• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electroosmotic Flow of MHD Power Law Al2O3-PVC Nano fluid in a Horizontal Channel:Couette-Poiseuille Flow Model

    2018-06-15 07:32:28ShehzadZeeshanandEllahi
    Communications in Theoretical Physics 2018年6期

    N.Shehzad,A.Zeeshan,and R.Ellahi

    Department of Mathematics and Statistics,FBAS,IIUI,Islamabad 44000,Pakistan

    Nomenclature

    n Power-law index K Consistency index[Pa·s]Cp Specific heat at constant pressure[J·kg?1·K?1] e Electron charge[C]T Dimensional fluid temperatuer[K] J Current density[C·m?3]k Thermal conductivity[W·m?1·K?1] kB Boltzmann constant[mol?1·K?1]F Net body force per unit votumeˉpDimensional pressure[N·m?2]?a,a Lower,upper walls of channel[m] Re Modified Reynolds number g Gravitational acceleration[m·s?2] b Induced magnetic fields V Dimensional fluid velocity field Ex Axial electric field p Dimensionless pressure 2a Total width of channel[m]P Constant pressure gradient Gr Monified Grashof number B0 Uniform transverse magnemic field[T] Br Modified Brinkman number E External electric field M Modified magnetic field U? Dimensional upper wall velocity[m·s?1] n0 Ion density of bulk liquid U Dimensionless upper wall velocity zv Valence of ionsˉuDimensionalˉx component of velocity[m·s?1]CfSkin friciton coefficient u Dimensionless x component of velocity?TAbsolute temperature~u Embedding parameter for velocity Nu Nusselt number~θ Embedding parameter for temperature Greek symbolsˉρeDimensional electric charge density[C·m?3]?Nanoparticle volume fractionμViscosity parameter[N·s·m?2] Φ Viscous dissipation β Volumetric volume expansion coefficient[k?1] ρ Density[kg·m?3]ρe Dimensional electric charge density ε Dielectric constant Γ Electric potential σ Electrical conductivity[S·m?1]ψ EDL potential Ψ Applied electric potential ξ1 Zeta potential at lower wall[V] ξ1 Zeta potential at upper wall[V]θ Dimensionless temperature τ Shear stress[Pa]Subscripts f Fluid p Praticle nf Nano fluid w Wall

    1 Introduction

    Conventional fluids like water,kerosene,ethylene glycol and acetone etc.plays a pivotal role in many scientific,industrial and engineering applications.Their applications are in the field of chemical production,microelectronics,transportation,and air-conditioning.However,these fluids have limited thermal conductivity due to their low heat transfer characteristics.Various procedures have been adopted to enhance their heat transfer ability.A way to overcome this barrier,the enhancement for heat transfer in conventional fluids via inclusion of nanoparticles in common fluids is one of key achievement of recent era.Nano fluid are heat transfer fluids,which are combinations of particles(e.g.,Cu,Ag,TiO2,Al2O3)having size(1 nm–100 nm)suspended in carrier fluid(e.g.,propylene glycol,Kerosene oil,water and ethylene glycol),etc.Choiet al.[1]has made pioneering contribution to nano fluids.Later on,Pak and Cho[2]investigated that by 2.78%inclusion of Al2O3 nanoparticles in water,the heat transfer rate will be enhanced 75%.Further Xuanet al.[3]experimentally observed thermal conductivity enhancement in Cu-water nano fluid.They examined that,when 5%volume fraction of nano-size copper particles are suspended in water then thermal conductivity of nano fluid enhanced and stability remains for more than hours without any interruption.Some recent contributions are made on the said topic[4?10]over diverse geometries.

    In recent years,electro-osmotic flow of power law nano fluid has gained an immense response of researchers,scientist and industrialists due to its enormous engineering applications.For the prediction of fluid flow with non-Newtonian fluids such as pseudo-plastic and dilatant fluids,the power-law model is frequently used.[11]However,the power-law model does not predict the velocity distribution correctly in the region of lower shear rates.Overcome this deficiency modified power law model[12]used to get the more accurate velocity distribution in the region of lower shear rates also for zero shear rate.Electro-kinetic effects are generated,when the ionized fluid moving with respect to a stationary charged surface under an externally applied electric field is process is called Electro-osmosis.The term electro-osmotic was first time reported in an experimental investigation using the application of an electric field porous clay diaphragm by Reuss.[13]Charge developed on the surface of nano-size particles,which are suspended in base fluid,opposite charge ions to that of the particle surface are attracted,because of the developing charged diffuse layer around the particles called electrical double layer.[14]Zeeshanet al.[15]assumed the electrically conducting fluid with uniform magnetic field in nonuniform two-dimensional channel.They observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases.Further,it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.However both Newtonian and non-Newtonian electro-osmotic peristaltic transport models[16?19]in presence of electroosmosis have been reported with and without nano fluids.

    Heat transfer from the material moving continuously in a channel plays a vital role and has many applications in material processing like as continuous casting,metal forming,extrusion,wire and glass fiber drawing and hot rolling etc.[20?21]In such processes,continuously transport heat with the adjacent fluid and the fluid involved may be Newtonian or non-Newtonian and the flow situations encountered can be either laminar or turbulent.An extensive research works about steady laminar and heat transport to a Poiseuille flow in channel with the static walls has been reported by Shah and London[22]for Newtonian fluids and by Irvine and Karni[11]for non-Newtonian fluids.Couette-Poiseuille laminar,steady state heat transfer flow in parallel plates along with axial movement of one plate and pressure gradient has been examined by Hudson and Banko ff,[23]Sestak and Rieger,[24]Bruin,[25]Davis,[26]and El-Ariny and Aziz[27]for Newtonian fluids.A numerical investigation of fully developed non-Newtonian Couette-Poiseuille flow has been done by Davaaet al.,[28]Hayatet al.[29]and Hashemabadiet al.[30]They established that rate of heat transfer at heated wall is increased by increasing the Brinkman number when the flow direction is same as the movement of upper plate,but the reverse behavior can be seen when the flow direction and upper late are opposite.Marin[31]established a concept for micropolar porous media dependent on heat- flux including void age time derivative among the independent constitutive variables.Author indicated that this heat- flux theory becomes a predictive theory of light scattering,sound dispersion,shock wave structure and so on.It now appears concomitant to the kinetic theory of gases and closely related to the mathematical theory of hyperbolic systems.Forced convection MHD fluid flow around two solid circular cylinders in side by side arrangement and wrapped with porous ring has been investigated by Rashidi.[32]Author concluded that the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions.Tripathi[33]discussed the in fluence of viscoelastic behavior,fractional nature of fluid model and transverse magnetic field on peristaltic flow pattern.He established the result that the magnitude of frictional force reduces in very small interval of volumetric flow rate then it increases with increasing magnetic field parameter.

    Literature survey revealed that there is no such investigation has been reported on MHD power law nano fluid passed through the two parallel walls one of them is moving.Therefore,our current innovative study represents interesting phenomenon of Couette-Poiseuille flow of power law nano fluid under the in fluence of MHD.The in fluences of Ohmic dissipation,viscous dissipation,and electro-osmotic are also accounted.The resulting systems of coupled nonlinear ODEs are tackled through analytical method.[34?36]The following sections consist of problem formulation,solution procedure,convergence analysis,results and discussion,conclusion and references.Also the fallouts of velocity,temperature together with skin friction and Nusselt number are brie fly nattered for emerging parameters modied Brinkman number and modied magnetic field at 20-th order iterations.

    2 Problem Analysis

    2.1 Geometry Description

    Consider a steady,laminar,viscous,incompressible,hydromagnetic fully developed boundary layer flow of an electrically conductive power-law non-Newtonian nano fluid passed through a channel containing two parallel straight walls atˉy=±aas shown in Fig.1.Consider,upper channel wall is adiabatic and moving with constant velocityU?,whereas constant heat fluxqwis taken at lower wall(stationary)of channel.

    Fig.1 Schematic diagram of the flow model.

    Fluid is pseudo-plastic or shear-thinning for(01).The power law non-Newtonian shear-thinning fluid(Ostwald-de Waele model)is considered to calculate the shear stresses of the nano fluid.In current study for the nano fluid,polymer solution of different concentration of polyvinyl alcohol in water is used as conventional fluid with nanoparticles of Alumina(Al2O3).The thermophysical parameters of base fluid(PVC)and nanoparticles(Al2O3)are given in Table 1.

    2.2 Power Law Fluids

    In non-Newtonian fluids modeling,the viscous stress is directly but not linearly proportional to the shear rate?ˉu/?ˉy,whose direction is perpendicular to the fluid.The viscosityμfof non-Newtonian fluid is described as:

    Table 1 Thermophysical properties of Polyvinyl chloride(PVC)[37]and Al2O3nanoparticles.[2]

    The shear stress(τ)of a power-law model is defined as:

    In describe model,VandTare the velocity temperature fields of nano fluid.As fluid flow is fully developed,therefore all the flow characteristics are independent of axial position.The net body forceFthat acting on fluid consists of mixed convection,magnetic and electrical effects.The mathematical expression of net body force can be written as:

    The induced magnetic field is neglected for the small magnetic Reynolds number.The Joules heating effects(1/σnf)J·J=σnfB20ˉu2generates due to Lorentz forceJ×B=(?σnfB0ˉu,0,0)andˉρeEis Electrokinetic force produce due to particles charge surface form EDL.Here electric charge densityˉρeis inside electrical double layer(EDL),and for a symmetric univalent dilute electrolyte it can be found as Ref.[38].The electric fieldEis the external electric potential given byE=??Γ,Γ is electric potential define as a linear combination of the externally applied electric potential Ψ and EDL potentialψ,i.e.,Γ = Ψ+ψ.Further,ψand Ψ can be stated by the following equations:[39]

    2.3 Mathematical Formulation

    As nature and behavior of nano fluid model define above,the fluid motion is generated because of axial movement of the upper plate,constant pressure gradient and electric body force produced because of EDL at the channel walls.Electro-osmotic flow(EOF)is producing by presentation of electric field around the channel walls.The governing equations of total conservation of mass,momentum and thermal energy are:

    We assume that both walls of channel have different zeta potentials and made by different materials.The external electric fieldE=(Ex,0,0)is related to the applied electric field and total charge density of nanoparticles,which generates the electrical double layer.Electroosmosis movement in the fluid is caused by electrical double layer.Equation(7),under the Debye-Huckel approximation can be written as:

    The governing Eqs.(3)to Eq.(5)can be described in components form:

    The above set of equations are comprising the following boundary conditions

    The correlation for dynamic viscosity of the nano fluid introduced by Maigaet al.[40]is

    is the Helmholtz-Smoluchowski velocity.By substituting the dimensionless variables deneded in Eq.(22)into Eqs.(13)and(15),we obtain:

    Here it is supposed that the maximum velocity(um=?(a2/2μf)(?p/?x))occurred between two walls,βurepresents the ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity of nano fluid and considerγis a dimensionless constant

    2.4 Shear Stress and Heat Flux

    For non-Newtonian power-law fluid,shear stress can be calculated as:

    The different values of shear stress for polyvinyl alcohol at different concentration are discussed in Table 2.

    Table 2 The properties of PVC solutions[37]and power-law equation.

    whereτwthe sharing stress at the walls is defined as:At upper wall:

    At lower wall:

    The coefficient of skin-friction along the walls is

    The dimensionless skin-friction coefficient respectively at the upper and lower walls are:

    For defining the Nusselt number,usually bulk mean fluid temperatureTmis used relatively as compare to the center line temperature in fully developed flow.Therefore the bulk mean temperature is defined as:

    The mean temperature for dimensionless form can be obtained

    The coefficient of heat transfer is defined as below:

    3 Homotopy Solution of Problem

    For analytical solution of Eqs.(23)and(24),we applied the analytical technique as proposed by Liao.[42]The initial approximationsu0,θ0,which satis fies the boundary conditions given in Eq.(26).

    We construct the homotopy for zero-th order deformation equations as:

    here –qis embedding parameter with 0≤–q≤0.For–q=0 and–q=1,we write

    ~u,~θ,N1,andN2are the non-zero auxiliary parameters and nonlinear operators for the velocity and temperature respectively.The nonlinear operators are

    when embedding parameter–qdiverges from 0 to 1,then velocityu(y,–q)and temperatureθ(y,–q)vary form initial approximationu0(y),θ0(y)to finalu(y),θ(y)solution.By Taylor’s series expansion and Eq.(40)one can get

    Estimate the results forul(y)andθl(y)atl-th order deformation,as follow:

    Linear ordinary differential equations are formed afterlth order deformation,which can be resolved easily by using symbolic computations software like:Matlab,Mupad,Mathematica,andMapleetc.In present studyMathematicais used to solvel-th order deformation equations up to 20-th order approximations.For the best understanding up to second order solutions for velocity and temperature distributions are expressed as:

    CoefficientsF1,F2,F3,F4,F5,F6,F7,E1,E2,E3are given in equations of Appendix A.

    4 Convergence Analysis

    The analytic expressions given by Eq.(43)contain the auxiliary parameters~uand~θ,which gives the convergence region and rate of approximation for HAM.Figure 2 depicts the~-curves for velocity and temperature and estimate the suitable values for interval of convergence.The range of estimated values of~ufor velocity and~θfor temperature are?0.9≤~u≤0 and?1.0≤~θ≤?0.1.

    Fig.2 ~-curves for velocity and temperature.Gr=2.366,Re=442.956,n=0.764(PVC3%),βu=0.3,γ =05,Br=01,M=0.5,κ =10,and ? =3%.

    The residual error at two successive approximations over[0,1]with homotopy analysis method by 20-th order approximations are obtained by using

    Equation(50)gives the minimum error at~u=?0.1009 for velocity and~θ=?0.2006 temperature pro files.Table 3 is exhibited to illustration the convergence of the solution with different order of approximation.The significant values of~uand~θlie in their respective convergence range.

    Table 3 Convergence of series solution when Gr=2.366,βu=0.3,γ =05,Br=01,Re=442.956,n=0.764(PVC3%),M=0.5,κ =10,and ? =3%.

    5 Results and Discussion

    In present discussion,we study the Couette-Poiseuille non-Newtonian power-law nano fluid flow in between two parallel plates.The nano fluid is driven by the constant pressure gradient also with the axial movement of the upper plate and electric body force. Flow and heat transport of power-law nano fluid model among two parallel plates is examined analytically.Lower one is externally heated and upper one is adiabatic.The in fluence of electro-osmotic parameter,ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity,volume concentration of nanoparticles on flow field,modified magnetic parameter,modified Brinkman number and characteristic of heat transfer are elaborated through graphically in Figs.3–10.The following discussion and results are obtained by using appropriate values of emerging parameters:Gr=2.366,Re=442.956,n=0.764(PVC3%),?=0.03,M=2,βu=0.3,γ=10,κ=8,U=1,andBr=1.

    Fig.3 (a)Impact of magnetic parameter on fluid velocity.(b)Impact of magnetic parameter on fluid temperature.

    The effects of modified magnetic parameterMon velocity and temperature distribution of nano fluid are displayed in Fig.3.From these plots,it is investigated that the velocity and temperature are decelerate and accelerate in Figs.3(a)and 3(b)respectively when the magnetic parameter increased.As the transverse magnetic field applied on the electrically conducted nano fluid normal to the flow direction,then it creates a drag force called Lorentz force in the opposite direction of flow.This drag force increases the strength of magnetic field and as a result this increment resist the fluid flow,therefore velocity of fluid decreased while the temperature of fluid increased.Impact of nanoparticles volume fraction?for velocity and temperature are exposed in Fig.4.It can observe from Fig.4(a),velocity between the channel walls is reducing as compared to the pure fluid(?=0%).It is due to when the nanoparticles substitute in carrier fluid then the density of the carrier fluid increases,therefor nano fluid becomes denser,so this substitution of nanoparticles in carrier fluid slow down the movement of nano fluid.Temperature of nano fluid accelerate with the increase of nanoparticles volume fraction as shown in Fig.4(b).Physically,thermal conductivity of nano fluid increased with the increase of nanoparticles volume fraction.

    Fig.4 (a)Impact of nanoparticle volume fraction on fluid velocity.(b)Impact of nanoparticle volume fraction on fluid temperature.

    Different concentrations of PVC on the flow field and temperature field of nano fluid are elaborates in Fig.5.From Fig.5(a),it is noted that the velocity pro file of nano fluid enhanced when the concentration of PVC in fluid increased.The temperature pro file for different concentrations of PVC is elaborate in Fig.5(b).From this plot it can clearly be detected that the decrement in temperature is occurred between the walls of channel.As theβurepresents the ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity of nano fluid.The effects of this ratio displayed for nano fluid flow and thermal distribution in Fig.6.It can clearly observe in Fig.6(a)that an increment in Helmholtz-Smoluchowski electro-osmotic velocity as compared to maximum velocity,the flow of nano fluid near the heated wall overshoot and reaches its maximum value at the wall of the channel.It is further seen that up to a certain height of the channel there is no signicant changes in the fluid velocity with increase inβu.Whereas,increase in electro-osmotic velocity little bit change occurs in temperature distribution at the heated wall as shown in Fig.6(b).Impact of electro-osmotic parameterκon the fluid flow and temperature pro file is exposed in Fig.7.It can be observed in Fig.7(a)for larger value ofκwill increase the fluid flow.This is because that the velocity pro files for biggerκwill exhibit thinner EDL layers and consequently larger velocity gradients.The in fluence ofκon dimensionless temperature pro file in the absence of Joule heating is examined in Fig.7(b).It is noted that for pseudo-plastic(shear-thinning fluid i.e.n<1)an increase in dimensionless electro-osmotic parameterκis accompanied by an increase in dimensionless temperature distribution.

    Fig.5(a)Impact of PVC concentration on fluid velocity.(b)Impact of PVC concentration on fluid temperature.

    The in fluence of modified Brinkman numberBrandγconstant on the temperature is shown in Fig.8.It is cleared from Fig.8,for the increasing values of modified Brinkman number,the curves of energy pro file drop down,which infers thatBrrises the wall temperature as compare to bulk mean temperature.This is due to fact that fewer energy is transported adjacent to the walls by the fluid flow rather than the core area,which is fallouts of higher values of temperature near the wall area.

    Fig.6 (a)Impact of βuon fluid velocity.(b)Impact of βuon fluid temperature.

    Increasing effects on Nusselt number due to increase of nanoparticles volume fraction and modified Brinkman number are shown in Fig.9.Results show that there is enhancement in temperature fieldθmfor larger values of nanoparticle volume fraction.The impact of Nusselt number w.r.t the ratio of Helmholtz-Smoluchowski electroosmotic velocity to maximum velocity of nano fluidβuand electro-osmotic parameterκportray in Fig.10.It is inspiring to observe that the Nusselt number decreases in the fluid layer closer to the heated wall.The reason is that,heat is shifted from the heated plate to the fluid and from the fluid to the isolated plate.Table 4 represents the numerical results of modified Brinkman number,volume concentration of nanoparticles on flow field,modified magnetic field parameter,ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity and electro-osmotic parameter on skin friction coefficient.Result noted that the Skin friction at moving isolated wall decreases with the increase of modified magnetic parameter and modified Brinkman number,while increases with the increase of electro-osmotic parameter and ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity.

    Fig.7 (a)Impact of electro-osmotic parameter on fluid velocity.(b)Impact of electro-osmotic parameter on fluid temperature.

    Fig.8 Impact of Brinkman number Br on fluid temperature.

    Fig.9 Impact of Br w.r.t ? on Nusselt number.

    Fig.10 Impact of κ w.r.t βuon Nusselt number.

    6 Conclusions

    The present communication addresses the Couette-Poiseuille power law Al2O3-PVC nano fluid flow between two parallel plates,in which upper plate is moving with constant velocity.The in fluences of magnetic field,mixed convection and electrical double layer(EDL)are incorporated in momentum transfer.The energy distribution along with the joule heating and viscous dissipation are also considered.The velocity of the nano fluid is generated due to constant pressure gradient in axial direction.The flow problem is first modeled and then transformed into dimensionless form via appropriate similarity transformation.Homotopy analysis method(HAM)is utilized to tackle the resulting dimensionless flow problem.The impact of sundry parameters on fluid velocity,temperature distribution,skin friction coefficient and Nusselt number are expressed for shear-thinning nano fluid through figures.The key outcomes of the problem can be comprehended as follows:

    (i)It is perceived that the velocity of nano fluid decelerate by increasing the values of modified magnetic parameter and nanoparticles volume fraction,whereas the temperature pro file is increased by increasing the said parameters.

    (ii) Thevelocity ofnon-Newtonian power-law nano fluid enhanced as concentration of PVC rise up,while opposite trend shows for temperature distribution.

    (iii) The flow and temperature are the same enlarged behavior for increasing the ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity and electro-osmotic parameter.

    (iv)Skin friction at externally heated wall increases with the increase of nanoparticles volume fraction and modified Brinkman number,while decreases with the increase of modified magnetic parameter,electro-osmotic parameter and ratio of Helmholtz-Smoluchowski electroosmotic velocity to maximum velocity.

    (v)Skin friction at moving isolated wall decreases with the increase of modified magnetic parameter,nanoparticles volume fraction and modified Brinkman number,while increases with the increase of electro-osmotic parameter and ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity.

    (vi)Nusselt number at heated wall decreases with the increase of electro-osmotic parameter,ratio of Helmholtz-Smoluchowski electro-osmotic velocity to maximum velocity,nanoparticles volume fraction and modified Brinkman number,while increases with the increase of modified magnetic parameter.

    Table 4 Skin friction coefficient Cffor several of Br,?,M,βuand κ with n=0.764(PVC 3%)at both walls.

    Appendix A

    Coefficents of polynomial equation(48).

    whereA2=(123?2+7.3?+1),B2=(4.97?2+2.72?+1),A3,A4andB1are defined in Eq.(25).

    [1]S.U.S.Choi,Enhancing Thermal Conductivity of Fluids with Nanoparticles,eds.D.A.Siginer and H.P.Wang,Developments and Applications of Non-Newtonian Flows,ASME,New York 66(1995)99.

    [2]B.C.Pak and Y.I.Cho,Exp.Heat.Transf.11(1998)151.

    [3]Y.Xuan and Q.Li,Int.J.Heat Fluid Fl.21(2000)58.

    [4]M.M.Bhatti,A.Zeeshan,and R.Ellahi,Microvascular Res.110(2017)32.

    [5]N.Shehzad,A.Zeeshan,R.Ellahi,and K.Vafai,J.Mol.Liq.222(2016)446.

    [6]S.Rashidi,J.A.Esfahani,and R.Ellahi,Appl.Sci.7(2017)431.

    [7]M.Hassan,A.Zeeshan,A.Majeed,and R.Ellahi,J.Magn.Magn.Mater 443(2017)36.

    [8]S.Rashidi,S.Akar,M.Bovand,and R.Ellahi,Renew.Energ.115(2018)400.

    [9]N.Ijaz,A.Zeeshan,M.M.Bhatti,and R.Ellahi,J.Mol.Liq.250(2018)80.

    [10]D.Tripathi,A.Sharma,and O.A.Beg,Int.J.Heat Mass Transf.111(2017)138.

    [11]T.F.Irvine and J.Karni,Non-Newtonian Fluid Flow,Handbook of Single-Phase Convective Heat Transfer,(1987)20.

    [12]R.P.Chhabra and J.F.Richardson,Non-Newtonian Flows in the Process Industries:Fundamentals and Engineering Applications,Butterworth-Heingmann,1sted.,(1999).

    [13]F.F.Reuss,Memoires de la Societe Imperiale des Naturalistes de Moscou.2(1809)327.

    [14]R.F.Probstein and P.C.Renaud,Quanlification of Fluid and Chemical Flow in Electrokinetics,Seattle,Wash.(1986)4.

    [15]A.Zeeshan,M.M.Bhatti,N.S.Akbar,and Y.Sajjad,Commun.Theor.Phys.68(2017)103.

    [16]D.Tripathi,A.Sharma,O.A.Beg,and A.Tiwari,J.Therm Sci.Eng Appl.9(2017)410.

    [17]D.Tripathi,R.Jhorar,O.A.Beg,and A.Kadir,J.Mol Liq.236(2017)358.

    [18]D.Tripathi,A.Yadav,and O.A.Beg,Eur Phys.J.Plus.132(2017)173.

    [19]J.Prakash,A.Sharma,and D.Tripathi,J.Mol.Liq.249(2018)843.

    [20]R.Viskanta,The 6th International Symposium on Tragnsport Phenomena in Thermal Enaineering,Seoul,Korea(1992).

    [21]B.H.Kang and Y.Jaluria,J.Thermophys.Heat Tr.8(1994)546.

    [22]R.K.Shah and A.L.Londan,Laminar Flow Forced Convection in Ducts:A Source Took for Compact Heat Exchanger Analytical Data,Academic Press,New York(2014).

    [23]J.L.Hudson and S.G.Banko ff,Chem.Eng.Sci.20(1965)415.

    [24]J.Sestak and F.Rieger,Int.J.Heat Mass Transf.12(1969)71.

    [25]S.Bruin,Int.J.Heat Mass Transf.15(1972)341.

    [26]E.J.Davis,Can.J.Chem.Eng.51(1973)562.

    [27]A.El-Ariny and A.Aziz,ASME J.Heat Transf.98(1976)427.

    [28]G.Davaa,T.Shigechi,and S.Momoki,Int.Commun.Heat Mass.31(2004)663.

    [29]T.Hayat,M.Khan,and S.Asghar,Acta Mech.168(2004)213.

    [30]S.H.Hashemabadi,S.G.Etemad,and J.Thibault,Int.J.Heat Mass Transf.47(2004)3985.

    [31]M.Marin,Meccanica.51(2016)1127.

    [32]S.Rashidi,J.A.Esfahani,S.M.Valipour,and M.Bovand,I.Pop,lnt.J.Numer.Method H.26(2016)1416.

    [33]D.Tripathi,J.Int.Acad.Chys.Sci.19(2017)245.

    [34]R.Ellahi,S.U.Rahmsn,S.Nadeem,and K.Vafai,Commun.Theor.Phys.63(2015)353.

    [35]K.Maqbool,A.Slhaio,N.Manzoor,and R.Ellahi,Commun.Theor.Phys.66(2016)547.

    [36]R.Ellahi,M.M.Bhatti,C.Fetecau,and K.Vafai,Commun.Theor.Phys.65(2016)66.

    [37]R.Ellahi,M.Hassan,and A.Zeeshan,Therm Sci.20(2016)2015.

    [38]R.F.Probstein,Physicochemical Hdyrodynamics:An Introduction,John Wiley&Sons,New York(1974).

    [39]X.Wang,H.Qi,B.Yu,et al.,Commun.Nonlinear Sci.50(2017)77.

    [40]S.E.B.Maiga,S.J.Palm,C.T.Nguyen,et al.,Int.J.Heat Fluid Fl.26(2005)530.

    [41]S.E.B.Maiga,N.C.Tam,N.Galanis,et al.,Int.J.Numer Method Heat Fluid Fl.16(2006)9.

    [42]S.J.Liao,The Proposed Homotopy Analysis Technique for the Solution of Nonlinear,Problems,Ph.D Thesis,Shanghai Jiao Tong University,Shanghai(1992).

    久久精品影院6| 在线免费观看的www视频| 日本av手机在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 天堂中文最新版在线下载 | 国产毛片a区久久久久| 亚洲精品456在线播放app| 日本一二三区视频观看| 亚洲国产欧美人成| 免费不卡的大黄色大毛片视频在线观看 | 亚洲18禁久久av| 色噜噜av男人的天堂激情| 两个人的视频大全免费| 国产精品一区二区在线观看99 | 欧美极品一区二区三区四区| 国产人妻一区二区三区在| 女人十人毛片免费观看3o分钟| 中文精品一卡2卡3卡4更新| 日韩人妻高清精品专区| 伦理电影大哥的女人| 麻豆成人av视频| 国产伦理片在线播放av一区| 国产淫语在线视频| 精品久久久久久久久久久久久| 免费看av在线观看网站| 国产片特级美女逼逼视频| 国产成人a∨麻豆精品| 一二三四中文在线观看免费高清| 深爱激情五月婷婷| 久久精品久久久久久噜噜老黄 | 亚洲精品国产av成人精品| 岛国在线免费视频观看| 91久久精品国产一区二区三区| 亚洲国产欧美人成| 亚洲精品色激情综合| 亚洲精品日韩在线中文字幕| 22中文网久久字幕| 国产乱人视频| 国产精品国产三级专区第一集| 欧美高清成人免费视频www| 午夜精品国产一区二区电影 | 国产午夜精品论理片| 国产麻豆成人av免费视频| 精品久久国产蜜桃| 国产三级中文精品| 身体一侧抽搐| 只有这里有精品99| 国产三级在线视频| 日本免费一区二区三区高清不卡| 国内少妇人妻偷人精品xxx网站| 久久欧美精品欧美久久欧美| 三级国产精品欧美在线观看| 亚洲国产高清在线一区二区三| 精品国产一区二区三区久久久樱花 | 日韩亚洲欧美综合| 99久久精品国产国产毛片| 青春草国产在线视频| 亚洲欧美精品综合久久99| 免费看日本二区| 老师上课跳d突然被开到最大视频| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 一级毛片aaaaaa免费看小| 日本熟妇午夜| 免费看光身美女| 亚洲av日韩在线播放| 国产精品福利在线免费观看| 久久精品久久久久久噜噜老黄 | 亚洲精品乱码久久久v下载方式| 国产成人a区在线观看| 欧美人与善性xxx| 99视频精品全部免费 在线| 日本黄大片高清| 午夜福利网站1000一区二区三区| 国产极品精品免费视频能看的| 日韩精品青青久久久久久| 2021天堂中文幕一二区在线观| 99久国产av精品| 一本一本综合久久| 99久久精品国产国产毛片| 国产一级毛片在线| 精品人妻一区二区三区麻豆| 又爽又黄a免费视频| 久久久a久久爽久久v久久| 在线播放无遮挡| 亚洲经典国产精华液单| 久久精品91蜜桃| 精品一区二区三区人妻视频| 欧美精品一区二区大全| 美女大奶头视频| 亚洲av免费在线观看| 久久99热这里只频精品6学生 | 亚洲国产精品国产精品| 97超碰精品成人国产| 欧美激情久久久久久爽电影| 女人久久www免费人成看片 | 国产国拍精品亚洲av在线观看| 国产精品一及| 亚洲av福利一区| 嫩草影院新地址| 男插女下体视频免费在线播放| 老司机福利观看| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 男女下面进入的视频免费午夜| 91久久精品国产一区二区三区| 亚洲最大成人手机在线| 久久久久性生活片| or卡值多少钱| 午夜老司机福利剧场| 亚洲一区高清亚洲精品| 亚洲精品一区蜜桃| 国产日韩欧美在线精品| 看免费成人av毛片| 亚洲av二区三区四区| 日本黄大片高清| 97人妻精品一区二区三区麻豆| 国产真实伦视频高清在线观看| 日本wwww免费看| 精品久久国产蜜桃| 午夜福利在线观看吧| 少妇人妻精品综合一区二区| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 国产精品.久久久| 全区人妻精品视频| 国内少妇人妻偷人精品xxx网站| 日本五十路高清| 亚洲av.av天堂| 视频中文字幕在线观看| 亚洲av免费高清在线观看| 亚洲最大成人手机在线| 成人二区视频| 国产午夜精品一二区理论片| 国内精品一区二区在线观看| 麻豆成人av视频| 两个人的视频大全免费| 亚洲av免费在线观看| av卡一久久| 色视频www国产| 日韩一区二区视频免费看| 最近中文字幕2019免费版| 久久99精品国语久久久| 精品久久久久久久久亚洲| 欧美性感艳星| 三级毛片av免费| 青春草视频在线免费观看| 你懂的网址亚洲精品在线观看 | 色播亚洲综合网| 少妇熟女欧美另类| 日本三级黄在线观看| 欧美不卡视频在线免费观看| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美人成| 亚洲欧美清纯卡通| 国产精品熟女久久久久浪| 亚洲av不卡在线观看| 国产亚洲精品av在线| av在线观看视频网站免费| 国产亚洲午夜精品一区二区久久 | 精品久久久噜噜| 国产高清不卡午夜福利| 国内揄拍国产精品人妻在线| 深爱激情五月婷婷| 美女cb高潮喷水在线观看| 欧美xxxx性猛交bbbb| 国产精品永久免费网站| 国产淫语在线视频| 少妇高潮的动态图| 边亲边吃奶的免费视频| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| 特大巨黑吊av在线直播| 免费一级毛片在线播放高清视频| 18+在线观看网站| 成人毛片a级毛片在线播放| 五月伊人婷婷丁香| 国产黄a三级三级三级人| 成年女人永久免费观看视频| 大香蕉97超碰在线| 亚洲精品乱码久久久v下载方式| 欧美人与善性xxx| 22中文网久久字幕| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清专用| 国产乱来视频区| 日韩视频在线欧美| 日本五十路高清| 六月丁香七月| 国产精品99久久久久久久久| 色哟哟·www| 国产精品久久久久久久久免| 精品国产露脸久久av麻豆 | 免费看美女性在线毛片视频| 国产免费又黄又爽又色| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 亚洲最大成人中文| 国产亚洲午夜精品一区二区久久 | 桃色一区二区三区在线观看| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 在线播放国产精品三级| 亚洲av中文av极速乱| 男女视频在线观看网站免费| 国产精品电影一区二区三区| 亚洲国产精品专区欧美| 又爽又黄无遮挡网站| 国产av码专区亚洲av| 一级毛片电影观看 | 只有这里有精品99| 成人av在线播放网站| 日本熟妇午夜| 舔av片在线| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 中文字幕av成人在线电影| 欧美激情在线99| 看片在线看免费视频| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 国内精品美女久久久久久| av在线天堂中文字幕| 国产精品麻豆人妻色哟哟久久 | 一夜夜www| 国产日韩欧美在线精品| 亚洲av男天堂| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 99久久精品一区二区三区| www日本黄色视频网| 中文乱码字字幕精品一区二区三区 | 伦理电影大哥的女人| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久 | 69av精品久久久久久| 可以在线观看毛片的网站| 精品久久久久久电影网 | 少妇被粗大猛烈的视频| 51国产日韩欧美| 中文亚洲av片在线观看爽| 日韩成人av中文字幕在线观看| 国产成人a区在线观看| 男人舔女人下体高潮全视频| 国产精品一区www在线观看| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 国产一区有黄有色的免费视频 | 亚洲精品色激情综合| 99热这里只有是精品在线观看| 免费观看在线日韩| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| av在线观看视频网站免费| 国产老妇伦熟女老妇高清| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 亚洲在线观看片| 午夜a级毛片| 三级国产精品片| 两个人的视频大全免费| 99久久精品国产国产毛片| 高清视频免费观看一区二区 | 男女啪啪激烈高潮av片| 中文欧美无线码| 天天躁日日操中文字幕| 午夜福利成人在线免费观看| 国语自产精品视频在线第100页| 日韩av不卡免费在线播放| 亚洲国产欧洲综合997久久,| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 国产在视频线精品| 99热精品在线国产| 只有这里有精品99| av国产久精品久网站免费入址| 欧美成人午夜免费资源| 女人久久www免费人成看片 | 久久99热这里只频精品6学生 | 欧美日韩国产亚洲二区| 精品人妻偷拍中文字幕| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 国产在视频线精品| 女人被狂操c到高潮| 久久这里有精品视频免费| av播播在线观看一区| 一级毛片我不卡| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 国产又色又爽无遮挡免| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 一本一本综合久久| 久久久久久久久久成人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲真实伦在线观看| 我的女老师完整版在线观看| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 色网站视频免费| 在线免费观看的www视频| 国产精品熟女久久久久浪| 亚洲人成网站在线观看播放| 婷婷色麻豆天堂久久 | 色5月婷婷丁香| 看非洲黑人一级黄片| 国语对白做爰xxxⅹ性视频网站| 大又大粗又爽又黄少妇毛片口| 午夜日本视频在线| 丝袜美腿在线中文| 午夜精品一区二区三区免费看| av播播在线观看一区| videossex国产| 欧美一级a爱片免费观看看| 免费看a级黄色片| 午夜老司机福利剧场| 赤兔流量卡办理| 色噜噜av男人的天堂激情| 久久久久网色| 日本熟妇午夜| 九色成人免费人妻av| 国产一级毛片在线| 日韩一本色道免费dvd| 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看| 一边摸一边抽搐一进一小说| 欧美日韩一区二区视频在线观看视频在线 | 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 国产在视频线精品| 麻豆久久精品国产亚洲av| 国产精品熟女久久久久浪| 国产一级毛片七仙女欲春2| 亚洲四区av| 国内精品一区二区在线观看| 欧美成人a在线观看| 一个人看的www免费观看视频| 免费搜索国产男女视频| 最近中文字幕2019免费版| 一边摸一边抽搐一进一小说| 亚洲第一区二区三区不卡| 国内精品宾馆在线| 欧美一区二区精品小视频在线| 国产片特级美女逼逼视频| 永久免费av网站大全| 好男人在线观看高清免费视频| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 女人被狂操c到高潮| 日本色播在线视频| 亚洲国产精品久久男人天堂| 高清日韩中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 国产成人免费观看mmmm| 观看免费一级毛片| 国产精品一区二区三区四区久久| 亚洲人成网站在线播| 久久精品夜夜夜夜夜久久蜜豆| 特大巨黑吊av在线直播| 精品一区二区免费观看| 国产日韩欧美在线精品| 丰满乱子伦码专区| 国产伦理片在线播放av一区| 女人十人毛片免费观看3o分钟| 女人久久www免费人成看片 | 久久久午夜欧美精品| 免费黄色在线免费观看| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲图色成人| 亚洲自偷自拍三级| 成人欧美大片| 舔av片在线| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 看十八女毛片水多多多| 毛片女人毛片| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 亚洲欧美精品专区久久| 欧美高清性xxxxhd video| 久久亚洲精品不卡| 亚洲人成网站高清观看| 成人特级av手机在线观看| 中文资源天堂在线| 色播亚洲综合网| 国产老妇女一区| 国内精品宾馆在线| 婷婷色麻豆天堂久久 | 美女黄网站色视频| av专区在线播放| 我要看日韩黄色一级片| 国产毛片a区久久久久| av卡一久久| 日本黄色视频三级网站网址| 亚洲人与动物交配视频| 91av网一区二区| 高清毛片免费看| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 两个人视频免费观看高清| 亚洲成色77777| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 久久久久免费精品人妻一区二区| 在线免费十八禁| 日韩国内少妇激情av| 国产视频首页在线观看| 免费人成在线观看视频色| 美女黄网站色视频| 日本三级黄在线观看| 免费看a级黄色片| 国产黄色视频一区二区在线观看 | 国产精品精品国产色婷婷| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 欧美成人午夜免费资源| 我的女老师完整版在线观看| 联通29元200g的流量卡| 青春草亚洲视频在线观看| 久久久久国产网址| 午夜福利在线观看吧| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 亚洲欧美日韩无卡精品| 高清日韩中文字幕在线| 国产成人精品一,二区| 男女国产视频网站| 两性午夜刺激爽爽歪歪视频在线观看| av卡一久久| 日本黄大片高清| 韩国av在线不卡| 欧美bdsm另类| 国产在视频线在精品| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 观看美女的网站| 国产毛片a区久久久久| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 欧美一区二区亚洲| 国产精品1区2区在线观看.| 日韩亚洲欧美综合| 人人妻人人澡欧美一区二区| 九九爱精品视频在线观看| 国产精品一区二区三区四区久久| 亚洲成av人片在线播放无| 99国产精品一区二区蜜桃av| 亚洲电影在线观看av| 久久人人爽人人片av| 男女下面进入的视频免费午夜| 99热这里只有是精品50| or卡值多少钱| 女人久久www免费人成看片 | 91aial.com中文字幕在线观看| av线在线观看网站| 床上黄色一级片| 内射极品少妇av片p| 一区二区三区乱码不卡18| 中文天堂在线官网| 久久草成人影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 性色avwww在线观看| 一区二区三区高清视频在线| 国产精品国产三级国产专区5o | 久久这里有精品视频免费| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99 | 老司机福利观看| 亚洲精品色激情综合| 久久久久免费精品人妻一区二区| 亚洲五月天丁香| 久久热精品热| 午夜福利成人在线免费观看| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片| 一区二区三区免费毛片| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 97超视频在线观看视频| 久久久久久久久中文| av卡一久久| 国产乱人视频| 一级av片app| 亚洲自偷自拍三级| 欧美+日韩+精品| 最后的刺客免费高清国语| 午夜日本视频在线| av线在线观看网站| 男女国产视频网站| 人人妻人人澡人人爽人人夜夜 | 国产精品蜜桃在线观看| 日韩欧美三级三区| 在线播放无遮挡| 午夜老司机福利剧场| 汤姆久久久久久久影院中文字幕 | 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 国产极品精品免费视频能看的| 亚洲一区高清亚洲精品| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 国产亚洲av嫩草精品影院| 亚洲成人精品中文字幕电影| 又黄又爽又刺激的免费视频.| 深爱激情五月婷婷| 亚洲电影在线观看av| 干丝袜人妻中文字幕| av免费在线看不卡| 欧美日韩国产亚洲二区| 国产精华一区二区三区| 国产一区二区三区av在线| 亚洲在线自拍视频| 69人妻影院| 国内精品美女久久久久久| 极品教师在线视频| 国产高清视频在线观看网站| 亚洲最大成人中文| 国产精品久久久久久精品电影小说 | 久99久视频精品免费| 精品久久久久久久久亚洲| 国产精品电影一区二区三区| 久久韩国三级中文字幕| 男人舔奶头视频| 亚洲不卡免费看| 噜噜噜噜噜久久久久久91| 九九在线视频观看精品| 干丝袜人妻中文字幕| 亚洲av福利一区| 国产精品国产高清国产av| 日韩亚洲欧美综合| 色噜噜av男人的天堂激情| 成人午夜精彩视频在线观看| 一个人观看的视频www高清免费观看| 日韩av不卡免费在线播放| 尤物成人国产欧美一区二区三区| 亚洲av电影在线观看一区二区三区 | 久久人妻av系列| 校园人妻丝袜中文字幕| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| av.在线天堂| 欧美成人精品欧美一级黄| АⅤ资源中文在线天堂| 国产精品国产高清国产av| 午夜激情欧美在线| 免费av毛片视频| 特级一级黄色大片| 成人av在线播放网站| 日韩制服骚丝袜av| av在线亚洲专区| 国产老妇伦熟女老妇高清| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 欧美成人一区二区免费高清观看| 国产极品天堂在线| 欧美一级a爱片免费观看看| 色播亚洲综合网| 国产亚洲5aaaaa淫片| 亚洲av成人精品一区久久| 狠狠狠狠99中文字幕| 亚洲精品乱码久久久久久按摩| 观看免费一级毛片| 欧美zozozo另类| 日本五十路高清| 欧美97在线视频| 99九九线精品视频在线观看视频| 大香蕉久久网| 日韩欧美三级三区| 少妇熟女欧美另类| eeuss影院久久| 国产大屁股一区二区在线视频| 精品午夜福利在线看| 日日摸夜夜添夜夜添av毛片| 一个人免费在线观看电影| 老司机影院毛片| 熟女人妻精品中文字幕| 国产午夜精品久久久久久一区二区三区| 欧美高清性xxxxhd video| 长腿黑丝高跟| 亚洲欧美成人精品一区二区|