• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Method to Solve Nonlinear Klein-Gordon Equation Arising in Quantum Field Theory Based on Bessel Functions and Jacobian Free Newton-Krylov Sub-Space Methods

    2018-06-15 07:32:24ParandandNikarya
    Communications in Theoretical Physics 2018年6期

    K.Parand and M.Nikarya

    Department of Computer Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    1 Introduction

    The nonlinear Klein-Gordon equation arises in many scientific areas such as electromagnetic interactions,the relativistic hydrogen spectrum,coulomb scattering,nonlinear optics,solid state physics and quantum field theory etc.[1?3]The Klein-Gordon equation plays the role of one of the fundamental equations of quantum field theory. This equation describes relativistic electrons and is a quantized version of the relativistic energy momentum relation.[4?6]This equation was first considered as a quantum wave equation for an equation describing de Broglie waves,[1,4,7]also has a great importance in relativistic quantum mechanics,which is used to describe spinless particles.The nonlinear Klein-Gordon equation has the general form:[8?9]

    and with the Dirichlet or Neumann type boundary conditions,whereτ,α,γare known constants.Equation(1)is called Klein-Gordon with quadratic nonlinearity ifk=2,with cubic nonlinearity ifk=3.The numerical study of the nonlinear Klein-Gordon equation has been carried out for last half Century and still it is an active area of research to develop some better numerical schemes to approximate its solution.In the past decades many researchers have solved this problem.[5,10?18]Recently,several numerical techniques have been developed for solving the Klein-Gordon equation(1),for example Luoet al.have solved this problem by using a fourth-order compact and conservative scheme,they discretized using the integral method with variational limit in space and the multidimensional extended Runge-Kutta method in time.[19]Vermaet al.have proposed a numerical scheme based on forward finite difference,QLM process and DQ method,[9]Bhrawy and Soubhy by using Legendre Gauss-Lobatto collocation solve linear and nonlinear Klein-Gordon.[20]Aimi and Panizzi have solved 1D Klein-Gordon equation by using boundary element- finite element method coupling procedure.[7]Razaet al.have solved nonlinear Klein-Gordon equation using Sobolev gradients.[21]Donget al.[22]by using a time-splitting Fourier pseudo-spectral discretization solved this problem.Guo and Wang have solved this problem by using collocation method based on Jacobi polynomials.[23]Bao and Dong have solved this problem by using finite difference method.[24]Kumaret al.have introduced numerical computation by using Homotopy analysis method to solve Klein-Gordon equation.[25]Biswaset al.have found traveling wave solutions of the nonlinear dispersive Klein-Gordon equation.[26]Hussainet al.have solved this problem by meshless method and method of lines.[27]Jang[28]has solved this problem by using semi-analytical method.Jiwari[29]has solved this problem by Lagrange interpolation and modified cubic B-spline differential quadrature methods.Shaoa and Wu have introduced a numerical solution of the nonlinear Klein-Gordon equation using the Chebyshev tau meshless method.[30]Pekmen and Tezer-Sezgin have solved this problem by using DQM.[8]Chang and Liu have introduced an implicit Lie-group iterative scheme to solve this problem.[31]Guoet al.have solved this problem by element-free kp-Ritz method.[32]Mohebbiet al.have introduced a method based on applying fourth order timestepping schemes in combination with discrete Fourier transform to solve Klein-Gordon equation.[33]

    Now in this paper,we intend to solve the Klein-Gordon equation using a novel method based on Bessel functions of the first kind,spectral collocation method and Jacobian free Newton-Krylov sub-space methods.Recently,Bessel functions have been used to solve nonlinear ODE,IDE,and fractional differential equation,[34?36]now we want to use them to solve nonlinear PDE namely Klein-Gordon equation.The rest of this paper is organized as follows:the function approximation,Bessel functions and spectral methods are introduced in Sec.2.In Sec.3 the JFNGMRes with adaptive preconditioner is described to solve nonlinear systems of algebraic equations.Then to show the advantages,applicability and reliability of proposed method we solve some examples of Klein-Gordon equation and compare our results with others in Sec.4.Finally,the paper concludes in Sec.5.

    2 Function Approximation and Spectral Methods Based on Bessel Functions

    Definition 1Let Λ={x|a

    For any realr≥0,we define the spaceHrω(Λ)by the space interpolation as in Adams.[37]

    In this paper we use Bessel function of the first kindJn(x)as the basis functions ofL2(Λ):

    Series(2)is convergent for all?∞

    ProofBy deriving Eq.(2)and using expansions ofJn?1(x)andJn+1(x),the result is desirable.

    Remark 1The derivative operational matrix of the first kind Bessel functions can be as follow:

    LetJ= [J0(x),J1(x),J2(x),...,Jn(x)]TthereforeJ′=DJ,whereDis derivative operational matrix and is obtained by using Eq.(4):

    where thea0,a1,a2,....,anwill be obtained by an interpolation technique.

    LetNbe a positive integer,we define space

    Several papers have discussed about convergence of spectral methods[39?42]and spectral methods to solve nonlinear Klein-Gordon equation.[43?44]In a same way we can write about convergence of proposed method to solve Klein-Gordon equation as follows.

    Remark 2Assume that theu∈L2(0,T;Hr(Λ)),r>1,is the solution of the Klein-Gordon equation(1),and theuN=PNu∈JN(Λ)×JN(0,T)is the approximation ofu,then:

    andCis a positive constant depending only on the norms ofuin the spaces mentioned.[41,45]We know that,theJN(Λ)×JN(0,T)is a finite subspace ofHr(Λ)×L2(0,T),according to the assumptionu∈Hr(Λ)×L2(0,T),the∥u∥= ∫T0∥u∥2r,ωdt<∞,therefore,there is anN0∈N that for anyN>N0,Nrbe bigger than∥u∥or equivalentlyC.So,ifNbe large enough,we can say:ifN?→∞then∥u?uN∥Hr(Λ)×L2(0,T)?→0,hence,the error of this approximation by increasingNwill be decreased.In numerical examples this principle will be shown.

    2.1 Spectral Collocation Method

    Spectral methods,in the context of numerical schemes for solving differential equations,generically belong to the family of weighted residual methods(WRMs).[46]WRMs represent a particular group of approximation techniques,in which the residuals(or errors)are minimized in a certain way and thereby leading to specific methods including Galerkin,Petrov-Galerkin,collocation,and tau formulations.Consider the approximation of the following problem via spectral method:

    whereLis the differential or integral operation,Nis a lower-order linear and/or nonlinear operator involving only derivatives(if exist)andf(x,t)is a function of variablesxandt,with enough initial and boundary conditions.The starting point of the spectral methods is to approximate the solutionu(x,t)by a finite summation:

    where?n’s are the basis functions that we have chosenJn(x)as basis function and the expansion’s coefficients must be determined.SubstitutinguwithuM,Nin Eq.(7)leads to the residual function:

    where{ψk}are test functions,andωis positive weight function. The choice of test functions results to a kind of the spectral methods.[47?48]A method for forcing the residual function(9)to zero,is the collocation algorithm.[35?36,49]In this method,by choosing Lagrange basis polynomials as test function,such thatψj(x)=Lj(x)and using Gauss quadrature rule in Eq.(11)we can write:[46]

    In this paper,since the PDE(7)is nonlinear,the obtained system of equations(13)is nonlinear,too.In next section,we will describe how to solve this nonlinear system of equations.

    3 Newton-Krylov Algorithm

    Solving a nonlinear differential equation by spectral method directly(without linearization or discritization)leads to solving a nonlinear system of algebraic equationsF(x)=0,whereF:Rn→Rnis a functionF(x)=(f1(x),f2(x),f3(x),...,fn(x))Tandx∈Rnis a vector.So speed and accuracy of solving this nonlinear system is very important.Many works have been done to improve solving the nonlinear systems.[50?54]One of the best methods to solve a nonlinear system is classical Newton’s iterative method:

    whereF′(x)=J(x)is then×nJacobian matrix.Therefore:

    In spectral methods to increase the accuracy,the number of equations must be increased,so often size of system of equation is large.But for large and complicated nonlinear systems,calculation and reorderingJ(xn)and solving obtained linear system in each iteration could be mostly time consuming.Hence,there are some improvements in Eq.(16),whereJ(xn)is calculated and linear system will be solved.For example some mathematicians used a fixed Jacobian matrix in every iteration or used different linear solver with several preconditioners.One of the good ideas,is to use the finite difference technique to approximate Jacobian-vector product:

    whereεis a very small value.Jacobian-vector product,can be useful to approximate Jacobian matrix and matrixvector product.Also,for large dimensions,iterative methods such as GMRes or BiCGSTAB are preferred over direct solvers.[54?55]In this paper,a Jacobian-free Newton GMRes(JFNGMRes)with an adaptively preconditioner have been used to solve large nonlinear system of equations.This preconditioner has been introduced by Saad[53]and used in Ref.[54].Using this finite difference technique and updating adaptive preconditioning improve the computations in Newton’s method and GMRes.[53?54]Many researchers have used Newton-Krylov methods and Jacobian free Newton-Krylov methods to solve several nonlinear problems.[53?57]

    In this section we describe the Jacobian free Newton’s method alongside generalized minimum residual with adaptive preconditioner

    Begin

    1.Setk=0(iteration counter of Newton method)and an initial guessx0.

    2.Select a nonsingular MatrixM0=ηIas the preconditioner,whereη∈R andIn×n=diag(1,...,1)

    3.Begin ofNewton’siterations:repeat until∥F(xk)∥2

    4.Use GMRes method with Jacobian free formula to solve linear systemJ(xk)δk=F(xk).

    In Refs.[53–54]inner and outer preconditionersMilnandMkand how to help it to Newton-Krylov method have been discussed.

    4 Solving Some Examples of Nonlinear Kilen-Gordon Equation

    To show the accuracy,availability,reliability and convergent rate of present method to solve Klein-Gordon equation,several examples of Klein-Gordon equation will be solved in this section.To obtain the solutions,we first transfer the solving the nonlinear Klein-Gordon equation to a nonlinear system of algebraic equations by using collocation spectral method based on Bessel function of the first kind without any discritization and linearization methods.Then we solve this nonlinear algebraic system by using JFNGMRes method and acquire the solution of this PDE.In solving procedure of all examples that follow in this paper,we use roots of shifted Legendre polynomialPn(x)as collocation points,and satisfy the initial conditions by adding and multiplying some terms to the basis functions,satisfy the boundary conditions in the nonlinear system of equations and the initial guess of the iterative JFNGMRes method is vector[0,0,...,0]T.Also,some error definitions used in this article are as bellow:

    Example 1Consider the Klein-Gordon equation(1)with quadratic nonlinearity as follows:

    subject to the initial conditions:

    This example has been solved by using proposed method withM=17,N=17 and 11 JFNGMRes iteration.To show efficiently and reliability of presented method,obtained results is compared with results of DQ method,[8]a method based on the tension spline function and finite difference approximations[5]and radial basis functions collocation method[14]in Table 1.Also to show convergence rate and accuracy of proposed method,we use the RMS andL∞errors,this results are shown in Table 2,this table shows that by increasing the collocation points the errors will be decreased rapidly also the number of iterations(IT)will be increased.

    Table 1 Comparison of obtained results of presented method with N=17,M=17 and 11 JFNGMRes iterations,and results of Refs.[5,8,14]for example 1.

    Table 2 The convergence rate of presented method to solve example 1.

    Example 2

    Consider the kink wave equation of Klein-Gordon equation(1)as follows:

    The exact solution of this equation is:

    Fig.1 The obtained graphs of solution for example 2 for c=0.3 and several α,β.(a)α =0.1,β =1;(b)α =0.2,β=1;(c)α=0.1,β=10.

    Table 3 Comparison of presented method and results of B-spline DQ method[29]for solving kink wave equation with α =0.2,β =1 and c=0.3.

    Table 4 Error and convergence rate of presented method for solving kink wave equation with different number points.

    Example 3

    Consider the following single soliton equation of Eq.(1):

    The exact solution of this equation is:

    5 Conclusions

    In this paper a new numerical algorithm was proposed to solve nonlinear Klein-Gordon equation.This method uses the spectral collocation method,the Bessel functions of the first kind as basis function and roots of the shifted Legendre polynomials as collocation point to convert nonlinear Klein-Gordon equation to a nonlinear system of algebraic equations.Then this nonlinear system is solved by using the Jacobian free Newton and GMRes methods with an adaptive preconditioner updated in each iteration.The obtained nonlinear system from spectral methods usually is large and ill-condition,therefore,iterative methods such as GMRes are preferred over direct solvers.Now we use an adaptive preconditioner to enhance the convergent rate of JFNGMRes.As indicated in the presented examples,the solutions of the nonlinear systems are obtained in 3,4 and 11 Newton iterations,also in all examples the initial guess of JFNGMRes is simple vector[0,0,...,0]T,that show the speed and power of the proposed method.Also the shown RMS andL∞errors in the presented tables and comparison with others methods show efficiently,applicability and reliability of collocation method based on the Bessel functions of the first kind.Some advantages of the presented method include high convergence rate of collocation method based on Bessel functions of the first kind to solve Klein–Gordon equation,few iterations for Newton method,simple initial guess for JFNGMRes method and no need for discretization and linearization and saving memory and processing.In general in this paper there are some novelties:(i)Using Bessel function as basis function in spectral methods to solve nonlinear PDE.(ii)Using spectral methods without any time discritization and linearization method to solve Klein-Gordon equation.(iii)using Jacobian free Newton method with adaptive preconditioned GMRes in spectral methods to solve Klein-Gordon equation.

    Fig.2 Obtained graphs of single soliton solution.(a)α=β=?1,c=2;(b)α=0.3,β=1,c=0.25.

    Table 5 Obtained results and convergence rate of presented method with and 4 JFNG iteration for several α,β and c=2 for single soliton problem at t=1.

    Acknowledgments

    The corresponding author would like to thank Shahid Beheshti University for the awarded grant.

    [1]C.Itzykson and J.B.Zuber,Quantum Field Theory,McGraw-Hill International Book Co,New York(1980).

    [2]S.Weinberg,Quantum Theory of Fields,Cambridge University Press,Cambridge(1995).

    [3]M.Rahman,S.Dulat,and K.Li,Commun.Theor.Phys.54(2010)809.

    [4]W.Greiner,Relativistic Quantum Mechanics Wave Equations,Springer,Berlin(2000).

    [5]J.Rashidinia and R.Mohammadi,Comput.Phys.Commun.181(2010)78.

    [6]G.L.Xun and P.J.Ting,Commun.Theor.Phys.50(2008)1276.

    [7]A.Aimi and S.Panizzi,Numer.Methods Partial Differ.Equ.30(2014)2042.

    [8]B.Pekmen and M.Tezer-Sezgin,Comput.Phys.Commun.183(2012)1702.

    [9]A.Verma,R.Jiwari,and S.Kumar,Int.J.Numer.Methods Heat Fluid Flow24(2014)1390.

    [10]A.M.Wazwaz,Commun.Nonlinear Sci.Numer.Simul.13(2008)889.

    [11]S.Abbasbandy,Int.J.Methods Eng.70(2007)876.

    [12]S.Mohyud-Din and A.Yildirim,J.Appl.Math.Stat.Inform.(JAMSI)6(2010)99.

    [13]B.Y.Guo,X.Li,and L.Vazquez,Math.Appl.Comput.15(1996)19.

    [14]M.Dehghan and A.Shokri,J.Comput.Appl.Math.230(2009)400.

    [15]M.A.M.Lynch,J.Comput.Appl.Math.31(1999)173.

    [16]S.Li and L.Vu-Quoc,SIAM J.Numer.Anal.32(1995)1839.

    [17]S.Machihara,Funkcial.Ekvac.44(2001)243.

    [18]N.Masmoudi and K.Nakanishi,Math.Ann.324(2002)359.

    [19]Y.Luo,X.Li,and C.Guo,Numer.Methods Partial Differ.Equ.33(2017)1283.

    [20]A.H.Bhrawy and S.I.El-Soubhy,J.Comput.Theor.Nanosci.12(2015)3583.

    [21]N.Raza,A.R.Butt,and A.Javid,J.Funct.Spaces 1(2016)1.

    [22]X.Dong,Z.Xu,and X.Zhao,Commun.Comput.Phys.16(2014)440.

    [23]B.Y.Guo and Z.Q.Wang,Adv.Comput.Math.40(2014)377.

    [24]W.Bao and X.Dong,Numer.Math.120(2012)189.

    [25]D.Kumar,J.Singh,S.Kumar,and J.Sushila,Alexandria Eng.J.53(2014)469.

    [26]A.Biswas,C.M.Khalique,and A.R.Adem,J.King Saud Uni.24(2012)339.

    [27]A.Hussain,S.Haq,and M.Uddin,Eng.Anal.Boundary Elem.37(2013)1351.

    [28]T.S.Jang,Appl.Math.Comput.243(2014)322.

    [29]R.Jiwari,Comput.Phys.Commun.193(2015)55.

    [30]W.Shaoa and X.Wua,Comput.Phys.Commun.185(2014)1399.

    [31]C.W.Changa and C.S.Liu,Appl.Math.Model.40(2016)1157.

    [32]P.Guo,K.Liew,and P.Zhu,Appl.Math.Model.39(2015)29172928.

    [33]A.Mohebbi,Z.Asgari,and A.Shahrezaee,Z.Naturforsch.A 66(2011)735.

    [34]K.Parand,M.Nikarya,J.A.Rad,and F.Baharifard,Zeit.Natur.A 67(2012)665.

    [35]K.Parand,J.A.Rad,and M.Nikarya,Int.J.Comput.Math.91(2014)1239.

    [36]K.Parand,J.A.Rad,and M.Nikarya,J.Comput.Theor.Nanosci.11(2014)131.

    [37]R.A.Adams,Sobolev Spaces,Academic Press,New York(1975).

    [38]W.W.Bell,Special Functions For Scientists And Engineers,D.Van Nostrand Company,London(1967).

    [39]B.Y.Guo,Spectral Methods and Their Applications,World Scientific,Singapore,River Edge,N.J.(1998).

    [40]E.Weinan,SIAM J.Numer.Anal.29(1992)1520.

    [41]K.Atkinson,O.Hansen,and D.Chien,Numer.Algorithms 63(2013)213.

    [42]D.Gottlieb,L.Lustman,and E.Tadmor,SIAM J.Numer.Anal.24(1987)532.

    [43]X.Li and B.Guo,J.Comput.Mathema.15(1997)105.

    [44]I.J.Lee,J.Korean Math.Soc.32(1995)541.

    [45]B.Guo,J.Math.Anal.Appl.243(2000)373.

    [46]J.Shen,T.Tang,and L.L.Wang,Spectral Methods:Algorithms,Analysis and Applications,Springer,Berlin,Heidelberg(2011).

    [47]K.Parand,M.Delkhosh,and M.Nikarya,Tbilisi Mathematical J.10(2017)31.

    [48]J.A.Rad,K.Parand,and S.Kazem,Int.J.Appl.Comput.Math.3(2017)919.

    [49]K.Parand and M.Nikarya,Eur.Phys.J.Plus 132(2017)496.

    [50]G.M.Shro ffand H.B.Keller,SIAM J.Numer.Anal.30(1993)1099.

    [51]A.Cordero,J.L.Hueso,E.Martinez,and J.R.Torregrosa,J.Comput.Appl.Math.233(2010)2696.

    [52]G.H.Nedzhibov,J.Comput.Appl.Math.222(2008)244.

    [53]A.Soulaimani,N.B.Salah,and Y.Saad,Int.J.Comput.Fluid Dynam.16(2002)1.

    [54]Y.Chen and C.Shen,IEEE Trans.Power Syst.21(2006)1096.

    [55]H.Asgharzadeh and I.Borazjani,J.Comput.Phys.331(2017)227.

    [56]D.Knoll and D.Keyes,J.Comput.Phys.193(2004)357.

    [57]A.Hajizadeh,H.Kazeminejad,and S.Talebi,Prog.Nucl.Energy 95(2017)48.

    真实男女啪啪啪动态图| 简卡轻食公司| 精品久久国产蜜桃| 丰满乱子伦码专区| 天美传媒精品一区二区| 搡老妇女老女人老熟妇| 亚洲狠狠婷婷综合久久图片| 露出奶头的视频| 五月玫瑰六月丁香| 久久久久久大精品| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 高清在线国产一区| 精品久久久久久久久久久久久| 校园春色视频在线观看| 欧美色欧美亚洲另类二区| xxxwww97欧美| 中出人妻视频一区二区| av黄色大香蕉| 欧美最黄视频在线播放免费| 欧美+日韩+精品| 不卡视频在线观看欧美| 婷婷亚洲欧美| 日韩精品中文字幕看吧| 精品不卡国产一区二区三区| 黄色配什么色好看| 波野结衣二区三区在线| 免费av不卡在线播放| 又紧又爽又黄一区二区| 免费人成在线观看视频色| av在线亚洲专区| 在线观看舔阴道视频| 又紧又爽又黄一区二区| 成人av一区二区三区在线看| 国产精品久久久久久亚洲av鲁大| 日本-黄色视频高清免费观看| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 亚洲精品一区av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| av专区在线播放| 久久精品国产亚洲av天美| 日韩大尺度精品在线看网址| 欧美日韩国产亚洲二区| 少妇高潮的动态图| 国产精品1区2区在线观看.| 精品一区二区三区视频在线观看免费| .国产精品久久| 一级黄色大片毛片| 中文亚洲av片在线观看爽| 1000部很黄的大片| av在线观看视频网站免费| 午夜福利欧美成人| 国产91精品成人一区二区三区| 久久久久久伊人网av| 国产男人的电影天堂91| 女生性感内裤真人,穿戴方法视频| 男女边吃奶边做爰视频| 成人特级av手机在线观看| av在线天堂中文字幕| 亚洲av一区综合| 欧美黑人巨大hd| 亚洲精品久久国产高清桃花| 久久久国产成人免费| 韩国av在线不卡| 国产精品久久久久久久久免| 精品久久久久久久久久久久久| 九九爱精品视频在线观看| 久久久久久久亚洲中文字幕| 免费一级毛片在线播放高清视频| 精品久久久久久久人妻蜜臀av| 成人精品一区二区免费| 亚洲无线观看免费| 黄色一级大片看看| 网址你懂的国产日韩在线| 国产一级毛片七仙女欲春2| 身体一侧抽搐| 欧美一区二区精品小视频在线| 成人国产一区最新在线观看| 日本五十路高清| 少妇丰满av| 91麻豆精品激情在线观看国产| 久久精品久久久久久噜噜老黄 | 久久精品国产鲁丝片午夜精品 | 日韩中字成人| 亚洲成人中文字幕在线播放| 亚洲综合色惰| 久久久成人免费电影| 欧美精品国产亚洲| 国产精品爽爽va在线观看网站| 久久久久久久午夜电影| 免费大片18禁| 亚洲黑人精品在线| 午夜福利视频1000在线观看| 三级毛片av免费| h日本视频在线播放| 999久久久精品免费观看国产| 亚洲人成网站在线播放欧美日韩| 免费无遮挡裸体视频| 我的老师免费观看完整版| 最好的美女福利视频网| 久久精品国产清高在天天线| 亚洲狠狠婷婷综合久久图片| 天天躁日日操中文字幕| 乱系列少妇在线播放| 成人亚洲精品av一区二区| 国产大屁股一区二区在线视频| 亚洲欧美日韩高清在线视频| 亚洲av中文字字幕乱码综合| 不卡视频在线观看欧美| 久久香蕉精品热| ponron亚洲| 国产一区二区三区av在线 | 亚洲国产精品久久男人天堂| 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| h日本视频在线播放| av.在线天堂| 神马国产精品三级电影在线观看| 国产视频一区二区在线看| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片免费观看直播| 最新中文字幕久久久久| 色综合站精品国产| 少妇猛男粗大的猛烈进出视频 | 欧美成人免费av一区二区三区| 亚洲国产精品久久男人天堂| 联通29元200g的流量卡| 欧美日韩瑟瑟在线播放| 欧美三级亚洲精品| 一级a爱片免费观看的视频| 一进一出好大好爽视频| 听说在线观看完整版免费高清| 欧美一区二区国产精品久久精品| 国产精品自产拍在线观看55亚洲| 在线观看美女被高潮喷水网站| 国产精品人妻久久久影院| 国国产精品蜜臀av免费| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 亚洲综合色惰| 免费看美女性在线毛片视频| 国产亚洲av嫩草精品影院| 国产69精品久久久久777片| 国产精品永久免费网站| 少妇的逼水好多| 精品福利观看| 大型黄色视频在线免费观看| 热99在线观看视频| 久久精品综合一区二区三区| 色精品久久人妻99蜜桃| 在线免费观看不下载黄p国产 | av在线观看视频网站免费| 国产91精品成人一区二区三区| 日本精品一区二区三区蜜桃| 亚洲七黄色美女视频| 成人av在线播放网站| 级片在线观看| 国产成人一区二区在线| 在线播放无遮挡| 又紧又爽又黄一区二区| 色在线成人网| 久久精品国产清高在天天线| 极品教师在线免费播放| 久9热在线精品视频| 最近最新中文字幕大全电影3| 免费在线观看日本一区| 欧美日韩瑟瑟在线播放| 久久欧美精品欧美久久欧美| 久久久久久伊人网av| 一夜夜www| 简卡轻食公司| 老师上课跳d突然被开到最大视频| 亚洲在线观看片| 欧美日韩国产亚洲二区| 亚洲 国产 在线| 变态另类丝袜制服| 久久亚洲真实| 热99re8久久精品国产| 欧美国产日韩亚洲一区| 真人做人爱边吃奶动态| 九九在线视频观看精品| 国产真实伦视频高清在线观看 | 99久久成人亚洲精品观看| 亚洲在线观看片| 国产高清不卡午夜福利| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 国内精品宾馆在线| 欧美成人免费av一区二区三区| 久久久久精品国产欧美久久久| 国内精品久久久久精免费| 内射极品少妇av片p| 国产亚洲精品久久久久久毛片| 熟妇人妻久久中文字幕3abv| 国产精品人妻久久久久久| 日日夜夜操网爽| 欧美潮喷喷水| 啦啦啦韩国在线观看视频| 人人妻人人看人人澡| 亚洲精品色激情综合| 日韩欧美三级三区| 国产黄a三级三级三级人| 久久精品影院6| 乱人视频在线观看| 国产精品爽爽va在线观看网站| 亚洲黑人精品在线| 国产日本99.免费观看| 天堂网av新在线| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 成人特级av手机在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 窝窝影院91人妻| 三级国产精品欧美在线观看| 在线免费观看的www视频| 女人十人毛片免费观看3o分钟| 99精品久久久久人妻精品| 尤物成人国产欧美一区二区三区| 中文字幕久久专区| 波野结衣二区三区在线| av中文乱码字幕在线| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 最新在线观看一区二区三区| 成人欧美大片| 在线观看av片永久免费下载| 国产精品一及| 嫩草影院入口| x7x7x7水蜜桃| 可以在线观看毛片的网站| 欧美最新免费一区二区三区| 精品久久久久久久久亚洲 | 亚洲人成网站在线播| 国产在线男女| ponron亚洲| 亚洲18禁久久av| 欧美xxxx黑人xx丫x性爽| 麻豆精品久久久久久蜜桃| 美女被艹到高潮喷水动态| 悠悠久久av| 日本精品一区二区三区蜜桃| 97热精品久久久久久| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| av天堂在线播放| 91久久精品国产一区二区三区| 免费搜索国产男女视频| 99热这里只有精品一区| 伦理电影大哥的女人| 午夜福利欧美成人| 一夜夜www| 日本撒尿小便嘘嘘汇集6| 国产成人a区在线观看| 欧美三级亚洲精品| 99久久中文字幕三级久久日本| 欧美成人性av电影在线观看| 两人在一起打扑克的视频| 在线播放无遮挡| 嫩草影视91久久| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影院新地址| 国产精品久久久久久久久免| netflix在线观看网站| 男女啪啪激烈高潮av片| 欧美性猛交黑人性爽| 午夜激情欧美在线| 国产亚洲精品综合一区在线观看| 色综合色国产| 精华霜和精华液先用哪个| 久久久久久久精品吃奶| 亚洲av电影不卡..在线观看| 久久久久久久久久成人| 久久欧美精品欧美久久欧美| 亚洲av日韩精品久久久久久密| 亚洲四区av| 欧美一级a爱片免费观看看| 国产一区二区三区视频了| 亚洲精品色激情综合| 日本一二三区视频观看| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 身体一侧抽搐| 国产黄a三级三级三级人| 亚洲国产色片| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| 亚洲性夜色夜夜综合| x7x7x7水蜜桃| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 国产国拍精品亚洲av在线观看| 亚洲av成人av| 熟女人妻精品中文字幕| 免费av观看视频| 成人毛片a级毛片在线播放| 99在线人妻在线中文字幕| 熟女人妻精品中文字幕| 看片在线看免费视频| 91午夜精品亚洲一区二区三区 | 女的被弄到高潮叫床怎么办 | 丰满乱子伦码专区| 亚洲成人久久爱视频| 人人妻人人看人人澡| 国产精品福利在线免费观看| 亚洲性夜色夜夜综合| 欧美高清性xxxxhd video| 日本黄色视频三级网站网址| 琪琪午夜伦伦电影理论片6080| 欧美xxxx黑人xx丫x性爽| av黄色大香蕉| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 在线免费十八禁| 人人妻人人看人人澡| 欧美日本亚洲视频在线播放| 一夜夜www| 日本三级黄在线观看| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 亚州av有码| 午夜激情欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 久久精品国产鲁丝片午夜精品 | 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| 丝袜美腿在线中文| 国产高清三级在线| 男女啪啪激烈高潮av片| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| 亚洲最大成人av| 婷婷丁香在线五月| 久久香蕉精品热| 女生性感内裤真人,穿戴方法视频| 男人的好看免费观看在线视频| 欧美3d第一页| 国产成人一区二区在线| 色噜噜av男人的天堂激情| 免费观看的影片在线观看| 91在线观看av| 日韩中字成人| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 久久久午夜欧美精品| 一区二区三区免费毛片| 人妻丰满熟妇av一区二区三区| 国产乱人视频| 日本a在线网址| 黄色丝袜av网址大全| 22中文网久久字幕| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| 日本熟妇午夜| 十八禁网站免费在线| 欧美日本亚洲视频在线播放| 国产精品久久久久久av不卡| av黄色大香蕉| 国产三级中文精品| 日本 欧美在线| av专区在线播放| 搡老岳熟女国产| 偷拍熟女少妇极品色| 亚洲av电影不卡..在线观看| 熟女电影av网| 色综合站精品国产| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 男人的好看免费观看在线视频| 女的被弄到高潮叫床怎么办 | 国产亚洲91精品色在线| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人中文字幕在线播放| 99国产精品一区二区蜜桃av| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 亚洲性夜色夜夜综合| 亚洲av成人精品一区久久| 国产av在哪里看| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 亚洲av美国av| 欧美中文日本在线观看视频| 日本黄色视频三级网站网址| 精品久久国产蜜桃| 亚洲国产精品久久男人天堂| 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件 | 深夜a级毛片| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 日韩精品有码人妻一区| 非洲黑人性xxxx精品又粗又长| 国产精品不卡视频一区二区| 国产不卡一卡二| 国产亚洲欧美98| av在线蜜桃| 欧美黑人巨大hd| 日韩欧美在线乱码| 亚洲av.av天堂| 91精品国产九色| 日日啪夜夜撸| 中亚洲国语对白在线视频| 亚洲午夜理论影院| 深夜精品福利| 91精品国产九色| 在线观看av片永久免费下载| 亚洲五月天丁香| 联通29元200g的流量卡| 久久亚洲精品不卡| 国产视频内射| 色哟哟哟哟哟哟| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 九九久久精品国产亚洲av麻豆| 97热精品久久久久久| 亚洲性久久影院| 亚洲av成人av| 免费看日本二区| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 日韩欧美三级三区| 欧美高清性xxxxhd video| 日本与韩国留学比较| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| 此物有八面人人有两片| 日本 欧美在线| 在线播放无遮挡| 他把我摸到了高潮在线观看| 一级av片app| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验 | 精品久久久久久久久久久久久| 天美传媒精品一区二区| 欧美性猛交╳xxx乱大交人| 亚洲在线观看片| 国产精品福利在线免费观看| 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 一个人免费在线观看电影| 久久久久久久久中文| 亚洲av成人av| 老女人水多毛片| 热99在线观看视频| 女人被狂操c到高潮| 国产精品一区二区性色av| 欧美激情在线99| 国产伦一二天堂av在线观看| 国国产精品蜜臀av免费| 国产aⅴ精品一区二区三区波| 日本黄大片高清| 69av精品久久久久久| 国产亚洲精品av在线| 久久久久久大精品| 亚洲av成人精品一区久久| 丰满的人妻完整版| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 亚洲精品影视一区二区三区av| 天堂网av新在线| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 赤兔流量卡办理| 国产精品,欧美在线| 国产日本99.免费观看| 全区人妻精品视频| 身体一侧抽搐| 国产精品一区二区三区四区久久| 精品久久国产蜜桃| a在线观看视频网站| 午夜视频国产福利| 国产不卡一卡二| 岛国在线免费视频观看| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 老女人水多毛片| 搡女人真爽免费视频火全软件 | 深夜精品福利| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 日日啪夜夜撸| 精品无人区乱码1区二区| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 国产黄片美女视频| 日日干狠狠操夜夜爽| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 两人在一起打扑克的视频| 国产av在哪里看| 很黄的视频免费| 精品人妻偷拍中文字幕| 久久久久九九精品影院| 国产熟女欧美一区二区| 亚洲精华国产精华精| av福利片在线观看| 中亚洲国语对白在线视频| 网址你懂的国产日韩在线| 亚洲av熟女| 日韩,欧美,国产一区二区三区 | 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 国产精品日韩av在线免费观看| 亚洲天堂国产精品一区在线| 99热网站在线观看| av黄色大香蕉| 88av欧美| 黄色欧美视频在线观看| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 日韩精品有码人妻一区| 久99久视频精品免费| 国产极品精品免费视频能看的| 欧美一区二区亚洲| 免费人成在线观看视频色| 免费电影在线观看免费观看| 久久精品国产鲁丝片午夜精品 | 成年人黄色毛片网站| 亚洲电影在线观看av| 午夜老司机福利剧场| 亚洲人成网站在线播放欧美日韩| av视频在线观看入口| 国产探花极品一区二区| 欧美成人性av电影在线观看| 在线国产一区二区在线| 国产男人的电影天堂91| 一本精品99久久精品77| 免费不卡的大黄色大毛片视频在线观看 | 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 国产成人aa在线观看| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 欧美极品一区二区三区四区| avwww免费| 十八禁国产超污无遮挡网站| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 狂野欧美激情性xxxx在线观看| 国产av麻豆久久久久久久| 嫩草影院精品99| 精品福利观看| 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 很黄的视频免费| 3wmmmm亚洲av在线观看| 国产av一区在线观看免费| 国产亚洲91精品色在线| 免费av观看视频| 欧美在线一区亚洲| 小说图片视频综合网站| 精品一区二区三区视频在线| av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站在线播| 在线免费观看的www视频| 99久久精品一区二区三区| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 国产高清视频在线观看网站| 久久久久免费精品人妻一区二区| 露出奶头的视频| 少妇熟女aⅴ在线视频| 日本 欧美在线| av在线蜜桃| 色视频www国产| 欧美日韩精品成人综合77777| 国产精品久久电影中文字幕| 天堂动漫精品| 午夜日韩欧美国产| 69av精品久久久久久| 动漫黄色视频在线观看| 无人区码免费观看不卡| 久久精品国产自在天天线| 一本精品99久久精品77| 丰满乱子伦码专区| 欧美激情久久久久久爽电影| a在线观看视频网站| 嫩草影视91久久| 老司机午夜福利在线观看视频| 3wmmmm亚洲av在线观看| 观看免费一级毛片| 亚洲av日韩精品久久久久久密| 免费av观看视频|