• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Treatment for Some Periodic Schr¨odinger Operators II:The Wave Function

    2018-06-15 07:32:26WeiHe賀偉
    Communications in Theoretical Physics 2018年6期

    Wei He(賀偉)

    School of Electronic Engineering,Chengdu Technological University,Chengdu 611730,China

    1 Introduction

    In the previous paper Ref.[1]we study how the Floquet theory manifests in the multiple asymptotic spectral solutions of some periodic Schr¨odinger operators.We have only studied the eigenvalue aspect of these solutions.Following this method,it is very convenient to derive the corresponding asymptotic wave functions,we present the results in this paper.We focus on our canonical examples:the Mathieu equation and the Lame equation,which are the most widely used in periodic spectral problem.Our main conclusion are made for elliptic potentials,but as we have explained,to collect evidences for the proposals a crucial consistent requirement is that the solutions of the Lame equation must reduce to corresponding solutions of the Mathieu equation.Therefore the Mathieu equation,which is much better understood,is included here as a reference example.Unlike in Ref.[1],in this paper we do not use the ellipsoidal wave equation as the example for the elliptic potential as it would lead to lengthly formulae for wave functions,instead the wave functions of Lame equation are already enough for our purpose.

    In Sec.2 we derive the wave functions for large energy(weak coupling)perturbation.In Sec.3 we derive the wave functions for small energy(strong coupling)perturbation.Some wave functions have been studied before,we brie fly comment the old materials where earlier treatments can be found.In Sec.4 we explain how the eigenfunctions are related to supersymmetric gauge theory,in the context of Gaueg/Bethe correspondence.[2]

    The conclusion of this paper is that the wave functions give further evidence for the relations between multiple asymptotic solutions and the Floquet property associated with multiple periods.Among the wave functions,the eigenfunction(43)is a new solution.

    2 Large Energy Wave Function

    2.1 The Floquet Wave Function

    As we have shown previously,the large energy perturbation can be carried out using a method from KdV theory,[3?4]the wave function is given by

    v?(x)are given by the KdV Hamiltonian densities.[4]

    The dispersion relationλ(ν),whereνis the Floquet exponent,is obtained by the classical Floquet theory,

    The relations(3)and(4)give a complete perturbative solution for large energy.

    2.2 Mathieu Equation

    The potential for the Mathieu equation is

    It is clear that withλas the expansion parameter,the coefficients ofλ??/2are not necessary periodic functions.However,the wave functions must satisfy the Floquet property,this is made clear by the following parameter change using the eigenvalue expansion.

    The large energy dispersion relation is a classic result,see for example Refs.[5–8].The relation(4)can be used to compute,it is

    Now the coefficients ofν?l,withl>1,are periodic functions,the wave functions take the formψ±(x)=e±iνx?(±x)with?(x)a periodic function.This wave function is related to theN=2 pure Yang-Mills gauge theory with surface operator,see the discussion in Sec.4.

    Another bases of the asymptotic wave functions,commonly used in many literatures,arecem(x)andsem(x).Up to a constant,their relation toψ±(x)is

    2.3 Lame Equation

    The potential for the Lame equation is an elliptic function,for the large energy perturbation we should use the Weierstrass form to obtain compact formulae.In this paper we use the potential

    The corresponding dispersion relation was derived by Langmann,[9]expressed as aq-series,the same expression also appears in the context of its relation to gauge theory,[2]we examined this relation in Ref.[10].Another way to derive the dispersion relation is to use the formula(4),then we get an expression involving quasi-modular functions,[11]

    The wave functions also satisfy the propertyψ±(?x)=ψ?(x).In Sec.4 we would show the connection of this wave function and the partition function of theN=2?supersymmetric gauge theory with surface operator.

    There is a comment about the polynomials of elliptic functions that appear in Eqs.(12)and(15).Recall that any elliptic function can be expressed as a linear combination of zeta functions and their derivatives.In fact,the Hamiltonian densitiesv?(x)for the elliptic potential have no pole of order one atx=0,therefore,they are linear combinations of?kxe?(x)withk>0.Then the integrated Hamiltonians appearing in Eq.(12)are linear combinations ofxand?kx?ζ(x)withk>0.In the wave function(15)the phase e±iνxcontains the linear term ofx,the coefficients ofν?lare linear combinations of?kx?ζ(x)withk>0,probably include anx-independent constant term.The constant terms can be absorbed into the normalization constant,then the expressions are linear polynomials of?kx?ζ(x)withk>0.Or equivalently,because?ζ(x)=?xln?1(πx/2ω1,q),they are linear polynomials of?kxln?1(πx/2ω1,q)withk>1.This point is important when we connect the wave function to the instanton partition function in Sec.4,especially for higher order terms which we do not explicitly give in Eq.(15).

    Substituteλ1/2into Eq.(12)we get the wave functions in the Floquet form,

    The corresponding large energy asymptotic eigenvalueλand wave functionsψ±(χ,ν)take the same functional form as the eigenvalue(7)and the wave functions(9),but with the coordinate variable substituted byχ.

    Let us inspect more carefully the limit for eigenvalue and wave functions of the Lame equation.For the wave functions(15),we shift the argument byx→x+ω2,then take the limitq→0(i.e.withω1fixed,ω2→i∞)forψ±(x+ω2).The following expansions are needed,

    3 Small Energy Wave Function

    3.1 Location of Small Energy Perturbation

    Besides the large energy solution,there exists other solutions which are small energy excitations around local minima,i.e.the critical points of potential.We notice for some periodic potentials at each local minimum there is an asymptotic solution,and all known asymptotic solutions are located at a local minimum.[1,10]

    For example,the potentialu(x)=2hcos2xhas local minima atx?=0 andx?=π/2 modulo periods.At the minimau(x?)=±2h,therefore the eigenvalues take the form

    whereδis the energy of small excitations.The small en-ergy perturbation is also the strong coupling solution for the potential,h?1,see Refs.[6](Chapter V).In a similar way,the elliptic potentialu(x)=αe?(x;2ω1,2ω2)has local minima atx?=ωi,where the potentialu(x?)=α(ei+ζ1),i=1,2,3.The first minima atx?=ω1is associated to the large energy excitations already analyzed in the Subsec.2.3,the leading order energy comes from the quasimomentumλ~?ν2+···The other two minima are associated to small energy perturbative solutions,nevertheless,in order to get compact formulae we should use the Jacobian form of the Lame equation to compute.

    In this section we derive the corresponding strong coupling wave function,they have the Floquet form,and for elliptic potential their monodromies along periods 2Kand 2K+2K′indeed satisfy the relations we proposed in the previous paper.[1]

    3.2 Mathieu Equation

    The first small energy perturbation

    Around the minimumx?=0,λ=?2h+δ,the potential strengthh?1 is large compared to the energyδ,therefore the expansion parameter ish1/2.The relationvx+v2=u+λhas an asymptotic solution in the form[1]

    We can change the parameterδto the Floquet exponentν,by the following strong coupling expansion of the dispersion relation which is well known,[5?8]

    Because the wave functions are unnormalized,the terms in the exponent might appear in slightly different form,nevertheless the differences are constants and can be absorbed into the normalization constant.This comment applies to all of the asymptotic wave functions in this paper.When the exponentνtakes real value the asymptotic wave functions have the propertyψ?±(x)=ψ?(x).This solution seems often not recorded in the mathematical literature,however,it was analyzed in a paper by Stoner and Reeve.[12]The book Ref.[13]contains a discussion about this solution in the context of quantum mechanics.

    The second small energy perturbation

    Around the minimumx?=π/2,λ=2h+δ,the potential strengthh1/2again serves as the expansion parameter.The relationvx+v2=u+λhas an asymptotic solution in the form(21),with

    allows us to change the parameterδto the Floquet exponentν.Then we get the corresponding asymptotic wave functions

    The dispersion relation at this local minimum[5?8]

    The study of this solution dates back to the work of Ince and the work of Goldstein in the 1920s.Some recent materials easier to access include the paper by Dingle and Muller,[14]the books by McLachlan,[5]by Arscott[6]and by Muller-Kirsten.[13]

    This asymptotic solution is related to the largehlimit of the standard Mathieu functions by

    withmtakes either even or odd integers.[6]As we haveψ±(?x)=ψ?(x),thencem(x)is an even function andsem(x)is an odd function,as desired.

    3.3 Lame Equation

    Now we turn to the more interesting case of elliptic potential where the advantage of our method becomes more transparent.As we have shown in Refs.[1,10],for small energy perturbative solution the Jacobian form of the elliptic function is more suitable,therefore we rewrite the potential asu(z)=αk2sn2(z|k2),and the Lame equation is

    We also useμto denote the Floquet exponent throughout of this subsection,it is different from the Floquet exponentνused for the Weierstrass form.[10]

    The locations of the small energy perturbations are given by two solutions of the condition?zsn2z=0 atz?=0 andz?=Kwhich correspond tou(z?)=0 andu(z?)=αk2.

    The first small energy expansion

    In order to change the parameter Λ to the Floquet exponentμ,we use the widely known strong coupling expansion of the dispersion relation[6,8,13]

    Only in the case when all quantities,including the elliptic modulusk,take real values we haveψ?±(z)=ψ?(z).In particular,up to the first two leading order the wave functions can be written as

    This asymptotic solution can be compared to the earlier results about the asymptotic Lame function obtained by Malurkar in the 1930s,and results by Muller in the 1960s.[13,15]

    In the limitα→∞,k→0,μ→νwithα1/2k→2ih1/2finite,we recover the unnormalized wave functions,which differ some constant terms in the exponent from the asymptotic Mathieu wave functions(25).

    The second small energy expansion

    The corresponding dispersion relation has been missed for a long time in the literature,motivated by some ideas from quantum gauge theory[2]recently we have derived it by the WKB analysis and a duality argument,[10]then we rederive it using the method adopted in this paper.[1]It is

    Taking the limit to the Mathieu wave functions(29),we would again encounter the difference of some constant terms,which can be absorbed into the normalization constant.

    Up to now,everything about the small energy expansions for the Lame equation is consistent with the known results,although the monodromy relations,formulae(26)and(32)in Ref.[1],used to derive the corresponding dispersion relation remain a physics induced conjecture.

    4 A Connection toN=2Gauge Theory

    Now we come back to the original motivation which inspired our study to the spectral problem of periodic Schr¨odinger operators,especially for the elliptic potentials. As we have shown in Refs.[1,10],the asymptoticeigenvaluesof the Mathieu and the Lame equations are related to the solution of some deformedN=2 supersymmetric Yang-Mills gauge theories in the Nekrasov-Shatashvili limit(NS).[2]The three asymptotic spectral solutions are precisely i n accordance with three different dual descriptions of the low energy effective physics of gauge theory,i.e.the Seiberg-Witten duality,[16?17]in particular the large energy solution is related to the Nekrasov instanton partition function.[18]

    The large energy asymptoticwave functionsare related to the instanton partition function of gauge theory with surface operator inserted.The partition function with surface operator extends Nekrasov’s localization formula,it is introduced and developed in Refs.[19–20].The computation can be carried out by the characters developed in Ref.[21].The paper by Alday and Tachikawa gives a detailed study about the relations between the SU(2)gauge theory with surface operator,the SL(2)conformal block and the two-body quantum Calogero-Moser model.[22]In the following,we brie fly explain the relation between the gauge theory partition function with surface operator and the asymptotic wave functions(9)and(15).

    Let us start from the SU(2)N=2?gauge theory with surface operator,whose partition function takes the following form,

    whereais the scalar v.e.v,mis the mass of adjoint matter,?1,?2are the ?-deformation andx1,x2are the counting parameters.Written in the exponential form,its pole structure in the limit?1→0,?2→0 is

    In order to relate gauge theory and the quantum mechanics spectral problem,some manipulations on the functionZare needed.The spectral solution of the Lame operator is related to the large-a-expansion of instanton partition function(46),in accordance with the large-νexpansions of the eigenvalue(13)and the eigenfunctions(15).BothF/?1?2andG/?1containa-independent terms when expanded as large-a-series,which deserve special attention.These terms are polynomials ofx1,x2,and can be represented by the Dedekind eta function and the elliptic theta function,

    To see the connections of functionsF,Gand the eigenvalue,eigenfunction,we first need to identify the parameters by

    The elliptic nomeqis the instanton parameter of gauge theory,therefore,the functionFis anx-independentq-series which gives the eigenvalue,the functionGis aq-series depending on the coordinatexwhich gives the wave function.The eigenvalueλin(13)is related to the functionFin the limit?2→0 by

    In gauge theory the term?ν2is perturbative,hence not included in the instanton partition function.This relation is examined in detail in Ref.[10](see formula(34)in that paper),there is a difference ofαζ1=α(π2/12ω21)E2on the right hand side because here we use the shifted potential e?(x).

    On the other hand,the wave functions(15)is related to the functionGin the limit?2→0 by

    In the expression we emphasize the parameters used on both sides,and use the property of the large energy wave functionsψ?(?x?ω2)=ψ+(x+ω2).For example,up to the ordera?2we have

    Using the relation of parameters given in Eq.(49),the first three pieces are summed into three elliptic functions,

    The eigenvalue(13)and the eigenfunction(15)provide an elliptic modular representation for the gauge theory partition function when?2=0.In fact,we observe evidence that even for the case when both deformation parameters are turned on,?1/=0,?2/=0,the instanton partition function with surface operator can be expressed in terms of theta functions.This property indicates the instanton partition function secretly records relations to the elliptic curve.Indeed,this connection can be seen from the point of view of either integrable system[2]or conformal field theory.[22?23]

    In the decoupling limit,theN=2?gauge theory becomes the pure gauge theory.The corresponding partition function with surface operator can be found in Ref.[24],it is related to the asymptotic Mathieu wave functions(9).

    Appendix A:A Matrix that Counts Divisors of Integers

    When we take thea→∞limit of the instanton partition with surface operator,onlya-independent terms in the functionsFandGremain.These terms are represented by two elliptic modular functions,

    withχ=πx/2ω1.Had we expanded them asq-series as usual,there might not be interesting things deserve to say.Nevertheless,if we rewrite them in terms ofx1,x2as given in Eq.(49),and then expand minus of the logarithm of them as series ofx1,x2,we get

    The coefficient matrix Θ4[i,j]is a symmetric in finite matrix with all elements positive,as a digest here we present thefirst 22 dimensions.Notice that the numbers for rows and columns of the matrix begin from 0.

    For example,in the 18-th row we have the divisor functionσ?1(18),

    This fact indicates a relation of the eta function and the theta function expanded as in(A3),(A4):while the logarithm of eta function knows the in finite sequence of numbers 1,3/2,4/3,7/4,...,the logarithm of theta function diagnoses where they come from.It is the same in spirit for the situation in gauge theory:while the instanton partition function without surface operator knows the eigenvalue expansion,it is the instanton partition function with surface operator tells the whole story.

    This might be a folklore of number theory,nevertheless,it is strange instanton knows it.

    5 Acknowledgments

    I thank Institute of Modern Physics at Northwest University,Xi’an,during the summer school“Integrable models and their applications 2016”where this work is finalized.Part of the work has been done when I was supported by the FAPESP No.2011/21812-8,through IFT-UNESP.

    [1]W.He,Commun.Theor.Phys.69(2018)115.

    [2]N.Nekrasov and S.Shatashvili,Quantization of integrable systems and four dimensional gauge theories,in16th International Congress on Mathematical Physics,World Scientific,Singapore(2010)265.

    [3]R.M.Miura,C.S.Gardner,and M.D.Kruskal,J.Math.Phys.9(1968)1204.

    [4]O.Babelon,D.Bernard,and M.Talon,Introduction to Classical Integrable Systems,Cambridge University Press,Cambridge(2003).

    [5]N.W.McLachlan,Theory and Application of Mathieu Functions,Oxford University Press,Oxford(1947).

    [6]F.M.Arscott,Periodic Differential Equations,Pergamon Press,Oxford(1964).

    [7]Z.X.Wang and D.R.Guo,Special Functions,World Scientific,Singapore(1989).

    [8]NIST Digital Library of Mathematical Functions,F.W.J.Olver,A.B.Olde Daalhuis,D.W.Lozier,et al.,eds.http://dlmf.nist.gov.

    [9]E.Langmann,An Explicit Solution of the(Quantum)Elliptic Calogero-Sutherland Model,inSymmetry and Perturbation Theory(Cala Gonone),World Scientific,Singapore(2005)159.

    [10]W.He,J.Math.Phys.56(2015)072302.

    [11]W.He,Ann.Phys.353(2015)150.

    [12]M.Stoner and J.Reeve,Phys.Rev.D 18(1978)4746.

    [13]H.J.W.Muller-Kirsten,Introduction to Quantum Mechanics:Schr¨odinger Equation and Path Integral,World Scientific,Singapore(2006).

    [14]R.B.Dingle and H.J.W.Muller,Journal fur Die Reine und Angewandte Mathematik 211(1962)11.

    [15]H.J.W.Muller,Math.Nachr.31(1966)89.

    [16]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [17]N.Seiberg and E.Witten,Nucl.Phys.B 431(1994)484.

    [18]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [19]A.Braverman,Instanton Counting via Affine Lie Algebras I:Equivariant J-functions of(Affine)Flag Manifolds and Whittaker Vectors,Proceedings of the CRM Workshop on Algebraic Structures and Moduli Spaces(Montreal),American Mathematical Society,Providence(2004)[arXiv:math/0401409].

    [20]A.Braverman and P.Etingof,Instanton counting via affine Lie algebras II:from Whittaker Vectors to the Seiberg-Witten Prepotential,[arXiv:math/0409441].

    [21]B.Feigin,M.Finkelberg,A.Negut,and L.Rybnikov,Selecta Mathematica 17(2011)513.

    [22]L.F.Alday and Y.Tachikawa,Lett.Math.Phys.94(2010)87.

    [23]L.F.Alday,D.Gaiotto,and Y.Tachikawa,Lett.Math.Phys.91(2010)167.

    [24]H.Awata,H.Fuji,H.Kanno,et al.,Adv.Theor.Math.Phys.16(2012)725.

    国产永久视频网站| 男女国产视频网站| 在线观看免费日韩欧美大片 | 久久午夜福利片| 国产精品女同一区二区软件| 在线观看美女被高潮喷水网站| 一级a做视频免费观看| 日韩强制内射视频| 亚洲国产精品一区三区| 一边亲一边摸免费视频| 久久久久人妻精品一区果冻| 视频中文字幕在线观看| av卡一久久| 99久久精品国产国产毛片| 精品人妻熟女av久视频| 国产乱来视频区| 中文字幕制服av| 少妇精品久久久久久久| 赤兔流量卡办理| 成人免费观看视频高清| 久久精品国产亚洲av涩爱| 久久亚洲国产成人精品v| www.av在线官网国产| 免费av不卡在线播放| 久久免费观看电影| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 欧美日韩在线观看h| 最黄视频免费看| 成人国语在线视频| 丰满迷人的少妇在线观看| 黑人高潮一二区| 国产又色又爽无遮挡免| 黄色一级大片看看| 满18在线观看网站| av播播在线观看一区| 日韩伦理黄色片| 桃花免费在线播放| 国产日韩一区二区三区精品不卡 | 亚洲av不卡在线观看| 国产亚洲av片在线观看秒播厂| 大又大粗又爽又黄少妇毛片口| 国产午夜精品一二区理论片| 日本黄色日本黄色录像| 久久久久久人妻| 午夜影院在线不卡| 尾随美女入室| 国产欧美亚洲国产| 最近中文字幕2019免费版| 边亲边吃奶的免费视频| 日韩人妻高清精品专区| 26uuu在线亚洲综合色| 五月玫瑰六月丁香| 国产精品一区二区在线不卡| 亚洲,一卡二卡三卡| 午夜福利影视在线免费观看| 在线免费观看不下载黄p国产| 熟妇人妻不卡中文字幕| 久久 成人 亚洲| 久久韩国三级中文字幕| 亚洲国产最新在线播放| 亚洲人与动物交配视频| 如何舔出高潮| 亚洲三级黄色毛片| 色5月婷婷丁香| 免费看不卡的av| 九九在线视频观看精品| freevideosex欧美| 嘟嘟电影网在线观看| 少妇精品久久久久久久| a级片在线免费高清观看视频| 欧美老熟妇乱子伦牲交| 黑丝袜美女国产一区| 中文天堂在线官网| 久久99精品国语久久久| 日韩精品有码人妻一区| 黑人高潮一二区| 久久 成人 亚洲| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 国产成人一区二区在线| 男女免费视频国产| 少妇丰满av| 男女边吃奶边做爰视频| 亚洲色图综合在线观看| 国产精品嫩草影院av在线观看| 少妇 在线观看| 午夜精品国产一区二区电影| 丝袜喷水一区| 伦精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 边亲边吃奶的免费视频| 少妇被粗大猛烈的视频| 亚洲国产欧美在线一区| 亚洲国产精品一区三区| 免费观看的影片在线观看| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 国产成人精品在线电影| 亚洲av欧美aⅴ国产| 26uuu在线亚洲综合色| 精品久久久久久久久av| 国产av国产精品国产| 美女国产高潮福利片在线看| 中文字幕制服av| 少妇被粗大的猛进出69影院 | 日韩精品免费视频一区二区三区 | 国产免费一区二区三区四区乱码| 国产在视频线精品| 啦啦啦啦在线视频资源| 亚洲av不卡在线观看| 精品人妻在线不人妻| 国产欧美亚洲国产| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| av天堂久久9| 热99国产精品久久久久久7| 国产精品久久久久久精品古装| 日本91视频免费播放| 伦精品一区二区三区| 免费观看av网站的网址| 日本av免费视频播放| 高清av免费在线| 国模一区二区三区四区视频| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 久久久久久久久久久免费av| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 多毛熟女@视频| 午夜91福利影院| 蜜桃国产av成人99| 亚洲欧美清纯卡通| 欧美性感艳星| 欧美 亚洲 国产 日韩一| 亚洲欧美日韩另类电影网站| 精品人妻一区二区三区麻豆| 国产精品国产av在线观看| 高清午夜精品一区二区三区| 亚洲天堂av无毛| 丰满乱子伦码专区| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 一级毛片aaaaaa免费看小| 人体艺术视频欧美日本| 欧美日韩在线观看h| 亚洲国产欧美在线一区| videossex国产| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 精品国产露脸久久av麻豆| 欧美日韩视频精品一区| 26uuu在线亚洲综合色| 精品一区在线观看国产| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 日韩,欧美,国产一区二区三区| freevideosex欧美| 少妇的逼好多水| 一区二区三区乱码不卡18| 香蕉精品网在线| 久久久精品免费免费高清| 波野结衣二区三区在线| 国产精品成人在线| 亚洲综合色惰| av一本久久久久| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影| 国产色婷婷99| 亚洲国产精品999| 国产熟女欧美一区二区| 亚洲欧洲国产日韩| av国产精品久久久久影院| 中文乱码字字幕精品一区二区三区| 国产精品国产三级国产专区5o| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 久久99精品国语久久久| 亚洲av成人精品一二三区| 少妇的逼好多水| 一本久久精品| 99久久人妻综合| 欧美日韩一区二区视频在线观看视频在线| 国产极品天堂在线| 97在线视频观看| 久久久久网色| 男人添女人高潮全过程视频| 美女脱内裤让男人舔精品视频| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 九色亚洲精品在线播放| 自线自在国产av| 性高湖久久久久久久久免费观看| 69精品国产乱码久久久| 色视频在线一区二区三区| 妹子高潮喷水视频| 免费看光身美女| av播播在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 一本大道久久a久久精品| 亚洲成人一二三区av| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 国产黄片视频在线免费观看| 国产乱来视频区| kizo精华| 视频在线观看一区二区三区| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 久久这里有精品视频免费| 伊人亚洲综合成人网| 有码 亚洲区| 春色校园在线视频观看| 亚洲少妇的诱惑av| 国产色婷婷99| 久久国产精品大桥未久av| 18在线观看网站| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 国产色爽女视频免费观看| 少妇高潮的动态图| 日韩中字成人| 91久久精品国产一区二区成人| 久久精品国产a三级三级三级| 亚洲av二区三区四区| 日本vs欧美在线观看视频| 丝袜美足系列| 国产爽快片一区二区三区| 久久久久国产网址| 国产精品成人在线| 综合色丁香网| 午夜福利影视在线免费观看| 三上悠亚av全集在线观看| 精品酒店卫生间| 少妇丰满av| 热re99久久国产66热| 亚洲人成网站在线播| 国产成人精品福利久久| 欧美人与性动交α欧美精品济南到 | a级毛片黄视频| 少妇的逼水好多| 亚洲av国产av综合av卡| 美女xxoo啪啪120秒动态图| 国产 精品1| 久久久欧美国产精品| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 久久久精品区二区三区| 不卡视频在线观看欧美| av福利片在线| 亚洲婷婷狠狠爱综合网| 91成人精品电影| 高清黄色对白视频在线免费看| 男女边吃奶边做爰视频| 一级黄片播放器| 高清视频免费观看一区二区| 少妇被粗大猛烈的视频| 热re99久久国产66热| 高清在线视频一区二区三区| 精品熟女少妇av免费看| 国产男女内射视频| 国产视频内射| 黄色配什么色好看| 草草在线视频免费看| 春色校园在线视频观看| 青春草视频在线免费观看| 视频在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 香蕉精品网在线| 岛国毛片在线播放| 国产精品一国产av| 精品卡一卡二卡四卡免费| 十八禁高潮呻吟视频| 日本免费在线观看一区| 夫妻午夜视频| 欧美3d第一页| 精品酒店卫生间| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 成人毛片a级毛片在线播放| 亚洲国产精品一区三区| 午夜精品国产一区二区电影| 亚洲成人av在线免费| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 久久久久国产网址| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| kizo精华| 欧美激情国产日韩精品一区| 69精品国产乱码久久久| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| av福利片在线| 女性被躁到高潮视频| 欧美人与善性xxx| 七月丁香在线播放| 国产 精品1| 国产精品.久久久| 国产男女内射视频| 婷婷成人精品国产| 国产熟女欧美一区二区| 精品久久久久久久久av| 18禁动态无遮挡网站| 中文天堂在线官网| 中文字幕av电影在线播放| 成人综合一区亚洲| 午夜av观看不卡| 插阴视频在线观看视频| kizo精华| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 亚洲在久久综合| 九九久久精品国产亚洲av麻豆| 国产 精品1| www.av在线官网国产| 一级片'在线观看视频| 亚洲成人一二三区av| 日本免费在线观看一区| 久久综合国产亚洲精品| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 97超碰精品成人国产| 久久久久久伊人网av| 久久精品国产亚洲网站| 精品酒店卫生间| √禁漫天堂资源中文www| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 中文字幕最新亚洲高清| 自线自在国产av| 久久久亚洲精品成人影院| 嫩草影院入口| 久久毛片免费看一区二区三区| 一区二区av电影网| 免费播放大片免费观看视频在线观看| 男女国产视频网站| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 成年av动漫网址| 久久久久久久久久久久大奶| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 欧美日韩成人在线一区二区| 春色校园在线视频观看| 尾随美女入室| 我的女老师完整版在线观看| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 精品一区二区免费观看| 亚洲成人一二三区av| 99精国产麻豆久久婷婷| 中文字幕最新亚洲高清| 十八禁高潮呻吟视频| 国产极品天堂在线| 毛片一级片免费看久久久久| 国产精品麻豆人妻色哟哟久久| 成人手机av| 亚洲精品日本国产第一区| 久久av网站| 一区在线观看完整版| 曰老女人黄片| 久久久久久久久久久免费av| 在线观看国产h片| av在线老鸭窝| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 看免费成人av毛片| 一级片'在线观看视频| 久久久久久人妻| 91久久精品电影网| xxxhd国产人妻xxx| 国产色爽女视频免费观看| 一区二区三区精品91| 高清欧美精品videossex| www.av在线官网国产| 日韩av免费高清视频| 国产爽快片一区二区三区| 日韩人妻高清精品专区| 大片免费播放器 马上看| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 少妇 在线观看| 成人亚洲欧美一区二区av| 在线观看国产h片| 丝袜喷水一区| 日本午夜av视频| 亚洲欧美一区二区三区国产| 国产白丝娇喘喷水9色精品| 午夜久久久在线观看| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 成人国语在线视频| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| 久久婷婷青草| 草草在线视频免费看| 午夜激情福利司机影院| .国产精品久久| av一本久久久久| 国产高清三级在线| 日本午夜av视频| 欧美xxxx性猛交bbbb| 亚洲欧美精品自产自拍| 亚洲,一卡二卡三卡| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 久久久久久伊人网av| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 日本91视频免费播放| 日本wwww免费看| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 2021少妇久久久久久久久久久| videosex国产| 国产日韩一区二区三区精品不卡 | 熟女电影av网| 最近中文字幕高清免费大全6| 精品人妻在线不人妻| 中国三级夫妇交换| 亚洲图色成人| 最新中文字幕久久久久| 女性被躁到高潮视频| .国产精品久久| 亚洲精品久久午夜乱码| 99久久精品一区二区三区| 久久久久久久久大av| 嘟嘟电影网在线观看| 国产精品 国内视频| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 亚洲国产av新网站| 亚洲欧美日韩另类电影网站| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 大香蕉久久网| 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 日韩av免费高清视频| 午夜影院在线不卡| 日日撸夜夜添| 久久久久久人妻| 国产 一区精品| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站| 午夜老司机福利剧场| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 夜夜爽夜夜爽视频| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 精品国产一区二区久久| 中文字幕亚洲精品专区| 在线观看免费日韩欧美大片 | 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 美女内射精品一级片tv| av有码第一页| 一二三四中文在线观看免费高清| 精品少妇黑人巨大在线播放| 亚洲情色 制服丝袜| 午夜日本视频在线| 午夜免费观看性视频| 久久久国产一区二区| 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 亚洲国产av影院在线观看| 99久久人妻综合| 美女国产视频在线观看| 十八禁高潮呻吟视频| 日本wwww免费看| 久久久久久久国产电影| 日本色播在线视频| 性色av一级| 国产精品成人在线| 超碰97精品在线观看| 午夜av观看不卡| 成人二区视频| 亚洲精品日韩在线中文字幕| 高清不卡的av网站| 少妇高潮的动态图| 久久精品久久精品一区二区三区| 国产精品99久久久久久久久| 成人18禁高潮啪啪吃奶动态图 | 中文欧美无线码| 亚洲精品成人av观看孕妇| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 22中文网久久字幕| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 婷婷色综合www| 中文字幕人妻丝袜制服| 人妻人人澡人人爽人人| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 18在线观看网站| 性色av一级| 69精品国产乱码久久久| 18禁观看日本| 久久久久久久久大av| 国产一区有黄有色的免费视频| 一级片'在线观看视频| 中文字幕久久专区| 一级毛片电影观看| 国产又色又爽无遮挡免| 丰满迷人的少妇在线观看| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| av有码第一页| 午夜91福利影院| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 国产亚洲精品第一综合不卡 | 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 久久97久久精品| 久久鲁丝午夜福利片| 精品卡一卡二卡四卡免费| av.在线天堂| 九色亚洲精品在线播放| av在线观看视频网站免费| 美女视频免费永久观看网站| 五月伊人婷婷丁香| 国产乱人偷精品视频| 日韩中文字幕视频在线看片| 精品人妻在线不人妻| 国产综合精华液| 国产精品.久久久| 日韩免费高清中文字幕av| 人成视频在线观看免费观看| 久久人人爽人人片av| 免费观看a级毛片全部| av线在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 青青草视频在线视频观看| 亚洲中文av在线| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 国产视频内射| 人人妻人人澡人人看| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 亚洲精华国产精华液的使用体验| 天堂8中文在线网| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 精品一区二区免费观看| 精品一区二区三卡| 久久影院123| videosex国产| 中文乱码字字幕精品一区二区三区| 2022亚洲国产成人精品| 丝袜在线中文字幕| 国产成人免费观看mmmm| 精品视频人人做人人爽| 人人澡人人妻人| 老司机影院毛片| 国产精品嫩草影院av在线观看| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美 | videos熟女内射| 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 能在线免费看毛片的网站| 欧美精品人与动牲交sv欧美| 日本黄色片子视频| 日韩制服骚丝袜av| av专区在线播放| 国产黄片视频在线免费观看| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 伊人亚洲综合成人网| 婷婷色av中文字幕| 亚洲av男天堂| av专区在线播放| av在线播放精品| 寂寞人妻少妇视频99o| 国产精品一二三区在线看| 九九久久精品国产亚洲av麻豆| 成年女人在线观看亚洲视频|