王珺婷, 鐘 鳴, 劉 潔
(1.中國醫(yī)科大學(xué) 口腔醫(yī)學(xué)院,沈陽 110002; 2.中國醫(yī)科大學(xué) 中心實(shí)驗(yàn)室,沈陽 110002)
Baekkevold等[1]在小靜脈高壁內(nèi)皮細(xì)胞中分離得到IL-33分子,并命名為“高壁內(nèi)皮細(xì)胞來源的核因子(NF-HEV)”。Schmitz等[2]通過搜索序列數(shù)據(jù)庫發(fā)現(xiàn)該基因序列與IL-1,白細(xì)胞介素-18(interleukin-18,IL-18)相似,將其歸類為IL-1家族,并命名為IL-33。IL-33的編碼基因位于9號(hào)染色體短臂上的7個(gè)外顯子,N端1-3外顯子編碼結(jié)構(gòu)包括核定位序列和染色質(zhì)結(jié)合序列,C末端4-7外顯子編碼細(xì)胞因子結(jié)構(gòu)域[3]。因此,IL-33是一個(gè)雙功能蛋白,既是促炎細(xì)胞因子,又是具有調(diào)控轉(zhuǎn)錄功能的細(xì)胞核因子。
IL-33不具有與炎癥相關(guān)的半胱天冬酶(Caspase-1、Caspase-4、Caspase-5)直接剪切位點(diǎn),而是通過激活細(xì)胞中半胱天冬酶(Caspase-3和Caspase-7)產(chǎn)生IL-331-178和IL-33179-270,這些形式主要由凋亡的細(xì)胞釋放并且生物活性很低[4]。最近研究發(fā)現(xiàn),中性粒細(xì)胞和肥大細(xì)胞中的絲氨酸蛋白酶、組織蛋白酶G和彈性蛋白酶可裂解全長IL-331-270并產(chǎn)生成熟的形式IL-3395-270、IL-3399-270和IL-33109-270,這些形式均由損傷或壞死的細(xì)胞釋放到胞外,并且比全長IL-33的生物學(xué)活性高10倍、甚至30倍[5]。全長IL-331-270與組蛋白相互作用,促進(jìn)染色質(zhì)凝集,并通過P65抑制核轉(zhuǎn)錄因子(Nuclear factor kappa binding,NF-κB)信號(hào)通路的轉(zhuǎn)錄活性,使NF-κB表達(dá)基因變?nèi)?,從而抑制了炎癥反應(yīng)[6]。綜上所述,細(xì)胞核內(nèi)的全長IL-331-270不具有促炎反應(yīng)。當(dāng)細(xì)胞損傷或壞死時(shí),釋放到細(xì)胞外的成熟IL-3395-270、IL-3399-270和IL-33109-270促進(jìn)炎癥反應(yīng),激活免疫系統(tǒng),提供了損傷信號(hào)。IL-33在多種疾病中發(fā)生作用,如過敏、自身免疫性疾病、變態(tài)反應(yīng)性疾病、心血管疾病、感染和腫瘤[7]。在這里,我們主要總結(jié)IL-33在腫瘤中的作用。
1989年Tominaga等[8]在BALB/c-3T3細(xì)胞系中發(fā)現(xiàn)ST2基因,ST2由IL1RL1基因編碼,有sST2、ST2L、ST2V和ST2LV 4種亞型,其中sST2不具有跨膜序列,可分泌到細(xì)胞外,為可溶型ST2,僅表達(dá)于肥大細(xì)胞和成纖維細(xì)胞中。ST2L具有跨膜序列,不能分泌到細(xì)胞外,為跨膜型ST2,表達(dá)于成纖維細(xì)胞、肥大細(xì)胞、嗜酸性粒細(xì)胞、Th2(helper T cell2,Th2)淋巴細(xì)胞、樹突狀細(xì)胞、自然殺傷細(xì)胞(natural killer cell,NK)和NKT細(xì)胞等,并可在巨噬細(xì)胞中誘導(dǎo)產(chǎn)生[9]。ST2L與IL-1受體輔助蛋白和IL-33結(jié)合,刺激信號(hào)通路,激活NF-κB和絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)等途徑[10]。
IL-1受體輔助蛋白(IL-1 receptor accessory protein,IL-1RAcP)是ST2與IL-33結(jié)合的共受體,增加了ST2對(duì)IL-33的親和力,IL-33、ST2和IL-1RAcP組成異二聚體,將信號(hào)傳導(dǎo)到細(xì)胞內(nèi),募集髓樣分化因子88(myeloid differentiation primary response gene 88,MyD88)及其相關(guān)蛋白IL-1R相關(guān)激酶1(interleukin-1 receptor-associated kinase1,IRAK1)、相關(guān)蛋白IL-1R相關(guān)激酶4(interleukin-1 receptor-associated kinase4,IRAK4)與腫瘤壞死因子受體相關(guān)因子6(tumor necrosis factor-associated factor 6,TRAF6)分子結(jié)合,激活NF-κB、MAPK等途徑,強(qiáng)烈誘導(dǎo)前炎癥因子和趨化因子的產(chǎn)生,從而發(fā)揮生物學(xué)效應(yīng)[11](圖1)。
IL-33/ST2信號(hào)是通過多種機(jī)制調(diào)節(jié)。在肥大細(xì)胞中,酪氨酸激酶受體c-kit可正向調(diào)節(jié)信號(hào)通路[12]。而IL-1受體家族成員單一免疫球蛋白IL-1受體相關(guān)因子/Toll IL-1R8 (SIGIRR,又稱TIR8)可以負(fù)向調(diào)節(jié)IL-33/ST2信號(hào)通路[13]。sST2也可作為誘騙受體,與IL-33結(jié)合,對(duì)IL-33/ST2信號(hào)通路起負(fù)性調(diào)節(jié)作用,Tong等在培養(yǎng)上皮性卵巢癌細(xì)胞時(shí)發(fā)現(xiàn),加入sST2培養(yǎng)的癌細(xì)胞減少了,并且Ki-67的表達(dá)也減少了[14]。
炎癥與腫瘤之間存在著密切的關(guān)系。各種炎癥細(xì)胞因子或者細(xì)胞因子相關(guān)介質(zhì)對(duì)腫瘤細(xì)胞的增殖與凋亡活動(dòng)具有直接作用,從而影響腫瘤細(xì)胞的行為[15]。當(dāng)機(jī)體受到感染或在創(chuàng)傷修復(fù)時(shí)會(huì)持久激活和趨化大量白細(xì)胞如巨噬細(xì)胞、中性粒細(xì)胞、肥大細(xì)胞、淋巴細(xì)胞、樹突狀細(xì)胞聚集在損傷部位,通過分泌多種不同的生長因子、炎性因子,促進(jìn)腫瘤細(xì)胞生長,并使腫瘤成為永不愈合的創(chuàng)傷[16]。因此,腫瘤炎性微環(huán)境的維持在啟動(dòng)及促進(jìn)腫瘤惡性演進(jìn)的過程中發(fā)揮十分關(guān)鍵的作用。
圖1 IL-33/ST2信號(hào)通路[11]Fig 1 IL-33/ST2 signaling pathway
IL-33在多種細(xì)胞中表達(dá),包括上皮細(xì)胞、纖維母細(xì)胞、巨噬細(xì)胞、內(nèi)皮細(xì)胞、肥大細(xì)胞、樹突狀細(xì)胞以及成骨細(xì)胞等,這些細(xì)胞損傷時(shí)釋放IL-33,而IL-33可以根據(jù)細(xì)胞類型產(chǎn)生不同的炎癥反應(yīng)[3]。IL-33誘導(dǎo)Th2淋巴細(xì)胞產(chǎn)生白細(xì)胞介素-5(interleukin-5,IL-5)和白細(xì)胞介素-13(interleukin-13,IL-13)等細(xì)胞因子;IL-33刺激肥大細(xì)胞產(chǎn)生白細(xì)胞介素-4(interleukin-4,IL-4)、白細(xì)胞介素-5(interleukin-5,IL-5)、白細(xì)胞介素-6(interleukin-6,IL-6)等細(xì)胞因子;IL-33使中性粒細(xì)胞遷移,巨噬細(xì)胞產(chǎn)生活性表型M2,嗜酸性粒細(xì)胞脫顆粒,并產(chǎn)生活性氧和IL-5[17]。因此,IL-33是腫瘤炎性微環(huán)境的主要成分,其促進(jìn)著腫瘤的發(fā)生發(fā)展。腫瘤的發(fā)生是多階段、多因素的惡性轉(zhuǎn)化過程。IL-33主要通過以下機(jī)制促進(jìn)腫瘤的發(fā)生和發(fā)展。
2.1.1 促進(jìn)腫瘤的免疫調(diào)節(jié)
T淋巴細(xì)胞在機(jī)體免疫調(diào)節(jié)和免疫應(yīng)答中具有重要作用,根據(jù)其在發(fā)育過程中細(xì)胞表面抗原不同,將其分為CD4+T細(xì)胞和CD8+T細(xì)胞,免疫應(yīng)答過程中CD4+T細(xì)胞對(duì)宿主防御和炎癥性反應(yīng)均有重要作用[18]。CD4+T細(xì)胞有多個(gè)亞群,包括Th1(helper T cell1,Th1)、Th2、Th17(helper T cell17,Th17)、Th9(helper T cell9,Th9)、調(diào)節(jié)性T細(xì)胞(Regulatory cells,Treg)等細(xì)胞[19]。正常情況下,Th1細(xì)胞、Th2細(xì)胞及其相關(guān)細(xì)胞因子是處于一個(gè)動(dòng)態(tài)平衡狀態(tài),在維持機(jī)體免疫平衡狀態(tài)起到重要作用;在腫瘤微環(huán)境中,機(jī)體對(duì)腫瘤的免疫反應(yīng)以Th1型免疫反應(yīng)為主,若發(fā)生偏移,形成Th2型免疫反應(yīng),就會(huì)造成免疫功能的改變,并促進(jìn)腫瘤發(fā)展[20]。
ST2是選擇性表達(dá)在Th2細(xì)胞表面,而在Th1細(xì)胞上不表達(dá),在炎癥環(huán)境中,細(xì)胞損傷可以導(dǎo)致IL-33的釋放,通過IL-33/ST2信號(hào)通路促進(jìn)腫瘤的發(fā)生[10]。同時(shí),在腫瘤微環(huán)境中也可產(chǎn)生IL-33,通過IL-33/ST2信號(hào)通路激活下游NF-κB等通路,誘導(dǎo)Th2型細(xì)胞因子分泌增多,Th1型細(xì)胞因子分泌減少,使得原本的平衡狀態(tài)向Th2型偏移,促進(jìn)腫瘤發(fā)展和免疫逃逸[21]。Jovanovic等[22]制作小鼠乳腺癌模型的研究發(fā)現(xiàn)IL-33可以誘導(dǎo)野生型小鼠的Th2細(xì)胞分泌白細(xì)胞介素-10(interleukin-10,IL-10)和IL-13,并且IL-33可以刺激未成熟的樹突狀細(xì)胞產(chǎn)生Treg,從而共同促進(jìn)腫瘤發(fā)展和轉(zhuǎn)移;此外,ST2L信號(hào)可能引起腫瘤細(xì)胞產(chǎn)生胸腺基質(zhì)淋巴細(xì)胞生成素,其誘導(dǎo)樹突狀細(xì)胞產(chǎn)生IL-4與IL-10、IL-13共同促進(jìn)腫瘤的免疫逃逸,在ST2L缺乏的小鼠體內(nèi),IL-33不能誘導(dǎo)Th2型細(xì)胞因子分泌,在這種情況下,M1型巨噬細(xì)胞產(chǎn)生白細(xì)胞介素-12(interleukin-12,IL-12),成熟樹突狀細(xì)胞,并促進(jìn)Th1細(xì)胞分泌IFN-γ,激活NK、NKT細(xì)胞和CD8+的T淋巴細(xì)胞,從而促進(jìn)抗腫瘤免疫。
2.1.2 促進(jìn)腫瘤的增殖、侵襲和轉(zhuǎn)移
經(jīng)大量的研究表明,IL-33可以通過以下幾種方式促進(jìn)腫瘤的侵襲和轉(zhuǎn)移。
1)通過激活MAPKs信號(hào)通路。ERK1/2通路屬于MAPKs通路的一條分支,ERK1/2通路可以改變TGF-β,從而干擾細(xì)胞的抗增殖作用[23]。研究表明,IL-33及其受體ST2誘導(dǎo)ERK1/2通路的激活,并增加金屬蛋白酶(MMP-3)和白細(xì)胞介素-6(interleukin-6,IL-6)的分泌,從而促進(jìn)胃癌細(xì)胞侵襲和轉(zhuǎn)移[24]。Tong等[14]通過研究信號(hào)通路表明,IL-33增加ERK和c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)的磷酸化,ERK和JNK也屬于MAPKs通路的分支,使用ERK抑制劑U0126和JNK抑制劑SP600125,發(fā)現(xiàn)IL-33對(duì)上皮性卵巢癌細(xì)胞(EOC)增殖、侵襲和轉(zhuǎn)移的作用得到抑制。
2)通過激活NF-κB信號(hào)通路。NF-κB是一種轉(zhuǎn)錄因子,在整個(gè)生命過程中起著至關(guān)重要的作用,包括免疫反應(yīng)、炎癥、細(xì)胞生長和存活,NF-κB信號(hào)通路的激活可以誘導(dǎo)金屬蛋白酶(MMP-2)和血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)表達(dá)增加,促進(jìn)腫瘤血管的生成,增強(qiáng)腫瘤的增殖與侵襲能力[25]。不僅如此,NF-κB亞基P65可以誘導(dǎo)上皮間充質(zhì)轉(zhuǎn)化(EMT),EMT是腫瘤發(fā)生發(fā)展中一種關(guān)鍵的細(xì)胞機(jī)制,通過改變細(xì)胞形態(tài)和細(xì)胞性質(zhì),使細(xì)胞與細(xì)胞之間的黏附消失,從而促進(jìn)腫瘤細(xì)胞的轉(zhuǎn)移[26]。
2.1.3 促進(jìn)腫瘤血管的生成
一氧化氮(nitric oxide, NO)一般具有擴(kuò)張血管等有益的生理作用,但其作用隨著所處環(huán)境而改變,在腫瘤微環(huán)境中,低濃度的NO有助于血管生成,使腫瘤的血流量增加,營養(yǎng)增多,促進(jìn)了腫瘤的生長[27]。IL-33及其受體ST2通過TRAF6介導(dǎo)的內(nèi)皮型一氧化氮合酶途徑,使血管內(nèi)皮細(xì)胞產(chǎn)生NO,從而誘導(dǎo)血管生成和增加血管通透性[28]。Ishikawa等[29]通過CD34染色舌鱗狀細(xì)胞癌間質(zhì),計(jì)算微脈管密度(microvessel density,MVD),發(fā)現(xiàn)IL-33的表達(dá)與MVD成正相關(guān),證實(shí)IL-33可以誘導(dǎo)血管生成。在結(jié)腸癌小鼠模型中,腺瘤狀細(xì)胞產(chǎn)生IL-33,并激活肥大細(xì)胞和上皮下肌纖維母細(xì)胞。這些細(xì)胞釋放VEGF、破骨細(xì)胞分化因子(TNF-related activation-induced cytokine,TRANCE)等,從而促進(jìn)腫瘤的生長[30]。
最新的研究表明,由于ST2L還在NK、NKT、CD8+T等細(xì)胞中表達(dá),這些細(xì)胞在IL-33刺激下產(chǎn)生IFN-γ,提示了IL-33/ST2可以增強(qiáng)抗原特異性Th1細(xì)胞和CD8+T細(xì)胞的免疫反應(yīng),其在提高腫瘤監(jiān)測和抗腫瘤免疫中的作用是值得研究的[9]。Gao等[31]制作小鼠B16黑色素瘤和肺癌模型,并發(fā)現(xiàn)IL-33可以抑制小鼠腫瘤的生長和轉(zhuǎn)移。IL-33誘導(dǎo)NF-κB的活化,并增加CD69的表達(dá),CD69是CD8+T細(xì)胞和NK細(xì)胞亞群的一個(gè)活化標(biāo)志,從而激活了CD8+T細(xì)胞和NK細(xì)胞,并發(fā)揮抗腫瘤作用[32]。此外,IL-33和IL-12能刺激Tc1細(xì)胞生產(chǎn)IFN-γ,IL-12和IFN-γ共同刺激NK細(xì)胞和NKT細(xì)胞,IL-33和IL-12還可以促進(jìn)CD8+T細(xì)胞,促進(jìn)Th1型免疫反應(yīng),共同發(fā)揮抗腫瘤作用[33]。
目前,對(duì)IL-33及其受體的抗腫瘤作用的研究還在不斷地深入。在不同腫瘤所在的各種腫瘤微環(huán)境中,IL-33對(duì)腫瘤的作用是不同的,產(chǎn)生差異的具體原因尚不明確,需要進(jìn)一步探究。
近年來研究表明,在腫瘤的發(fā)生、發(fā)展中存在著大量RNA異常,包括異常的微小RNA(microRNA,miRNA)、長鏈非編碼RNA(long non-coding RNA,lncRNA)、環(huán)狀RNA (circular RNA,circRNA)[34]等;還伴隨有RNA 轉(zhuǎn)錄、加工及調(diào)控功能的異常,如RNA選擇性剪接、RNA編輯、 競爭性內(nèi)源RNA調(diào)控等,這些非編碼RNA可以在轉(zhuǎn)錄后水平及表觀遺傳學(xué)水平調(diào)控癌基因和抑癌基因的功能,影響腫瘤的發(fā)生和發(fā)展,是腫瘤診斷、治療及預(yù)后判斷的潛在靶點(diǎn)[35]。目前,關(guān)于IL-33的相關(guān)非編碼RNA的研究僅有兩篇報(bào)道。Millar等[36]研究發(fā)現(xiàn)在肌腱修復(fù)重塑早期,從1型膠原過渡到3型膠原的過程中IL-33起重要作用,并發(fā)現(xiàn)IL-33受miRNA29a調(diào)控,當(dāng)miRNA29a下調(diào),IL-33表達(dá)上調(diào),促進(jìn)3型膠原的生成,幫助肌腱重塑。Xiang等[37]研究表明在骨髓來源巨噬細(xì)胞分化過程中,miRNA-487b可以抑制IL-33的表達(dá),從而抑制抗原傳遞、共刺激分子和炎性介質(zhì)的表達(dá),影響先天免疫宿主防御反應(yīng)和炎性反應(yīng)。非編碼RNA在疾病中發(fā)揮著重要的調(diào)控作用,IL-33相關(guān)的非編碼RNA是值得進(jìn)一步研究和探討的。
隨著人們對(duì)IL-33研究的逐漸深入,IL-33在疾病中的作用機(jī)制更加清晰,與各種腫瘤之間的聯(lián)系也有了進(jìn)一步的了解,不難發(fā)現(xiàn)IL-33在腫瘤發(fā)生發(fā)展中具有重要作用。通過上述多項(xiàng)研究證實(shí) IL-33高表達(dá)與肺癌、卵巢癌、結(jié)腸癌、乳腺癌、鱗狀細(xì)胞癌等腫瘤惡性程度密切相關(guān),這提示IL-33能成為腫瘤臨床診斷和預(yù)后評(píng)估的標(biāo)志[14,22,24,29-30]。IL-33還可以誘導(dǎo)抗腫瘤反應(yīng),這預(yù)示著IL-33可以作為一種有效的抗腫瘤制劑[26]。雖然近年來有大量的針對(duì)IL-33的研究并取得一定進(jìn)展,但I(xiàn)L-33在其他腫瘤中的作用及機(jī)制還需要進(jìn)一步研究,為腫瘤的診斷、治療以及預(yù)后評(píng)估開辟新思路。
[1]BAEKKEVOLD E S, ROUSSIGNé M, YAMANAKA T, et al.Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelialvenules[J].Am J Pathol, 2003, 163(1): 69-79.
[2]SCHMITZ J, OWYANG A, OLDHAM E, et al.IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type2-associated cytokines[J].Immunity, 2005, 23(5): 479-490.
[3]XU H, TURNQUIST H R, HOFFMAN R, et al.Role of the IL-33-ST2 axis in sepsis[J].Mil Med Res, 2017, 4:3.
[4]GARLANDA C, DINARELLO C A, MANTOVANI A.The interleukin-1 family: back to the future[J].Immunity, 2013, 39(6): 1003-1018.
[5]LEFRANAIS E, ROGA S, GAUTIER V, et al.IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G[J].Proc Natl Acad Sci USA, 2012, 109(5): 1673-1678.
[6]LEFRANAIS E, DUVAL A, MIREY E, et al.Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells[J].Proc Natl Acad Sci USA, 2014, 111(43): 15502-15507.
[7]ARSHAD M I, KHAN H A, NOEL G, et al.Potential therapeutic aspects of alarmin cytokine interleukin 33 or its inhibitors in various diseases[J].Clin Ther, 2016, 38(5): 1000-1016.
[8]TOMINAGA S, TAGO K, TSUDA H.Dual function of IL-33 on proliferation of NIH-3T3 cells[J].Cytokine, 2015, 72(1): 105-108.
[9]MILLAR N L, O′DONNELL C, MCINNES I B, et al.Wounds that heal and wounds that don′t-the role of the IL-33/ST2 pathway in tissue repair and tumorigenesis[J].Semin Cell Dev Biol, 2017, 61: 41-50.
[10]GRIESENAUER B, PACZESNY S, et al.The ST2/IL-33 axis in immune cells during inflammatory diseases[J].Front Immunol, 2017, 8: 475.
[11]MARTIN M U.Special aspects of interleukin-33 and the IL-33 receptor complex[J].Semin Immunol, 2013, 25(6): 449-457.
[12]DRUBE S, SCHMITZ F, GPFERT C, et al.C-Kit controls IL-1β-induced effector functions in HMC-cells[J].Eur J Pharmacol, 2012, 675(1-3): 57-62.
[13]GARLANDA C, ANDERS H J, MANTOVANI A.TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization[J].Trends Immunol, 2009, 30(9): 439-446.
[14]TONG X, BARBOUR M, HOU K, et al.Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis throughregulating ERK and JNK signaling pathways[J].Mol Oncol, 2016, 10(1): 113-125.
[15]呂雁玲, 梁文紅.白細(xì)胞介素-22與口腔疾病研究進(jìn)展[J].中國實(shí)用口腔科雜志, 2017, 10(2): 113-116
[16]GRIVENNIKOV S I, GRETEN F R, KARIN M.Immunity, inflammation and cancer[J].Cell, 2010, 140(6): 883-899.
[17]DE LA FUENTE M, MACDONALD T T, HERMOSO M A.The IL-33/ST2 axis: role in health and disease[J].Cytokine Growth Factor Rev, 2015, 26(6): 615-623.
[18]HIRAHARA K, NAKAYAMA T.CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J].Int Immunol, 2016, 28(4): 163-171.
[19]TASHIREVA L A, PERELMUTER V M, MANSKIKH V N, et al.Types of immune-inflammatory responses as a reflection of cell-cell interactions under conditions of tissue regeneration and tumor growth[J].Biochemistry (Mosc), 2017, 82(5): 542-555.
[20]BLEOTU C, CHIFIRIUC M C, GRIGORE R, et al.Investigation of Th1/Th2 cytokine profiles in patients with laryngo-pharyngeal,HPV-positive cancers[J].Eur Arch Otorhinolaryngol, 2013, 270(2): 711-718.
[21]WASMER M H, KREBS P.The Role of IL-33-dependent inflammation in the tumor microenvironment[J].Front Immunol, 2017, 7: 682.
[22]JOVANOVIC I P, PEJNOVIC N N, RADOSAVLJEVIC G D, et al.IL-33/ST2 axis in innate and acquired immunity to tumors[J].Oncoimmunology, 2012, 1(2): 229-231.
[23]DHILLON A S, HAGAN S, RATH O, et al.MAP kinase signalling pathways in cancer[J].Oncogene, 2007, 26(22): 3279-3290.
[24]YU X X, HU Z, SHEN X, et al.IL-33 promotes gastric cancer cell invasion and migration via ST2-ERK1/2 pathway[J].Dig Dis Sci, 2015, 60(5): 1265-1272.
[25]PRASAD S, RAVINDRAN J, AGGARWAL B B.NF-kappa B and cancer: how intimate is this relationship[J].Mol Cell Biochem, 2010, 336(1-2): 25-37.
[26]JULIEN S, PUIG I, CARETTI E, et al.Activation of NF-kappa B by Akt upregulates snail expression and induces epithelium mesenchyme transition[J].Oncogene, 2007, 26(53): 7445-7456.
[27]VAHORA H, KHAN M A, ALALAMI U, et al.The potential role of nitric.Oxide in halting cancer progression through chemoprevention[J].J Cancer Prev, 2016, 21(1): 1-12.
[28]CHOI Y S, CHOI H J, MIN J K, et al.Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitricoxide production[J].Blood, 2009,114(14): 3117-3126.
[29]ISHIKAWA K, YAGI-NAKANISHI S, NAKANISHI Y, et al.Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of thetongue[J].Auris Nasus Larynx, 2014, 41(6): 552-557.
[30]MAYWALD R L, DOERNER S K, PASTORELLI L, et al.IL-33 activates tumor stroma to promote intestinal polyposis[J].Proc Natl Acad Sci USA, 2015, 112(19): E2487-E2496.
[31]GAO K, LI X, ZHANG L, et al.Transgenic expression of IL-33 activates CD8+ T cells and NK cells and inhibits tumor growth and metastasis inmice[J].Cancer Lett, 2013, 335(2): 463-471.
[32]VILLARREAL D O, WEINER D B.Interleukin 33: a switch-hitting cytokine[J].Curr Opin Immunol, 2014, 28: 102-106.
[33]KOMAI-KOMA M, WANG E, KUROWSKA-STOLARSKA M, et al.Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12[J].Immunobiology, 2016, 221(3): 412-417.
[34]BEERMANN J, PICCOLI M T, VIERECK J, et al.Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J].Physiol Rev, 2016, 96(4): 1297-1325.
[35]QU J, LI M, ZHONG W, et al.Competing endogenous RNA in cancer: a new pattern of gene expression regulation[J].Int J Clin Exp Med, 2015, 8(10): 17110-17116.
[36]MILLAR N L, GILCHRIST D S, AKBAR M, et al.MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease[J].Nat Commun, 2015, 6: 6774.
[37]XIANG Y, EYERS F, HERBERT C, et al.MicroRNA-487b is a negative regulator of macrophage activation by targeting IL-33 production[J].J Immunol, 2016, 196(8): 3421-3428.