曹龍,張朝升,*,陳秋麗,2,韋偉
1. 廣州大學(xué)土木工程學(xué)院, 廣州 510006 2. 仲愷農(nóng)業(yè)工程學(xué)院城市建設(shè)學(xué)院,廣州 510230
PAEs(phthalate esters, PAEs,酞酸酯)是一類由鄰苯二甲酸酐與醇在酯化作用下形成的有機物。全球每年的PAEs用量在1.8億噸左右。由于PAEs并未聚合到高分子碳鏈上而是與塑料基質(zhì)以氫鍵或范德華力結(jié)合,故PAEs容易從產(chǎn)品中泄露或揮發(fā)到有機相中并參與生態(tài)循環(huán)和食物鏈傳遞[1-2]。目前各主要工業(yè)國的生態(tài)環(huán)境中均普遍檢出有PAEs,過去一直認為PAEs是一種無毒或低毒的化合物,但現(xiàn)今的研究多認為PAEs對動物的臟器功能、神經(jīng)系統(tǒng)、遺傳表達等存在穩(wěn)定的干擾作用[3-5]。因此,我國把DMP、DEP、DnOP納入環(huán)境優(yōu)先控制污染物。
為更系統(tǒng)地認識PAEs在生態(tài)系統(tǒng)中的轉(zhuǎn)移積累及危害水平,本次研究從PAEs的物化性質(zhì)及環(huán)境污染分布、生物蓄積與代謝途徑、環(huán)境降解機理及毒理效應(yīng)等方面對近年來國內(nèi)外相關(guān)研究文獻進行總結(jié)與回顧,并也對今后減低PAEs危害提出建議和展望。
PAEs具有親酯性及難降解性,其化學(xué)結(jié)構(gòu)是由一個剛性平面芳環(huán)及2個可塑的非線型脂肪側(cè)鏈(R1、R2)組成,有鄰、間、對位3種異構(gòu)體。側(cè)鏈結(jié)構(gòu)不同的PAEs具有不同的產(chǎn)品用途:烷基鏈碳原子數(shù)不高于4的PAEs常用做染料、密封劑及粘合物質(zhì),如DMP、DEP;碳原子數(shù)高于6的PAEs主要作為塑料改性劑和增強劑,如BBP、DEHP。6種優(yōu)先控制的PAEs污染物的物化特性指標(biāo)如表1所示。
表1 6種優(yōu)先控制PAEs污染物的物化參數(shù)Table 1 Physicochemical parameters of 6 kinds of priority control PAEs pollutants
注:PV為蒸氣壓;Koc為沉積物中有機碳-水中的分配系數(shù);KB為微生物-水分配系數(shù)(μg·L-1);KOX為自由基氧化速率常數(shù);KHA為酸性水解常數(shù);KHB為堿性水解常數(shù)。
Note:Pv, vapor pressure;Koc, partition coefficient in organic carbon-water in sediment;KB, microorganism-water partition coefficient (μg·L-1);KOX, free radical oxidation rate constant;KHA, acidic hydrolysis constant;KHB, basic hydrolysis constant.
環(huán)境中的PAEs少部分來自于自然途徑,如木質(zhì)素的氧化以及微生物合成,葡萄、煙葉等植物組織也含有少量PAEs;主要來源仍然是化工合成,即通過費歇爾反應(yīng)使鄰苯二甲酸與特定的醇合成目標(biāo)PAEs。由于PAEs在各行各業(yè)的廣泛使用及不恰當(dāng)?shù)奶幹梅绞?,使得PAEs在大氣[6]、土壤[7]、水體[8]、沉積物[9]甚至生物體[10]中均有不同程度檢出,被稱為第2個全球性“PCB污染物”[11]。目前,環(huán)境介質(zhì)中PAEs的分析方法主要有高效液相色譜法(HPLC)[12]、氣相色譜-質(zhì)譜聯(lián)用法(GC-MS)[13]、液相色譜-質(zhì)譜聯(lián)用法(LC-MS)[14]和化學(xué)發(fā)光免疫分析法(CLIA)[15]。
PAEs工廠廢氣釋放、塑料膜的老化漚解以及各種化工液體的揮發(fā)均會造成PAEs外逸。大氣中的PAEs含量與大氣顆粒物濃度呈正相關(guān)趨勢,其中,烷基鏈PAEs大于6個碳原子的PAEs多依附于大氣顆粒及液滴表面,隨著粉塵沉降進入水體和土壤[16]。
有學(xué)者檢測了巴黎[17]、瑞典[18]、荷蘭[19]等地大氣區(qū)域中的PAEs含量,分析顯示,各地均有不同程度的PAEs檢出且夏季污染濃度高于冬季。在國內(nèi),有學(xué)者調(diào)查了鞍山[20]、上海[21]、天津[22]的大氣及PM10中PAEs的季節(jié)含量動態(tài),在各試樣中檢出的酞酸酯種類包括DMP、DEP、DBP、DEHP,污染程度同樣受到季節(jié)溫度的顯著影響,即夏季濃度高于冬季濃度,這是由于PAEs的熱穩(wěn)性差,溫度較高時,PAEs從產(chǎn)品中揮發(fā)出來的速率更快。米立杰等[23]調(diào)查了太平洋西部邊緣海域大氣中的PAEs水平,發(fā)現(xiàn)PAEs的總濃度范圍為75~311 ng·m-3,以DiBP污染最為嚴(yán)重,DEHP及DnBP的濃度高于美國大湖及墨西哥灣的污染水平,但相比于漢密爾頓及愛內(nèi)塔克環(huán)礁又是偏低的,這是由于城市地區(qū)大氣的PAEs含量高于海洋及臨海大氣;工業(yè)區(qū)大氣的PAEs濃度高于非工業(yè)區(qū)。
水體中PAEs主要來源于各種含有PAEs的工商業(yè)污廢水、塑料垃圾的浸潤、大氣顆粒沉降及雨水循環(huán)。由于大多數(shù)PAEs的正辛醇-水分配系數(shù)(Kow)較高而蒸氣壓較低,故進入水環(huán)境的PAEs揮發(fā)性極低且容易通過各種水體途徑遷移轉(zhuǎn)化。
據(jù)報道,我國七大水系及華北、東南沿海地區(qū)的部分水源地都不同程度地受到了EDCs污染。李婷[24]研究了珠江河口PAEs含量的四季變化,發(fā)現(xiàn)夏季污染水平最高,這與夏季雨水沖刷物排入水體較多且當(dāng)季的農(nóng)業(yè)藥劑使用量大有關(guān)。張英等[25]在對東莞市的地下水樣及地表水樣的PAEs測定結(jié)果顯示,地下水中PAEs檢出率為39.0%,6種PAEs的濃度為0~6.70 μg·L-1;地表水中PAEs的分布特征與地下水類似,均以DEHP及DnBP的污染較為突出。Zhang等[26]研究發(fā)現(xiàn),長江流域的陽澄湖西部及太湖一帶為主要PAEs污染區(qū),其濃度范圍為0.061~28.55 μg·L-1。在一些鄰海區(qū)域的沉積物中也發(fā)現(xiàn)有PAEs,張澤明等[27]測定出長江流域沉積物的PAEs種類多為DMP、DBP、DCHP和DPHP,總含量約為0.79~34.8 μg·kg-1。國外學(xué)者在加利福尼亞自來水[28]、荷蘭地表水體[29]、西班牙地表水[30],加拿大 False Creek 港沉積物[31]中均部分檢測出DEP、DBP和DEHP。有文獻指出,國內(nèi)外淡水水體中的PAEs污染水平多在μg·L-1級別,而由于海水等苦咸水所含鹽分太高,故PAEs在這些環(huán)境中的含量及種類分布不均勻[32]。
土壤及沉積質(zhì)中的PAEs主要是來自于農(nóng)業(yè)污廢水灌溉、塑料薄膜的使用、工業(yè)煙塵的沉降。20世紀(jì)末,中國的農(nóng)用薄膜超過150萬公頃,此類薄膜的穩(wěn)定性較差,基質(zhì)中的PAEs極易在自然力的作用下溶入土壤。我國各地區(qū)土壤中的DEHP含量與農(nóng)膜使用量有良好的相關(guān)性(r=0.58,P<0.004)[33]。Zhu等[34]研究發(fā)現(xiàn)土壤中PAEs濃度與大氣PAEs含量的Pearson相關(guān)系數(shù)為0.825(雙尾檢驗,P<0.01),這說明大氣沉降也是土壤的PAEs污染源。2005年以來,環(huán)境累積毒性較強的PAEs一直被列為我國土壤污染現(xiàn)狀調(diào)查專項的必檢指標(biāo),美國環(huán)保署將上述6種PAEs的土壤環(huán)境標(biāo)準(zhǔn)分別控制在0.020、0.071、0.081、1.125、4.350 mg·kg-1。
粗放式生產(chǎn)在我國的耕地種植面積中占比大,這造成土壤中PAEs的種類與含量具有很大的地區(qū)差異性。楊彥等[35]抽檢了太湖流域蘇南農(nóng)業(yè)區(qū)土壤中的15種PAEs,發(fā)現(xiàn)PAEs總濃度為44.56 mg·kg-1,以DCHP及DNHP含量最高,當(dāng)?shù)氐男←湣⑺炯皵?shù)10種蔬菜均檢出有PAEs。人口經(jīng)濟發(fā)達的廣州和深圳地區(qū),其農(nóng)業(yè)土壤中6種PAEs物質(zhì)的平均濃度為21.03 mg·kg-1,而中東部省份的部分農(nóng)業(yè)土壤中PAEs分別只有0.07 mg·kg-1和0.16 mg·kg-1[36-37]。在對襄陽23塊農(nóng)業(yè)土壤的分析中,同樣檢測出超標(biāo)的DEHP含量[38]。沉積在土壤中的PAEs會造成農(nóng)產(chǎn)品失綠,辣椒素及花青素含量減少,其果蔬品質(zhì)及安全性缺乏保障。國外調(diào)查顯示,英國[39]、荷蘭[40]、丹麥[41]等地區(qū)的土壤總體PAEs濃度集中在1 μg·L-1附近。現(xiàn)有研究表明,我國部分土壤的PAEs污染程度高于歐美國家的PAEs治理標(biāo)準(zhǔn),土壤生態(tài)功能健康值降低。
表2 不同國家環(huán)境介質(zhì)中的PAEs污染水平Table 2 Pollution levels of phthalate in environmental media from different countries
人和動物的PAEs暴露途徑主要包括:皮膚接觸和食物攝入。護膚品、油漆等產(chǎn)品中的PAEs成分容易揮發(fā),PAEs通過呼吸或直接與皮膚接觸而進入生物體。另一方面,由于PAEs的穩(wěn)定性及親酯性良好,一旦生態(tài)系統(tǒng)中的低級動植物蓄積該類物質(zhì),則容易通過食物網(wǎng)傳遞給更高一級的生物體,處于食物鏈頂端的人類將面臨高風(fēng)險的PAEs攝入。
3.1.1 人體積蓄與代謝
人體的血液、羊水、精液及尿液中均已檢測到PAEs類及其代謝產(chǎn)物[52]。鮑佳沁[53]調(diào)查了護理產(chǎn)品中的PAEs含量水平,發(fā)現(xiàn)BEP、DPP、DEHP在護發(fā)素、指甲油、面霜中均有檢出,該研究中DEP的人群最大每日暴露量為3.2 μg·(kg·d)-1低于加拿大報道的78 μg·(kg·d)-1,而高于美國報道的0.99 μg·(kg·d)-1,這與地區(qū)人口使用習(xí)慣及調(diào)查設(shè)計有關(guān)[54-55]。Buckley等[56]發(fā)現(xiàn),使用過眼影的成年女性尿液中,短時間內(nèi)的MBP和MIBP(分別為DBP和DIBP的代謝產(chǎn)物)濃度是未使用過眼影的2倍。Park等[57]通過對6 000名韓國成人的調(diào)查,發(fā)現(xiàn)成人血液中的T3和T4含量與其尿液中的PAEs類代謝產(chǎn)物呈負相關(guān)性。有文獻顯示,不同年齡階段的嬰幼兒、青年、成年人的尿液及血液中均檢出有DINP及其代謝產(chǎn)物,而DINP在部分抓食PVC塑料玩具的幼嬰兒皮膚中的滲透率是成人的2倍且容易擴散到皮下組織參與血液循環(huán)[58]。目前,DBP、DEHP、DMEP、DPP及BBzP在歐盟及中國已經(jīng)限制使用。
人體內(nèi)PAEs的代謝途徑一般分為2步:第1階段為形成鄰苯二甲酸單酯的生物轉(zhuǎn)化,即小分子PAEs在腎臟中代謝形成單酯經(jīng)尿液排出;第2階段主要是親脂性的MBP、MEHP、MBzP與葡萄糖醛酸反應(yīng),產(chǎn)物為各自的葡糖醛酸結(jié)合物,該階段主要是降低PAEs的疏水性及生物活性,使PAEs隨尿液及糞便排出體外,部分經(jīng)過皮膚接觸及呼吸道吸入的PAEs,可以在肝臟、肺通道和血清中得到水解[59-62]。郭佳林等[63]在母體和胎兒體外灌流液及新生兒糞便中檢出了PAEs代謝產(chǎn)物,這說明PAEs可以通過組織和血液途徑釋放外排。PAEs的體內(nèi)和體外研究指出,當(dāng)PAEs以第1階段的單酯形式存在時,生物活性高,毒性也更大。
3.1.2 動植物蓄積與代謝
有學(xué)者調(diào)查了江蘇省部分蔬菜樣品的PAEs富集情況,以DEP為例,蔬菜對DEP的富集優(yōu)先次序為根菜類>果菜類>花菜類>葉菜類和莖菜類,6種PAEs的濃度范圍為42.26~276.76 μg·kg-1,檢出率達到100%[64],這與吳山等[65]研究的汕頭市蔬菜產(chǎn)區(qū)的結(jié)果類似。在水生生物方面,已有研究發(fā)現(xiàn),PAEs 及其代謝產(chǎn)物能夠在魚體、藻類蓄積,浮游生物和甲殼類動物體內(nèi)富集單個 PAEs的量低于100~900 ng·g-1,白鯨肝臟內(nèi)富集的 DEHP 含量高達 4.15 μg·g-1[66-67]。一項針對PAEs小球藻-真鯛魚苗二級食物鏈中的酞酸酯轉(zhuǎn)移調(diào)查[68]顯示,PAEs含量大小為DEHP>DNOP>DBP>BBP>DEP,其在小球藻和真鯛魚的富集放大具有明顯的濃度效應(yīng),另一方面,由于分子量較大的PAEs結(jié)構(gòu)復(fù)雜,不易被代謝分解,因而DEHP相較于DEP表現(xiàn)出更強的生物富集性[69]。
葛建等[70]觀察了PAEs在草魚體內(nèi)的代謝規(guī)律,發(fā)現(xiàn)BBP及DEHP在血清、肝胰臟勻液及小腸勻液中均出現(xiàn)了不同程度的代謝,而在肝細胞未見明顯的代謝行為,上述PAEs物質(zhì)的代謝產(chǎn)物分別為單酯類的MBzP及MEHP,并指出PAEs主要是被組織水解酶消化,小腸和血清是該類物質(zhì)的第一代謝場所,這與人類不同。李明揆等[71]將DEP以20 mg·kg-1喂飼羅非魚,測定不同時間里血漿和組織中的DEP含量,發(fā)現(xiàn)DEP在肌肉和腦中的半衰期分別為111.77 h和99.00 h,認為DEP在羅非魚體內(nèi)消化屬于有吸收二房室動力學(xué)模型,其代謝動力學(xué)實驗及殘留研究表明DEP在可食性組織的吸收傳遞較快,但代謝較緩。李文蘭等[72]運用HPLC-MSn法研究了鄰苯二甲酸丁基芐酯在小鼠尿液中的代謝產(chǎn)物,實驗檢測出6種鄰苯二甲酸單酯及葡萄糖醛酸結(jié)合物,推測鄰苯二甲酸丁基芐酯的代謝途徑是先水解成各種單酯類化合物,部分單酯之間脫羧生成的苯甲酸與內(nèi)源性甘氨酸結(jié)合生成馬脲酸,而內(nèi)源性β-D-葡萄糖醛酸則和另外的單酯,結(jié)合生成水溶性更大的葡萄糖醛酸結(jié)合物。
3.2.1 PAEs的光化學(xué)降解
光解主要有敏化、氧化及直接光解3種形式。水體中PAEs的光解主要是吸收290~400 nm的入射紫外光反應(yīng),使 2 個全酯基團同時斷裂,留下完整的聯(lián)羧基酸結(jié)構(gòu),然后是連接2個羧基的芳環(huán)上的 C—C 鍵斷裂,降解產(chǎn)物有鄰苯二甲酸、鄰苯二甲酸酐、苯甲酸酯、三烷基氧基苯肽等[73-75]。由于紫外光穿透液相時會使能量大大衰弱,對PAEs的完全礦化程度較低,因而PAEs光解更容易發(fā)生在氣相環(huán)境。
Norrish和Poter在1948年創(chuàng)立了閃光光解技術(shù),即把一定強度脈沖光入射到樣品,利用檢測系統(tǒng)記錄樣品隨入射時間的變化數(shù)據(jù)[76]。有學(xué)者運用該方法研究了DMP和DEP的脈沖輻解反應(yīng),發(fā)現(xiàn)DMP和DEP與羥基自由基的瞬態(tài)吸收值僅為氧化亞氮體系的50%,且在480 nm時,出現(xiàn)了一個小的吸收峰,這說明DMP和DEP與·OH的反應(yīng)產(chǎn)物進一步被氧化成其他過氧自由基。Xu等[77]在強氧化劑的作用下,利用UV/H2O2提高PAEs光解速度,結(jié)果表明,98%的DEP可以在60 min 內(nèi)分解完成。在紫外光助芬頓深度降解垃圾滲濾液中的難降解有機物實驗中,多環(huán)芳烴、苯系物、PAEs類均能在該過程中得到良好降解。Matteo[79]指出Fe(Ⅲ)經(jīng)過太陽光照射產(chǎn)生部分活性基團如單氧或氫氧自由基,這些自由基團會先破壞PAEs的苯環(huán),DEP及其光解產(chǎn)物最終將被完全礦化。
3.2.2 PAEs的水解
自然條件下烷基鏈越長的PAEs水解越緩慢,但在呈弱酸或弱堿性的水環(huán)境中有助于PAEs的水解,由于反應(yīng)速率受到醇的空間阻隔影響,因而水解過程不能完全進行。
在國內(nèi),高旭等[80]考察了長江萬州段泥沙對PAEs的靜態(tài)吸附效果,經(jīng)雙氧水處理后,3種PAEs在12 h內(nèi)達到吸附平衡,泥沙對PAEs的吸附符合Freundlich及Langmuir等溫吸附模型,隨著PAEs濃度升高,分配作用也逐漸增強,說明泥沙對PAEs主要起到表面吸附作用。Turner等[81]國外學(xué)者模擬了顆粒物對河口地區(qū)DEHP的吸附動力學(xué)行為的影響,發(fā)現(xiàn)顆粒物含量越多,沉積物-水分配系數(shù)越小,在研究水-底泥體系中DEP、DBP、DEHP的遷移情況時,發(fā)現(xiàn)3種PAEs的水-底泥分配系數(shù)分別為1、22和1 400。這說明烷基鏈長的DEHP被強烈吸附,轉(zhuǎn)移效果弱化。
3.2.3 PAEs的生物降解
自然條件下,微生物對有機物的降解方式有2種:一種是將被分解的有機物做為微生物的生長原料;另一種是功能代謝。通常認為生物降解PAEs會生成單酯、醇、雙酚化合物等中間產(chǎn)物,最終在三羧酸循環(huán)的作用下,進一步降解成CO2和H2O。
國內(nèi)外學(xué)者對PAEs的生物降解進行了許多研究,報道過可以降解PAEs的細菌包括:Enterobactersp.[82]、Gordoniasp.[83]、Arthrobactersp.[84]、Variovoraxsp.[85]、Bacillussp.[86]。高靜靜等[87]在二沉池活性污泥中分離出一株以DEHP為唯一碳源的革蘭氏陰性菌(XB),不同初始濃度下 DEHP 的降解動力學(xué)實驗表明:XB對 DEHP 的降解符合一級動力學(xué)模型,且檢測出MEHP和2-乙基己基醇等代謝產(chǎn)物。類似的,Zeng等[88]也發(fā)現(xiàn)DEP、DMP、DNBP及DIBP在特定菌株的降解作用下,3 h內(nèi)幾乎能達到全部去除,其降解同樣符合一級動力學(xué)模型。在河流底泥與石化污泥中,Chang等[89]從河流底泥與石化污泥中分離出了DK4和O18,這些菌株對5種短鏈酞酸酯類物質(zhì)包括DEP、DPrP、DBP、BBP、DPP快速降解,而對長鏈的DCP、DHP和DEHP等的降解效果較差,其降解同樣符合一級動力學(xué)模型,這可能是由于單個菌種只能將PAEs轉(zhuǎn)化成單酯或鄰苯二甲酸,而在不同菌株的協(xié)同作用下才有可能實現(xiàn)PAEs的完全礦化。進化分析顯示,在具備PAEs分解能力的細菌中,多數(shù)能把PAEs做為唯一碳源和能源物質(zhì)進行生命活動,且近一半細菌能降解多種PAEs[90]。
環(huán)境激素的作用機理主要是由于該類物質(zhì)的結(jié)構(gòu)性質(zhì)與生物體的內(nèi)源性激素有一定的相似性,進入生物體內(nèi)的環(huán)境激素能調(diào)控相應(yīng)的激素受體,從而影響了人體的正常激素分泌,過多的PAEs攝入將引起人格及生物屬性混亂,使人體趨向于暴力和非理性狀態(tài)。
馬萍等[91]提出的“三階段四通路”解釋了“氧化應(yīng)激—TSLP/TRPV1—I型超敏反應(yīng)分子通路”假說,一定程度上揭示了PAEs作為Allergic March環(huán)境誘導(dǎo)劑的免疫毒理特性。紀(jì)紅蕊等[92]發(fā)現(xiàn)較高染毒劑量的DBP能穿透小鼠血-睪屏障,使精子數(shù)量顯著減少且活動率下降,而使孕期小鼠暴露于PAEs環(huán)境,同樣會導(dǎo)致老鼠精子減少且發(fā)生精子DNA甲基化,進而影響基因的相關(guān)表達。Power等[93]用PAEs化合物喂養(yǎng)大鼠,發(fā)現(xiàn)腦部的杏仁基地外側(cè)核上的膽堿能被抑制,鼠體的可逆記憶功能受損。部分PAEs神經(jīng)干擾文獻指出,DEHP能改變神經(jīng)元內(nèi)的鈣離子濃度,并通過抑制鈣通道振幅的峰值進而影響鈣通道行為,使投射前神經(jīng)元突觸前傳遞發(fā)生改變[94]。在對鰷魚、斑馬魚胚胎的酞酸酯染毒研究中也觀察到受試生物的內(nèi)分泌系統(tǒng)和生殖力出現(xiàn)紊亂下降的現(xiàn)象[95-96]。
PAEs被認為是對動物體具有致癌、致畸、致突變效應(yīng)的干擾素[97]。目前,國內(nèi)外對PAEs“三致”效應(yīng)的研究多以動物實驗為認識途徑。Voss等[98]分別以不同劑量的DEHP喂食鼠體,發(fā)現(xiàn)300 mg·kg-1的DEHP暴露劑量可明顯增加老鼠肝臟腫瘤生長率,進一步研究認為這是由于DEHP作為一種過氧化酶體增殖劑(PP)能有效激活肝臟受體α(PPA-Rα)而導(dǎo)致病變。有學(xué)者對咽、鼻的乳膜細胞和外周淋巴細胞進行體外DBP染毒,并用單細胞堿性凝膠電泳方法檢測細胞DNA單鏈斷裂情況,發(fā)現(xiàn)3種細胞的DNA均受到損傷[99]。在一項小鼠DEHP灌胃染毒實驗中,同樣發(fā)現(xiàn)DEHP能導(dǎo)致細胞蛋白質(zhì)—DNA過度交聯(lián),影響DNA的構(gòu)象及功能(轉(zhuǎn)錄、翻譯等),使某些重要基因(如抑癌基因)缺失。秦潔芳[100]觀察了紫紅笛鯛及翡翠貽貝在DBP長期脅迫下的生長表現(xiàn),發(fā)現(xiàn)紫紅笛鯛肝臟細胞質(zhì)出現(xiàn)空泡,少數(shù)細胞核變形且大量脂肪粒在細胞內(nèi)沉積,魚鰓片出現(xiàn)明顯的卷曲腫脹和壞死脫落;翡翠貽貝的SOD及CAT活性受到顯著抑制,內(nèi)臟團和外套膜中的MDA升高明顯,部分殘留氧自由基對貝體產(chǎn)生不可逆損害。Oehlmann等[101]國外學(xué)者也觀察到PAEs對斑馬魚、紡錘水蚤、非洲爪蛙等水生生物的毒性作用主要表現(xiàn)為機體死亡、尾曲、水腫等,并造成內(nèi)分泌系統(tǒng)的功能性紊亂。
PAEs主要是影響體內(nèi)甲狀腺素、類固醇激素及雄性激素的正常機能。一項流行病研究顯示,血清中游離甲狀腺素(T4)、碘甲腺氨酸(T3)濃度水平與DEHP代謝產(chǎn)物MEHP濃度存在關(guān)聯(lián)[102]。Huang等[103]研究了孕婦甲狀腺激素與PAEs暴露環(huán)境的相關(guān)性,統(tǒng)計學(xué)分析表明,F(xiàn)T4和MBP,T4和MBP存在負相關(guān)影響(r=-0.248,P<0.05;r=-0.368,P<0.05),這可能會使孕婦妊娠期間甲狀腺機能衰退。體外試驗表明,DEHP代謝物可抑制FSH刺激的cAMP積累,改變類固醇合成通路中芳香化酶的數(shù)量和活力表現(xiàn),進而阻礙睪酮對雌二醇(E2)的轉(zhuǎn)化。吳紅松[104]將鯉魚放入梯度濃度的DEHP溶液中,暴露時間為20 d,與水和土溫-80對照組相比發(fā)現(xiàn),染毒組魚體的腎臟中超氧化物歧化酶(SOD)、過氧化氫酶(CAT)活性和抗羥自由基、抗超氧陰離子的活力均顯著降低(P< 0.05 或P< 0.01)。有學(xué)者以赤子愛勝蚓為受試生物,運用自然土壤法探究DMP、DEP、DBP對蚯蚓SOD、CAT和AChE的活性影響,結(jié)果表明,3種PAEs對3種酶的影響呈現(xiàn)一定的時間-效應(yīng)關(guān)系,PAEs對CAT的 活性影響最大,SOD 和 AChE 次之,整體來看,DBP對蚯蚓表現(xiàn)出的毒性小于 DMP 和 DEP[105]。盆栽試驗表明,PAEs能有效減低設(shè)施土壤生物含炭量,低量PAEs浸漬下,設(shè)施土壤和大田土壤的脫氫酶活性均有提高,這主要是由于土壤微生物對PAEs的應(yīng)激表達是通過分泌脫氫酶中和毒素抑或是PAEs濃度并未達到酶活性的濃度,而作為碳源被微生物吸收,刺激了土壤微生物分泌脫氫酶[106]。
綜上所述,PAEs作為一種高脂溶性和環(huán)境穩(wěn)定性的新型內(nèi)分泌干擾物越來越受到大眾關(guān)注,雖然PAEs對氣體、水體、土壤等環(huán)境要素造成確定性的污染,其對生態(tài)和健康的危害性也得到多方面的研究實證,但由于PAEs在生產(chǎn)和改性上的難以替代性,現(xiàn)階段只對部分PAEs做了限制使用的處理。從維護環(huán)境安全與人類健康的角度出發(fā),PAEs研究的以下方面仍待完善:
(1)目前,對PAEs的毒害作用多集中在單一酞酸酯種類對小鼠、斑馬魚等模型動物的染毒以及在二級食物鏈中的傳遞研究,對人體影響的實測調(diào)查及復(fù)雜食物網(wǎng)中的積累放大檢測仍然較少??蓪Σ煌殬I(yè)人群開展PAEs聯(lián)合毒性試驗研究,考察多級食物鏈中PAEs在高低營養(yǎng)級間的傳遞行為,統(tǒng)計分析劑量-效應(yīng)及時間-效應(yīng)關(guān)系,系統(tǒng)研究PAEs的人體代謝途徑,關(guān)鍵酶及DNA的表達與調(diào)控,確定人群的健康基準(zhǔn)值。
(2)生物降解技術(shù)是處理PAEs的主要途徑,由于目前關(guān)于PAEs生物降解的文獻多集中在微生物降解條件、降解效率等前期研究上,在對具有協(xié)同降解PAEs作用的混合菌群進行基因和酶的篩選及分子生物學(xué)機制研究方面仍有待加強,以構(gòu)建特異高效基因工程菌群與高級氧化法等處理工藝組合的工程應(yīng)用體系,實現(xiàn)集成系統(tǒng)對PAEs的高效專性降解。
(3)我國各區(qū)域PAEs暴露情況的檢測與統(tǒng)計仍不全面,導(dǎo)致現(xiàn)行的地表水及大氣環(huán)境質(zhì)量標(biāo)準(zhǔn)缺乏對部分PAEs(如DEHP)的環(huán)境標(biāo)準(zhǔn)限值。因此,需系統(tǒng)全面地調(diào)查不同環(huán)境介質(zhì)中的PAEs暴露水平、分布特征及相關(guān)毒理學(xué)參數(shù)并制定科學(xué)的PAEs環(huán)境標(biāo)準(zhǔn)限值;另一方面,雖然對內(nèi)分泌干擾效應(yīng)的評價是環(huán)境法規(guī)的重要依據(jù),但起步研究仍然較晚,且世界上各國家或聯(lián)合體對于內(nèi)分泌干擾物的監(jiān)管數(shù)據(jù)要求和管理決策思路仍存在顯著差異。因此,建立科學(xué)可行,符合國情的內(nèi)分泌干擾效應(yīng)評估機制和環(huán)境標(biāo)準(zhǔn)具有現(xiàn)實意義。
通訊作者簡介:張朝升(1953-),男,教授,博士生導(dǎo)師,研究方向為污水處理理論與技術(shù)研究。
參考文獻(References):
[1] Net S, Sempere R, Delmont A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science and Technology, 2015, 49(7): 4019-4035
[2] Talsness C E, Andrade A J M, Kuriyama S N, et al. Components of plastic: Experimental studies in animals and relevance for human health [J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009, 364(1526): 2079-2096
[3] Jia P, Ma Y, Lu C, et al. The effects of disturbance on hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae after exposure to DEHP [J]. PLoS One, 2016, 11(5): e0155762
[4] Min A, Liu F, Yang X, et al. Benzyl butyl phthalate exposure impairs learning and memory and attenuates neurotransmission and CREB phosphorylation in mice [J]. Food and Chemical Toxicology, 2014, 71: 81-89
[5] Wood R K, Crowley E, Martyniuk C J. Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephalespromelas) following exposure to di-2-ethylhexyl phthalate [J]. Fish Physiology and Biochemistry, 2016, 42: 7-18
[6] Pei X Q, Song M, Guo M, et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments [J]. Atmospheric Environment, 2013, 68(1): 17-23
[7] Wang J, Luo Y, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film [J]. Environmental Pollution, 2013, 180(3): 265
[8] Gao D W, Wen Z D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes[J]. Science of the Total Environment, 2016, 541: 986-1001
[9] Liu H, Cui K, Zeng F, et al. Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China [J]. Marine Pollution Bulletin, 2014, 83(1): 358-365
[10] Amrit K, Inger T, Stefan V, et al. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults [J]. Environment International, 2014, 73: 259-269
[11] 劉慶, 楊紅軍, 史衍璽, 等. 環(huán)境中鄰苯二甲酸酯類(PAEs)污染物研究進展[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2012, 20(8): 968-975
Liu Q, Yang H J, Shi Y X, et al. Research progress on phthalate esters (PAEs) organic pollutants in the environment [J]. Chinese Journal of Eco-Agriculture, 2012, 20(8):968-975 (in Chinese)
[12] Fang C R, Yao J, Zheng Y G, et al. Dibutyl phthalate degradation byEnterobacter, sp. T5 isolated from municipal solid waste in landfill bioreactor [J]. International Biodeterioration and Biodegradation, 2010, 64(6): 442-446
[13] Li L, Sun Q J, Xin S G, et al. Detection of phthalate esters from plastic packaging materials into edible oil by gas chromatography-mass [J]. Applied Mechanics and Materials, 2013, 395-396: 355-358
[14] Blair J D, Ikonomou M G, Kelly B C, et al. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS [J]. Environmental Science & Technology, 2009, 43(16): 6262-6268
[15] Zhang M, Yu X, Wang Y, et al. A highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) by antigen coating for diethyl phthalate analysis in foods [J]. Food Analytical Methods, 2013, 6(4): 1223-1228
[16] Bomehag C G, Lundgren B, Weschler C J, et al. Phthalates in indoor dust and their association with building characteristics [J]. Environmental Health Perspectives, 2005, 113: 1399-1404
[17] Teil M J, Blanchard M, Chevreuil M. Atmospheric fate of phthalate esters in an urban area (Paris -France) [J]. Science of the Total Environment, 2006, 354(354): 212-223
[18] Thuren A, Larsson P. Phthalate esters in the Swedish atmosphere [J]. Environmental Science Technology, 1990, 24(4): 554-559
[19] RIC. Overview of phthalate measurements in air [R]. Kortrijk, Belgium: Research Institute of Chromatography, 2000
[20] 朱媛媛, 田靖, 吳國平, 等. 鞍山市空氣顆粒物中酞酸酯的季節(jié)變化與功能區(qū)差異[J]. 中國環(huán)境監(jiān)測, 2010, 26(4): 9-12
Zhu Y Y, Tian J, Wu G P, et al. Differences of phthalate in different season and functional areas in Liaoning Anshan [J]. Environmental Monitoring in China, 2010, 26(4): 9-12 (in Chinese)
[21] 陳鏐璐. 大氣中氯代及其母體多環(huán)芳烴和PM2.5& PM10中鄰苯二甲酸酯的研究[D]. 上海: 上海大學(xué), 2014: 8-13
Chen L L. Atmospheric chlorinated and their parent polycyclic aromatic hydrocarbons, and PM2.5and PM10associated phthalate in a suburban area of Shanghai, China [D]. Shanghai: Shanghai University, 2014: 8-13 (in Chinese)
[22] 朱振宇, 姬亞芹, 趙靜波, 等. 天津市大氣PM10與降塵中鄰苯二甲酸酯的污染特征及相關(guān)性分析[J]. 環(huán)境污染與防治, 2015, 37(12): 24-28
Zhu Z Y, Ji Y Q,Zhao J B, et al. Pollution characteristic and correlation analysis of PAEs in atmospheric PM10and dust in Tianjin [J]. Environmental Pollution and Control, 2015, 37(12): 24-28 (in Chinese)
[23] 米立杰, 唐建輝. 黃海海洋大氣中鄰苯二甲酸酯類塑化劑的測定與分析[J]. 華北科技學(xué)院學(xué)報, 2016, 13(5):106-110
Mi L J, Tang J H. Determination of phthalate ester plasticizers in the atmosphere of the Yellow Sea [J]. Journal of North China Institute of Science and Technology, 2016, 13(5): 106-110 (in Chinese)
[24] 李婷. 珠江河口水體和沉積物中6種鄰苯二甲酸酯污染及初步風(fēng)險評價[D]. 廣州: 暨南大學(xué), 2014: 47-48
Li T. Pollution levels and risk assessment of 6 priority phthalate esters in water and sediments from estuaries of the Pearl River Delta [D]. Guangzhou: Ji'nan University, 2014: 47-48 (in Chinese)
[25] 張英, 孫繼朝, 陳璽, 等. 東莞地下水PAEs分布特征及來源探討[J]. 環(huán)境污染與防治, 2011, 8: 57-61
Zhang Y, Sun J C, Chen X, et al. The distribution characteristics and source of phthalic acid esters in grounderwater of Dongguang [J]. Environmental Pollution and Control, 2011, 8: 57-61 (in Chinese)
[26] Zhang L, Liang D, Ren L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China [J]. Journal of Environmental Sciences, 2012, 24(2): 335-342
[27] 張澤明, 張洪海, 李建龍, 等. 固相微萃取-氣相色譜-質(zhì)譜聯(lián)用測定海水與沉積物中PAEs類污染物[J]. 分析化學(xué), 2017, 3: 348-356
Zhang Z M, Zhang H H, Li J L, et al. Determination of phthalic acid esters in seawater and sediment by solid-phase microextraction and gas chromatography-mass spectrometry [J]. Chinese Journal of Analytica Chemistry, 2017, 3: 348-356 (in Chinese)
[28] Loraine G A, Pettigrove M E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California [J]. Environmental Science and Technology, 2006, 40(3): 687-695
[29] Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands [J]. Chemosphere, 2005, 59(4): 511-524
[30] Sanchez-avila J, Fernandez-sanjuan M, Vicente J, et al. Development of a multi-residue method for the determination of organic 12 micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(38): 6799-6811
[31] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of phthalate esters and PCBs in a marine ecosystem [J]. Environmental Science and Technology, 2006, 40(11): 3481-3488
[32] 高晨晨. 海水中PAEs類增塑劑的檢測方法及應(yīng)用研究[D]. 青島: 中國海洋大學(xué), 2015: 48-49
Gao C C. Study and application of the method for detecting phthalic acid esters in seawater by stir bar sorptive extraction gas chromatograph-mass spectrometry[D]. Qingdao: Ocean University of China, 2015: 48-49 (in Chinese)
[33] Hu X Y, Wen B, Shan X Q. Survey of phthalate pollution in arable soils in China [J]. Journal of Environmental Monitoring, 2003, 5(4): 649-653
[34] Zhu Y Y, Tian J, Yang H, et al. Phthalate pollution in atmospheric particles and soils of Tianjin and their correlation [J]. Environmental Pollution and Control, 2010, 32(2): 41-45
[35] 楊彥, 于云江, 李定龍, 等. 太湖流域(蘇南地區(qū))農(nóng)業(yè)活動區(qū)人群鄰苯二甲酸酯健康風(fēng)險評估[J]. 中國環(huán)境科學(xué), 2013, 33(6): 1097-1105
Yang Y, Yu Y J, Li D L, et al. PAEs health risk assessment of agriculture area in Taihu Lake Basin (Southern Jiangsu Province) [J]. China Environmental Science, 2013, 33(6): 1097-1105 (in Chinese)
[36] Ying C Q, Hui M C, Hui L Y, et al. The study of PAE sin soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China[J]. Acta Ecologica Sinica, 2005, 25(2): 283-288
[37] Xiong P, Gong X, Deng L. Analysis of PAE pollutants in farm soil and water samples in Nanchang City [J]. Chemistry, 2008, 71(8): 636-640
[38] Wu W, Hu J, Wang J, et al. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography [J]. Science of The Total Environment, 2015, 508: 445-451
[39] Ma T T, Wu L H, Chen L, et al. Phthalate esters contamination in soils and vegetables of plastic film greenhouses of suburb Nanjing, China and the potential human health risk [J]. Environmental Science and Pollution Research, 2015, 22(16): 12018-12028
[40] Peijnenburg W J, Struijs J. Occurrence of phthalate esters in the environment of The Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215
[41] Rhind S M, Kyle C E, Kerr C, et al. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils[J]. Environmental Pollution, 2013, 182(6): 15-27
[42] Li B, Liu R X, Gao H J, et al. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China [J]. Environmental Pollution, 2016, 219: 409-415
[43] 徐懷洲, 宋寧慧, 張圣虎, 等. 駱馬湖PAE是PAEs分布特征及健康風(fēng)險評價[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報, 2017, 10: 928-934
Xu H Z,Song N H,Zhang S H, et al. Distribution characteristics and healthy risk assement of phthalate esters in Lake Luoma [J]. Journal of Ecology and Rural Environment, 2017, 10: 928-934 (in Chinese)
[44] 韓文輝, 趙穎, 黨晉華, 等. 汾河流域PAEs的分布特征及生態(tài)風(fēng)險評價[J]. 環(huán)境化學(xué), 2017, 36(6): 1377-1387
Han W H, Zhao Y, Dang J H, et al. Distribution and ecological risk evaluation of phthalate esters in Fenhe River Basin [J]. Environmental Chemistry, 2017, 36(6): 1377-1387 (in Chinese)
[45] Hassanzadeh N, Sari A E, Khodabandeh S, et al. Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran)[J]. Marine Pollution Bulletin, 2014, 89(1-2):128-135
[46] Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015, 37(1): 83-96
[47] Adeniyi A A, Okedeyi O O, Yusuf K A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun River catchments, Ketu, Lagos, Nigeria [J]. Environmental Monitoring and Assessment, 2011, 172(1-4): 561-569
[48] 李玉雙, 陳琳, 郭倩, 等. 沈陽市新民設(shè)施農(nóng)業(yè)土壤中鄰苯二甲酸酯的污染特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2017, 36(6): 1118-1123
Li Y S, Chen L, Guo Q, et al. Pollution characteristics of phthalate esters in greenhouse agricultural soil in Xinmin, Shenyang City [J]. Journal of Agro-Environment Science, 2017, 36(6): 1118-1123 (in Chinese)
[49] Gibson R, Wang M J, Padgett E, et al. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids [J]. Chemosphere, 2005, 61(9): 1336-1344
[50] Peijnenburg W J, Struijs J. Occurrence of phthalate esters in the environment of The Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215
[51] Rhind S M, Kyle C E, Kerr C, et al. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils [J]. Environmental Pollution, 2013, 182(6): 15-27
[52] Johns L E, Cooper G S, Galizia A, et al. Exposure assessment issues in epidemiology studies of phthalates [J]. Environment International, 2015, 85: 27-39
[53] 鮑佳沁. 食品化妝品中PAEs類累積風(fēng)險評估研究[D]. 上海: 上海海洋大學(xué), 2015: 8-9
Bao J Q. Phthalate concentrations in foods and personal care products and the cumulative exposure [D]. Shanghai: Shanghai Ocean University, 2015: 8-9 (in Chinese)
[54] Koniecki D, Wang R, Moody R P, et al. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure [J]. Environmental Research, 2011, 111(3): 329-336
[55] Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure [J]. Environmental Science and Technology, 2013, 47(24): 14442-14449
[56] Buckley J P, Palmieri R T, Matuszewski J M, et al. Consumer product exposures associated with urinary phthalate levels in pregnant women [J]. Journal of Exposure Science and Environmental Epidemiology, 2012, 22(5): 468-475
[57] Park C, Choi W, Hwang M, et al. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population-Korean National Environmental Health Survey (KoNEHS) 2012~2014 [J]. Science of the Total Environment, 2017, 17: 30154-30157
[58] Kransler K M, Bachman A N, Mckee R H. A comprehensive review of intake estimates of di-isononyl phthalate (DINP) based on indirect exposure models and urinary biomonitoring data [J]. Regulatory Toxicology and Pharmacology, 2012, 62(2): 248-256
[59] Silva M J, Barr D B, Reidy J A, et al. Glucuronidation patterns of commonurinary and serum monoester phthalate metabolites [J]. Archives of Toxicology, 2003, 77: 561-567
[60] Mose T, Mortensen G K, Hedegaard M, et al. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood [J]. Reproductive Toxicology, 2007, 23(1): 83
[61] Albro P W, Thomas R O. Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases [J].Biochimica et Biophysica Acta, 1973, 360: 380-390
[62] Daniel J W, Bratt H. The absorption, metabolism and tissue distribution of di-(2-ethylhexyl) phthalate in rats [J]. Toxicology, 1974, 2: 51-65
[63] 郭佳林, 高曦, 陳婧司, 等. 新生兒胎糞中PAEs代謝物與臍帶血激素水平的關(guān)聯(lián)[J]. 環(huán)境與職業(yè)醫(yī)學(xué), 2017(4): 291-296
Guo J L, Gao X, Chen J S, et al. Phthalate metabolites in meconium and their associations with hormones in cord blood [J]. Journal of Occupational and Environmental Medicine, 2017(4): 291-296 (in Chinese)
[64] 馮艷紅, 張亞, 鄭麗萍, 等. 江蘇省不同地區(qū)設(shè)施菜地土壤-蔬菜中PAEs分布特征[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報,2017(4): 308-316
Feng Y H, Zhang Y, Zheng L P, et al. Distribution characteristics of phthalic acid esters in soil and vegetables under greenhouse in different areas of Jiangsu Province [J]. Journal of Ecology and Rural Environment, 2017(4): 308-316 (in Chinese)
[65] 吳山, 李彬, 梁金明, 等. 汕頭市蔬菜產(chǎn)區(qū)土壤-蔬菜中鄰苯二甲酸( PAEs) 污染分布特征研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2015, 34(10): 1889-1896
Wu S, Li B, Liang J M, et al. Distribution characteristics of phthalic acid esters in soils and vegetables in vegetables producing area of Shantou City, China [J]. Journal of Agro-Environmental Science, 2015, 34(10): 1889-1896 (in Chinese)
[66] Cheng Z, Nie X P, Wang H S, et al. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption[J]. Environmental International, 2013, 54: 75-80
[67] Güven K C, Coban B. Phthalate pollution in fishSardasarda,Engraulisencrasicolus,Mullussurmuletus,Merlangiusmerlangusand shrimpParapenaeuslongirostris[J]. Journal of the Black Sea/Mediterranean Environment, 2013, 19: 185-189
[68] 姜琳琳. PAEs類在普通小球藻-真鯛魚苗食物鏈中積累效應(yīng)研究[J]. 漁業(yè)現(xiàn)代化, 2014(4): 5-10, 16
Jiang L L. Study on the cumulative effect of phthalate esters in the food chain composed ofChlorellavulgaristoPagrosomusmajor[J]. Fishery Modernazation, 2014(4): 5-10, 16 (in Chinese)
[69] Fernández M A, Gómara B, González M J. Occurrence of Phthalates and Their Metabolites in the Environment and Human Health Implications [M]// Emerging Organic Contaminants and Human Health. Berlin: Springer Berlin Heidelberg, 2012: 307-336
[70] 葛建, 李明揆, 林芳, 等. PAEs類環(huán)境激素在草魚(Ctenopharyngodonidellus)臟器中代謝研究[J]. 海洋與湖沼, 2011, 42(4): 549-553
Ge J, Li M G, Lin F, et al. PAEs environmental hormone in grass carp (Ctenopharyngodonidellus) metabolism of organs [J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 549-553 (in Chinese)
[71] 李明揆, 葛建, 林芳, 等. 鄰苯二甲酸二乙酯(DEP)在羅非魚(Oreochromisniloticus×O.aureus)體內(nèi)代謝動力學(xué)和殘留研究[J]. 海洋與湖沼, 2011(1): 137-141
Li M G, Ge J, Lin F, et al. Study on pharmacokinetics and residue of two ethylphthalate (DEP) in tilapia (Oreochromisniloticus×O.aureus) [J]. Oceanologia et Limnologia Sinica, 2011(1): 137-141 (in Chinese)
[72] 李文蘭, 季宇彬, 張大雷, 等. HPLC/MSn法鑒定環(huán)境激素鄰苯二甲酸丁基芐酯在小鼠尿中的代謝產(chǎn)物[J]. 環(huán)境科學(xué), 2007(3): 627-632
Li W L, Ji Y B, Zhang D L, et al. Identification of metabolites of environmental hormone butylbenzyl phthalate in mice urine by liquid chromatography ion trap mass spectrometry [J]. Environment Science, 2007(3): 627-632 (in Chinese)
[73] Meylan W M , Howard P H . Computer estimation of the atmospheric gas phase reaction rate of organic compounds with hydroxyl radicals and ozone [J]. Chemosphere, 1993, 26: 2693-2699
[74] Balabanovich A I, Schnabel W. On the photolysis of phthalic acid dimethyl and diethyl ester: A product analysis study [J]. Journal of Photochemistry and Photobiology A Chemistry, 1998, 113(2): 145-153
[75] Kawaguchi H. Photodecomposition of bis-2-ethylhexyl phthalate [J]. Chemosphere, 1994, 28(8): 1489-1493
[76] 劉寧. 鄰苯二甲酸酯類環(huán)境內(nèi)分泌干擾物的輻解特性及作用機理研究[D]. 上海: 上海大學(xué), 2011: 123-125
Liu N. Radiolytic degradation characteristics and mechanisms studies on phthalate esters environmental endocrine disrupting chemicals[D]. Shanghai: Shanghai University, 2011: 123-125 (in Chinese)
[77] Xu B, Gao N Y, Sun X F, et al. Photochemical degradation of diethyl phthalate with UV/H2O2[J]. Journal of Hazardous Materials, 2007, 139(1): 132-139
[78] 趙磊. 芬頓及紫外光助芬頓深度降解垃圾滲濾液中難降解有機物的研究[D]. 北京: 北京交通大學(xué), 2016: 56-58
Zhao L. Degradation of refractory organics in landfill leachate by Fenton and ultraviolet photo-Fenton processes[D]. Beijing: Beijing Jiaotong University, 2016: 56-58 (in Chinese)
[79] Matteo V. Phthalate esters in freshwaters as markers of contamination sources—A site study in Italy [J]. Environment International, 1997, 23: 337-347
[80] 高旭, 吳振國, 郭勁松, 等. 長江萬州段懸浮泥沙顆粒物對PAEs的吸附特性[J]. 長江流域資源與環(huán)境, 2010(S1): 178-182
Gao X, Wu Z G, Guo J S, et al. Absorption of phthalic acid esters on suspended particulates from the Wanzhou Reach of the Yangtze River [J]. Resource and Environment in the Yangtze Basin, 2010(S1): 178-182 (in Chinese)
[81] Turner A. The behavior of di-(2-ethylhexyl) phthalate in estuaries [J]. Marine Chemistry, 2000, 68: 203-217
[82] Fang C R, Yao J, Zheng Y G, et al. Dibutyl phthalate degradation byEnterobacter, sp. T5 isolated from municipal solid waste in landfill bioreactor [J]. International Biodeterioration and Biodegradation, 2010, 64(6): 442-446
[83] Jin D, Bai Z, Chang D, et al. Biodegradation of di-n-butyl phthalate by an isolatedGordonia, sp. strain QH-11: Genetic identification and degradation kinetics [J]. Journal of Hazardous Materials, 2012, 221-222(2): 80-85
[84] Wu X, Wang Y, Liang R, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolatedAgrobacterium, sp. and the biochemical pathway [J]. Process Biochemistry, 2011, 46(5): 1090-1094
[85] Prasad B, Suresh S. Biodegradation of phthalate esters byVariovorax, sp [J]. APCBEE Procedia, 2012, 1(3): 16-21
[86] Yuan S Y, Huang I, Chang B V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment [J]. Journal of Hazardous Materials, 2010, 184(1): 826-831
[87] 高靜靜, 陳麗瑋, 王宜青, 等. 一株鄰苯二甲酸二(2-乙基己基)酯(DEHP)高效降解菌的篩選及其降解特性[J]. 環(huán)境化學(xué), 2016, 35(11): 2362-2369
Gao J J, Chen L W, Wan Y Q, et al. Isolation, identification of a DEHP-degrading bacterium and its high effective biodegradation characteristics[J]. Environmental Chemistry, 2016, 35(11): 2362-2369 (in Chinese)
[88] Zeng F,Cui K Y,Li X D,et al. Biodegradation kinetics of phthalate esters byPseudomonasfluoresencesFS1 [J]. Process Biochemistry, 2004, 39(9): 1125-1129
[89] Chang B V, Yang C M, Cheng C H, et al. Biodegradation of phthalate esters by two bacteria strains [J]. Chemosphere, 2004, 55(4): 533-538
[90] 韓永和, 何睿文, 李超, 等. PAEs降解細菌的多樣性、降解機理及環(huán)境應(yīng)用[J]. 生態(tài)毒理學(xué)報, 2016, 11(2): 37-49
Hang Y H, He R W, Li C, et al. Phthalic acid esters-degrading bacteria: Biodiversity, degradation mechanisms and environmental applications [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 37-49 (in Chinese)
[91] 馬萍, 楊旭. TSLP和TRPV1通路對PAEs誘發(fā)Allergic March的介導(dǎo)作用[J]. 公共衛(wèi)生與預(yù)防醫(yī)學(xué), 2017(2): 1-5
Ma P, Yang X. The mediating effect of TSLP and TRPV1 pathway on Allergic two induced by phthalates March [J].Journal of Preventive Medicine and Public Health, 2017(2): 1-5 (in Chinese)
[92] 紀(jì)紅蕊, 杜霞, 宋永彬, 等. 鄰苯二甲酸二丁酯的毒性作用及機制[J]. 沈陽工業(yè)大學(xué)學(xué)報, 2017(2): 230-235
Ji H R, Du X, Song Y B, et al. Toxic effect and mechanisms of dibutyl phthalate [J]. Journal of Shenyang University of Technology, 2017(2): 230-235 (in Chinese)
[93] Power A E,McGaugh J L. Phthalic acid amygdalopetal lesion of the nucleus basalis magnocellularis induces reversible memory deficits in rats [J]. Neurobiology of Learning Memory, 2002, 77(3): 372-388
[94] Ran D, Cai S, Wu H, et al. Di (2-ethylhexyl) phthalate modulates cholinergic mini-presynaptic transmission of projection neurons inDrosophilaantennal lobe [J]. Food and Chemical Toxicology, 2012, 50(9): 3291-3297
[95] Guo Y Y, Yang Y J, Gao Y, et al. The impact of long term exposure tophthalic acid esters on reproduction in Chinese rare minnow (Gobiocyprisrarus) [J]. Environmental Pollution, 2015, 203: 130-136
[96] Chen X, Xu S, Tan T, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures [J]. International Journal of Environmental Research and Public Health, 2014, 11: 3156-3168
[97] Qu R J, Feng M B, Sun P, et al. A comparative study onantioxidant status combined with integrated biomarker response inCarassiusauratusfish exposed to nine phthalates [J]. Environmental Toxicology, 2015, 30(10):1125-1134
[98] Voss C, Zerban H, Bannasch P, et al. Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats [J]. Toxicology, 2004, 206(3): 359-371
[99] 楊光濤. DEHP的遺傳毒性和誘導(dǎo)哮喘發(fā)病機理的初步研究[D]. 武漢: 華中師范大學(xué), 2008: 26-28
Yang G T. A primary study on genotoxicity and pathogenesis of asthma induced by DEHP [D]. Wuhan: Central China Normal University, 2008: 26-28 (in Chinese)
[100] 秦潔芳. PAEs類化合物對翡翠貽貝、紅鰭笛鯛和紫紅笛鯛的毒性效應(yīng)[D]. 上海: 上海海洋大學(xué), 2011: 48-51
Qin J F. Phthalic acid esters of two toxic effects of mussel, red snapper and red snapper [D]. Shanghai: Shanghai Ocean University, 2011: 48-51 (in Chinese)
[101] Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife [J]. Philosophical Transactions-Royal Society. Biological Sciences, 2009, 364: 2047-2062
[102] Meeker J D, Calafat A M, Hauser R. Di(2-ethylhexyl)phthalate metabolites may alter thyroid hormone levels in men [J]. Environmental Health Perspectives, 2007, 115(7): 1029
[103] Huang P C, Kuo P L, Guo Y L, et al. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women[J]. Human Reproduction, 2007, 22(10): 2715-2722
[104] 吳紅松. DEHP暴露對鯉魚腎腦生物標(biāo)志物的影響[J]. 生態(tài)毒理學(xué)報,2016, 11(2): 732-741
Wu H S. Effect of diethyl phthalate on the biochemical markers of kidney and brain inCyprinuscarpioLinnaeus [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 732-741 (in Chinese)
[105] 王艷, 馬澤民, 吳石金. 3種PAEs對蚯蚓的毒性作用和組織酶活性影響的研究[J]. 環(huán)境科學(xué), 2014, 35(2): 770-779
Wang Y, Ma Z M, Wu S J. Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida[J]. Environment Science, 2014, 35(2): 770-779 (in Chinese)
[106] 趙輝, 王琳琳, 宋寧寧, 等. 設(shè)施土壤中微生物生物量碳和脫氫酶活性對鎘與PAEs復(fù)合污染的響應(yīng)[J]. 華北農(nóng)學(xué)報, 2017(2): 232-238
Zhao H, Wang L L, Song N N, et al. Effects of soil microbial biomass carbon and dehydrogenase activity in greenhouse soil to Cd-PAEs [J]. Acta Agriculturae Boreali-sinica, 2017(2): 232-238 (in Chinese)