_10Dec2014.pdf.]

    Xu,W.H.,and Coauthors,2017:A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900.Clim Dyn.,https://doi.org/10.1007/s00382-017-3755-1.(in press)

    Yan,Z.W.,Z.Li,and J.J.Xia,2014:Homogenization of climate series:The basis for assessing climate changes.ScienceChina Earth Sciences,57(12),2891–2900,https://doi.org/10.1007/s11430-014-4945-x.

    Zhang,X.G.,and X.Q.Li.1982:Some characteristics of temperature variation in China in the present century.Acta Meteorologica Sinica,40(2),198–208,https://doi.org/10.11676/qxxb1982.021.(in Chinese with English abstract)

    xxxhd国产人妻xxx| 又紧又爽又黄一区二区| 欧美 日韩 精品 国产| xxx96com| 欧美丝袜亚洲另类 | 波多野结衣av一区二区av| 搡老岳熟女国产| 亚洲国产看品久久| 国产不卡一卡二| 亚洲伊人色综图| 亚洲专区国产一区二区| 大片电影免费在线观看免费| 大香蕉久久网| 亚洲全国av大片| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 国产淫语在线视频| 精品久久久精品久久久| 最新美女视频免费是黄的| 国产精品自产拍在线观看55亚洲 | 大香蕉久久成人网| 亚洲美女黄片视频| 国产激情欧美一区二区| 视频区图区小说| 性少妇av在线| 韩国精品一区二区三区| 午夜免费成人在线视频| 亚洲精品粉嫩美女一区| 国产精品 国内视频| 成人三级做爰电影| 亚洲av成人一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 女人被躁到高潮嗷嗷叫费观| 男女午夜视频在线观看| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 国产单亲对白刺激| 人人澡人人妻人| 在线观看66精品国产| 亚洲精品国产区一区二| 一进一出好大好爽视频| 亚洲性夜色夜夜综合| 久久久久精品人妻al黑| 午夜福利在线观看吧| 视频区图区小说| 色尼玛亚洲综合影院| a级毛片黄视频| 午夜精品国产一区二区电影| 一个人免费在线观看的高清视频| 国产精品成人在线| 精品久久久久久电影网| xxx96com| 欧美激情久久久久久爽电影 | 久久人妻熟女aⅴ| 一边摸一边抽搐一进一小说 | 国产亚洲精品久久久久久毛片 | av片东京热男人的天堂| 精品久久久久久久久久免费视频 | 午夜视频精品福利| 欧美 日韩 精品 国产| 老汉色av国产亚洲站长工具| 很黄的视频免费| 亚洲avbb在线观看| 好看av亚洲va欧美ⅴa在| 天堂俺去俺来也www色官网| 亚洲成人手机| 99香蕉大伊视频| 成人国产一区最新在线观看| 一进一出抽搐gif免费好疼 | 极品人妻少妇av视频| 18禁裸乳无遮挡免费网站照片 | 国产免费av片在线观看野外av| 日韩视频一区二区在线观看| 啪啪无遮挡十八禁网站| 母亲3免费完整高清在线观看| a级片在线免费高清观看视频| 欧美午夜高清在线| 黑人巨大精品欧美一区二区蜜桃| 国产精品98久久久久久宅男小说| 久久久久国产一级毛片高清牌| 大香蕉久久成人网| 母亲3免费完整高清在线观看| 免费高清在线观看日韩| 免费在线观看完整版高清| 无遮挡黄片免费观看| 久久久久久人人人人人| 一夜夜www| 精品久久蜜臀av无| 欧美人与性动交α欧美软件| 欧美在线黄色| 欧美日本中文国产一区发布| 欧美精品人与动牲交sv欧美| 国产成人av激情在线播放| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三区在线| 午夜福利,免费看| videosex国产| 国产成人欧美在线观看 | 久久精品人人爽人人爽视色| 免费观看a级毛片全部| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 丁香欧美五月| 日韩人妻精品一区2区三区| 夜夜夜夜夜久久久久| 黑人猛操日本美女一级片| 久久精品国产综合久久久| 精品国产亚洲在线| 婷婷精品国产亚洲av在线 | 日韩 欧美 亚洲 中文字幕| 亚洲av日韩在线播放| 大陆偷拍与自拍| tube8黄色片| 伊人久久大香线蕉亚洲五| 曰老女人黄片| 国产人伦9x9x在线观看| 满18在线观看网站| 亚洲专区字幕在线| 在线国产一区二区在线| 国产精品一区二区免费欧美| www.熟女人妻精品国产| 精品一区二区三区av网在线观看| 又大又爽又粗| 在线天堂中文资源库| 国产高清激情床上av| 日韩欧美一区二区三区在线观看 | 最新的欧美精品一区二区| 男女下面插进去视频免费观看| 国产一区二区三区在线臀色熟女 | 自线自在国产av| 国产成人欧美| 手机成人av网站| 久久久久久久精品吃奶| 精品免费久久久久久久清纯 | 高清黄色对白视频在线免费看| 国产一区二区三区综合在线观看| 精品亚洲成国产av| 国产在线一区二区三区精| 91字幕亚洲| 久久久精品区二区三区| 国产无遮挡羞羞视频在线观看| 嫩草影视91久久| 国产男靠女视频免费网站| 久久国产乱子伦精品免费另类| 国产一区有黄有色的免费视频| 国产淫语在线视频| 精品乱码久久久久久99久播| 18禁国产床啪视频网站| 国产蜜桃级精品一区二区三区 | 欧美日韩成人在线一区二区| 在线视频色国产色| 久久亚洲精品不卡| 丝袜美腿诱惑在线| 久久九九热精品免费| 69精品国产乱码久久久| 免费在线观看黄色视频的| 精品国产一区二区久久| 久久久久国产一级毛片高清牌| 国内久久婷婷六月综合欲色啪| 50天的宝宝边吃奶边哭怎么回事| xxxhd国产人妻xxx| 亚洲成人手机| 女性被躁到高潮视频| 国产精品一区二区精品视频观看| 在线观看免费视频日本深夜| 亚洲精品国产区一区二| 亚洲伊人色综图| 色在线成人网| 一进一出好大好爽视频| 国产一区二区三区综合在线观看| videosex国产| 满18在线观看网站| 18禁裸乳无遮挡免费网站照片 | 亚洲久久久国产精品| 夜夜爽天天搞| 大码成人一级视频| 免费日韩欧美在线观看| 男人舔女人的私密视频| 国产精品免费一区二区三区在线 | 国产片内射在线| 欧美精品啪啪一区二区三区| 亚洲少妇的诱惑av| 两个人免费观看高清视频| 男女免费视频国产| 满18在线观看网站| 欧美精品一区二区免费开放| 美女 人体艺术 gogo| 欧美一级毛片孕妇| 久久国产精品人妻蜜桃| 久久国产亚洲av麻豆专区| 在线观看舔阴道视频| 97人妻天天添夜夜摸| 黄色 视频免费看| 欧美亚洲日本最大视频资源| 悠悠久久av| 新久久久久国产一级毛片| 国产高清视频在线播放一区| 高清在线国产一区| 少妇的丰满在线观看| 久久国产精品人妻蜜桃| 免费av中文字幕在线| 看黄色毛片网站| 757午夜福利合集在线观看| 亚洲熟女毛片儿| 嫩草影视91久久| 亚洲成人免费av在线播放| 免费高清在线观看日韩| 国产精品 国内视频| 国产精品美女特级片免费视频播放器 | 黑人操中国人逼视频| 亚洲欧洲精品一区二区精品久久久| 午夜福利在线免费观看网站| 欧美乱妇无乱码| 国产不卡av网站在线观看| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 少妇 在线观看| 国产蜜桃级精品一区二区三区 | 久久 成人 亚洲| 国产精品综合久久久久久久免费 | 久久久国产成人免费| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 久久人妻熟女aⅴ| 免费不卡黄色视频| 在线观看免费高清a一片| 国产一区在线观看成人免费| 日本a在线网址| 波多野结衣一区麻豆| 91老司机精品| 在线观看免费高清a一片| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 老鸭窝网址在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线永久观看黄色视频| 婷婷成人精品国产| 91麻豆av在线| 久久人妻av系列| 久久久久久久久免费视频了| 色综合婷婷激情| 亚洲成人免费电影在线观看| 欧美日韩视频精品一区| 男人的好看免费观看在线视频 | 欧美精品亚洲一区二区| 国产成人欧美| 动漫黄色视频在线观看| 999精品在线视频| 好男人电影高清在线观看| 国产激情欧美一区二区| 久久 成人 亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 男女之事视频高清在线观看| 欧美日韩国产mv在线观看视频| 免费在线观看视频国产中文字幕亚洲| 变态另类成人亚洲欧美熟女 | 精品一区二区三区av网在线观看| 亚洲五月天丁香| 操美女的视频在线观看| 亚洲在线自拍视频| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 午夜激情av网站| 久久香蕉精品热| 欧美日韩亚洲高清精品| 国产精品1区2区在线观看. | 国产精品偷伦视频观看了| 中出人妻视频一区二区| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 咕卡用的链子| 女性被躁到高潮视频| 好男人电影高清在线观看| 精品一品国产午夜福利视频| 69av精品久久久久久| 色婷婷av一区二区三区视频| 人人澡人人妻人| 欧美精品啪啪一区二区三区| 成人国产一区最新在线观看| 午夜精品国产一区二区电影| 在线免费观看的www视频| а√天堂www在线а√下载 | 成熟少妇高潮喷水视频| √禁漫天堂资源中文www| 看片在线看免费视频| 久久香蕉精品热| 精品一品国产午夜福利视频| 青草久久国产| 国产成人精品久久二区二区免费| 国产一区有黄有色的免费视频| 中国美女看黄片| 757午夜福利合集在线观看| 99热只有精品国产| 热99re8久久精品国产| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 亚洲人成电影免费在线| 搡老熟女国产l中国老女人| 国产主播在线观看一区二区| 亚洲五月婷婷丁香| 人妻丰满熟妇av一区二区三区 | 国产男靠女视频免费网站| 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 成人18禁高潮啪啪吃奶动态图| 91大片在线观看| 久久精品亚洲熟妇少妇任你| 激情在线观看视频在线高清 | 欧美激情极品国产一区二区三区| 91成年电影在线观看| 中国美女看黄片| 久久国产精品人妻蜜桃| 老汉色∧v一级毛片| www.999成人在线观看| 久久性视频一级片| 日韩欧美在线二视频 | 精品久久久久久,| 捣出白浆h1v1| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 久久久精品区二区三区| 国产91精品成人一区二区三区| 久9热在线精品视频| 手机成人av网站| а√天堂www在线а√下载 | 精品福利永久在线观看| 9热在线视频观看99| 国产有黄有色有爽视频| 亚洲国产欧美网| 亚洲中文av在线| 我的亚洲天堂| 国产精品二区激情视频| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 精品国产一区二区久久| 国产视频一区二区在线看| 在线天堂中文资源库| 老司机午夜福利在线观看视频| 麻豆乱淫一区二区| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美精品永久| 亚洲专区中文字幕在线| 精品免费久久久久久久清纯 | 操出白浆在线播放| 九色亚洲精品在线播放| 天天添夜夜摸| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 中文欧美无线码| 热re99久久国产66热| 啦啦啦 在线观看视频| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 久久香蕉国产精品| 中文字幕av电影在线播放| 丁香欧美五月| 最新的欧美精品一区二区| 少妇 在线观看| 午夜福利免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 国产真人三级小视频在线观看| 1024视频免费在线观看| 久久精品国产综合久久久| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 悠悠久久av| 日韩欧美免费精品| 最近最新中文字幕大全电影3 | 999精品在线视频| 亚洲五月天丁香| 国产成人精品久久二区二区免费| 精品电影一区二区在线| 日韩有码中文字幕| 一级a爱视频在线免费观看| 一本一本久久a久久精品综合妖精| 久久ye,这里只有精品| 国产男靠女视频免费网站| 国产精品久久视频播放| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 免费av中文字幕在线| 亚洲第一av免费看| 日韩大码丰满熟妇| 美国免费a级毛片| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品一区二区www | 中出人妻视频一区二区| 黄色 视频免费看| 亚洲黑人精品在线| 精品国产国语对白av| 久久精品国产亚洲av香蕉五月 | 午夜激情av网站| 男女之事视频高清在线观看| 亚洲自偷自拍图片 自拍| 天堂√8在线中文| 99精品在免费线老司机午夜| 深夜精品福利| 在线播放国产精品三级| 久久久精品免费免费高清| 很黄的视频免费| 妹子高潮喷水视频| 久久人妻福利社区极品人妻图片| 热99国产精品久久久久久7| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 黄色成人免费大全| 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 亚洲av熟女| 国产激情欧美一区二区| 在线免费观看的www视频| 极品人妻少妇av视频| 婷婷精品国产亚洲av在线 | 久久ye,这里只有精品| av中文乱码字幕在线| 91国产中文字幕| 日韩免费高清中文字幕av| 国产精品.久久久| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区| 国产国语露脸激情在线看| 亚洲精品国产区一区二| 国产xxxxx性猛交| 久久这里只有精品19| 手机成人av网站| 国产精品久久视频播放| a级毛片黄视频| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 黄色视频不卡| 最新美女视频免费是黄的| 国产在线观看jvid| 免费久久久久久久精品成人欧美视频| 免费黄频网站在线观看国产| 精品一区二区三区四区五区乱码| 波野结衣二区三区在线 | 国产亚洲欧美98| 老司机在亚洲福利影院| 男女午夜视频在线观看| 国产精品自产拍在线观看55亚洲| 国产国拍精品亚洲av在线观看 | 国产精品久久久久久精品电影| 久久草成人影院| 一级毛片女人18水好多| 亚洲激情在线av| 日本黄色片子视频| 亚洲精品在线观看二区| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| av天堂在线播放| 一本一本综合久久| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| 国产伦在线观看视频一区| 亚洲成av人片在线播放无| 日韩成人在线观看一区二区三区| 午夜两性在线视频| 级片在线观看| 激情在线观看视频在线高清| 美女黄网站色视频| 国产国拍精品亚洲av在线观看 | 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 精品乱码久久久久久99久播| 免费观看人在逋| 国产精品免费一区二区三区在线| 99riav亚洲国产免费| 精品久久久久久成人av| 久久精品91蜜桃| 热99在线观看视频| 久久久国产精品麻豆| 少妇的丰满在线观看| 免费av不卡在线播放| av中文乱码字幕在线| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 在线观看一区二区三区| 久久亚洲真实| 男女那种视频在线观看| 91久久精品电影网| 成年女人永久免费观看视频| 日本 欧美在线| 一本精品99久久精品77| 欧美不卡视频在线免费观看| 九九久久精品国产亚洲av麻豆| 日本a在线网址| 99热精品在线国产| av中文乱码字幕在线| 亚洲国产精品成人综合色| 成人18禁在线播放| 香蕉久久夜色| 欧美一区二区国产精品久久精品| 久9热在线精品视频| 成人高潮视频无遮挡免费网站| 美女黄网站色视频| 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻aⅴ院| 亚洲欧美一区二区三区黑人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色日韩在线| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 亚洲不卡免费看| 内射极品少妇av片p| 国产精品久久久久久精品电影| 国产伦在线观看视频一区| 伊人久久精品亚洲午夜| www.999成人在线观看| 国产中年淑女户外野战色| 国产探花极品一区二区| 色综合亚洲欧美另类图片| 国产麻豆成人av免费视频| 脱女人内裤的视频| 国产精品影院久久| 欧美成人性av电影在线观看| 黑人欧美特级aaaaaa片| 熟女电影av网| 久久久久久久午夜电影| 校园春色视频在线观看| 小说图片视频综合网站| 美女黄网站色视频| 99久久无色码亚洲精品果冻| 欧美成人a在线观看| 精品久久久久久久末码| 九九热线精品视视频播放| 内地一区二区视频在线| 亚洲午夜理论影院| 日韩欧美 国产精品| 熟女电影av网| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 国内精品久久久久精免费| 成年人黄色毛片网站| 1024手机看黄色片| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影| 亚洲精品在线观看二区| 亚洲国产精品成人综合色| 色综合欧美亚洲国产小说| 天堂网av新在线| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av | 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 免费一级毛片在线播放高清视频| 欧美bdsm另类| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 国产一级毛片七仙女欲春2| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩东京热| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 国产亚洲精品一区二区www| 老汉色∧v一级毛片| 天天添夜夜摸| 精品国内亚洲2022精品成人| 最新中文字幕久久久久| 国内精品久久久久久久电影| 99视频精品全部免费 在线| 国产精品久久久久久人妻精品电影| 国产av麻豆久久久久久久| 99久久精品热视频| 热99re8久久精品国产| 国产午夜福利久久久久久| 18美女黄网站色大片免费观看| 国产在线精品亚洲第一网站| 成年女人看的毛片在线观看| 乱人视频在线观看| 国产色爽女视频免费观看| 无遮挡黄片免费观看| 高清日韩中文字幕在线| av片东京热男人的天堂| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 怎么达到女性高潮| 国产高清激情床上av| 欧美3d第一页| 大型黄色视频在线免费观看| 俺也久久电影网| 尤物成人国产欧美一区二区三区| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 99久久99久久久精品蜜桃| 香蕉av资源在线| 两人在一起打扑克的视频| 一级毛片女人18水好多| 九九久久精品国产亚洲av麻豆| 午夜精品一区二区三区免费看| 午夜福利免费观看在线| 国产极品精品免费视频能看的| 午夜福利欧美成人| 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 国产精品久久久久久久电影 | 三级男女做爰猛烈吃奶摸视频| 欧美丝袜亚洲另类 | www.色视频.com| 国产免费男女视频| 午夜精品久久久久久毛片777| 搡女人真爽免费视频火全软件 | 午夜福利免费观看在线| 国产极品精品免费视频能看的|