• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of the Shapes of the Super-Rogue Waves

    2018-03-28 12:30:15LUWenyueYANGJianmin
    船舶力學(xué) 2018年3期

    LU Wen-yue,YANG Jian-min

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    0 Introduction

    As an increasing number of accidents that occurred in recent years are believed to be associated with rogue waves,the physical mechanisms of this phenomenon have attracted much interest of researchers and offshore industry.Serious studies of the phenomenon started about 20-30 years ago and have intensified during the recent decade[1-5].One remarkable feature of the rogue waves is that they always appear from nowhere and quickly disappear without a trace.Thus,there is little useful at-sea evidence except for a limited number of visual sightings and a few photographic records.The study of the complex shapes of such extreme events becomes ultra-rear.As the nonlinear dynamics is one of the approaches to investigate the mechanisms of the formation of the rogue wave,the localised focusing of the wave energy is regarded as being the result of the modulational instability of uniformly traveling trains of Stokes waves in deep water.The modulational instability,which is also known as the Benjamin-Feir instability,has been extensively studied[6-8].The nonlinear process of the modulational instability of deep water waves is now widely accepted to be one of the main mechanisms to explain the generation of such extreme events.

    The modulational instability was widely investigated based on the nonlinear Schr?dinger(NLS)equation.The NLS equation was first derived by Zakharov[8]under the assumptions of being weakly nonlinear and spectrally narrowbandness,which is a relatively simple model that can be used to describe the evolution of the envelope of slowly modulated surface waves.Subsequently,the NLS equation was also derived by Mei[9]using a multiple-scale perturbation method.Then Dysthe[10]extended the envelope equation to include the fourth-order of ε(i.e.the wave steepness)by taking the perturbation expansion to the next order,obtaining the modified nonlinear Schr?dinger equation(mNLS equation).Compared with the NLS equation,the mNLS equation retains the same spectral width constraint as the original NLS equation in O(ε)but accounts for the effects of several higher-order terms,such as nonlinear dispersion,first order dispersion of linear waves and the effect of wave induced current.Thus the mNLS equation can better describe the evolution of nonlinear waves than the NLS equation.

    Fig.1 The profile of the first-order rational solution of the NLS equation.The maximum amplitude reaches the value of 3 times larger than the background carrier wave at the position X=0,T=0

    One class of the NLS solutions have been regarded as being the prototype of a class of the rogue waves developing in a plane wave background[11-13].The whole hierarchy of rational solutions of the NLS equation can be constructed by using the modified Darboux Transformation[14].The first order rational solution is also known as the Peregrine breather which is identified with the limiting case of both the Ma solitons[15]and the Akhmediev breather[16]which is localized both temporally and spatially.It also describes the amplification of an initial infinitesimal disturbance of a plane wave and in which the maximum amplitude can reach three times of the initial wave amplitude.Fig.1 shows this solution,demonstrating clearly its spatial and temporal localization.It illustrates mathematically waves that can appear from nowhere and then disappear without a residual trace.At the position X=0,T=0,it generates a high amplitude rogue wave when the carrier wave reaches the peak value.

    Higher-order rational breather solutions have also been reported as discussed in Refs.[14,16-19],which are localized both in time and space.They describe the superposition of the group of rogue waves and can result in waves that reach even higher amplitudes.Following the procedure mentioned above,higher-order rational solutions of the NLS equation can be constructed.Such waves have been usually named the super-rogue waves.The amplitude profiles of the national solutions from the 2nd order to 5th order are demonstrated in Fig.2.It was found[14]that the wave amplification described by different order rational solutions can reach 2j+1 times of the background waves,where j is the order of the rational solution.Additionally,the rational solutions of the NLS equation turn out to be reproducible in wave tank facilities[20-23].

    Fig.2 The profile of the higher-order rational solutions of the NLS equation with the background amplitude q=1.The maximum amplitude of the jth order solution reaches the value of 2j+1 times larger than the background carrier wave at the position X=0,T=0

    In this paper,the generation and evolution of 1st~5th order super-rogue waves were simulated numerically by solving the mNLS equation in order to investigate the shape of the super-rogue waves.The 4th order split-step pseudo-spectral method was used during the integral process in order to obtain more accurate results.Shapes of the super-rogue waves were analyzed by adoption of the conversion of coordinates and interpolation.

    1 Mathematical model and numerical scheme

    1.1 Mathematical model

    In this section,the mNLS equation was used to simulate the generation and evolution of the super rogue waves numerically.

    where B denotes the first harmonic of the complex velocity potential,is the mean velocity potential and the mean surface elevation due to radiation stress caused by the modulation of a finite amplitude wave,k and ω are the wave number and the wave frequency of the carrier wave respectively,cgis defined by cg=ω/2k as the group velocity and U denotes the current velocity.The complex conjugate is denoted by ‘*’.The velocity potential of the induced mean currentis governed by:

    satisfying the boundary condition:

    In order to compare the numerical results with the experimental measurements made in the associated follow-up study,it is more convenient to use the spatial version of mNLS.Thus we introduce the dimensionless variables similar to Lo and Mei in Ref.[24]:

    where ε=ka and γ is a scale factor which renders the computational domain in ξ to 2π.With the primes omitted for brevity,the Eqs.(3)-(6)are redefined as follows:

    However,there is a significant point that has to be addressed when analyzing the surface elevation and the velocity potential.Noticeably,the amplitude B and the surface elevation ζ are different functions.Thus,the maximums of B and ζ may attain significantly different values.Then,the surface elevation is computed up to the third order of the bound waves.Namely,the wave surface elevation is obtained as follows:

    where Ψ=-η/ε2+ξ/εγ is the phase function of the carrier waves.

    1.2 Numerical scheme

    The mNLS equations can be solved numerically by the split-step pseudo-spectral method[24],with a modification in which we used the fourth-order split-step method[25]and fourth-order Runge-Kutta method during the iteration processes of the linear part and nonlinear part respectively.The linear part and the nonlinear part of Eq.(8)are solved separately at each step.For the nonlinear part,we firstly solve the equation

    In order to avoid the aliasing that can occur in numerical solutions,the rectangular window function is adopted during the Fast Fourier Transform.Since these higher order modes do not contribute to B,this does not change the overall solution.

    In the numerical simulations,using the dimensionless variables the same as given in Eq.(11),we can obtain the ‘initial’condition of the super-rogue waves up to fifth order.65 536 grid points were used in a very large time interval corresponding to a sufficiently small value of parameter γ and the spatial integration step was set to be 3.75 cm which is considered to be sufficiently small in order to ensure the avoidance of numerical instabilities.In order to reconstruct the surface elevation from the solution of B and φˉ,65 536 grid points were used to represent the wave surface elevation.Thus,it is necessary to translate Eq.(12)to a discreteversion:

    where ν=0,±1,±2,±3,…,±N/2 is Fourier mode.

    Due to the occurrence of wave breaking during the amplification process of the wave amplitude for these rational solutions and the convenience for the comparison among the superrogue waves of the different orders,the choices for the parameters of the initial wave steepness were selected to be near the wave breaking condition of the 5th order rational solution based on the experiments cited in Refs.[20,23,26].Since the rational solutions of the NLS equation are defined on the infinite domain,the scale factor γ was set to be sufficiently small so that the time intervals can be much wider than the characteristic localization interval.Since the parameters used in numerical simulation is quite small,it needs very large spatial length for the 1st-5th order super-rogue waves to generate from small disturbance.The distance between the wave maker and the pre-arranged focusing point is 250 m and the total length of the numerical simulation is 300 m.The parameters that are used in the numerical simulations are given in Tab.1.

    Tab.1 Parameters used for numerical simulations of first-to fifth-order rational solutions

    2 Results and discussion

    Taking the third-order super rogue wave as an example,the process of the generation and evolution of the third-order super rogue waves are demonstrated in Fig.3.The time history during the period of 500 seconds is illustrated at different positions.It is clearly shown that the third-order super rogue wave appears at the x=249.45 m with a very large amplitude.The initial disturbances under the background of a plane wave at the initial position absorb the wave energy around and then develop to the super rogue wave as the waves propagate forwards.It is also seen that the super rogue waves can be resulted in the nonlinear interaction between different wave groups.

    Fig.3 Generation and evolution of the third-order super rogue wave

    Fig.4 The spatial distributions of the 1st-5th order super-rogue waves

    Fig.4 shows the spatial-distribution of the first-to fifth-order super rogue waves and the details of their shapes of the highest peaks.Deviation of the position where the super rogue waves appear from the pre-arranged position was observed in Fig.4.The higher order super rogue wave occurs at the earlier position due to the stronger effects of the nonlinear interaction between different wave groups.

    Tab.2 Fitting results for the shapes of the first-to fifth-order super rogue waves

    It is also found that the wave amplitudes around the super rogue waves are very small and the waves fluctuate widely near the location of the appearance of the super rogue waves.Strong asymmetry is observed in front of and behind the super rogue waves.Waves before the appearance of the super rogue waves are gentle while the areas of waves after that become rough which coincides with suddenness and unpredictability of rogue wave.The shapes of the first-to fifth-order super rogue waves are analysed by adopting the curve fitting as shown in Fig.4.The fitting function is chose to be the standard sine function and the fitting results are summarised in Tab.2.Asymmetries are also observed during the appearance of the super rogue wave between the peaks and troughs.As the order of the super rogue wave grows,the deviation of the shapes between the super rogue wave and the sinusoidal wave becomes more obvious,namely,the peak increases while trough decreases.It can also clearly notice that the wave number of the single super rogue wave becomes larger as its order grows,which means its wave length decreases leading to the stronger nonlinear interaction during the evolution.

    3 Conclusions

    In this study,the first-to fifth-order super rogue wave events were simulated numerically by solving the mNLS equation.The generation and evolution of the first-to fifth-order rational solutions of the NLS equation were investigated which had been observed in the wave tank.To overcome the limit of the physical length of the test facility and the layout of measurement gauges,these super rogue waves were simulated numerically in order to investigate the spatial-distribution of the super rogue waves and the property of their wave shapes.

    The position where the super rogue waves appear are different from that expected by their analytical solutions due to the higher-order nonlinear effects.Thus,the fourth-order nonlinear terms in the mNLS equation cannot be ignored during numerical simulation.

    Asymmetries are observed in the area in front of and behind the appearance of the super rogue wave which coincides with suddenness and unpredictability of rogue wave.The asymmetries between the peak and trough also show the deviation of the shapes between the super rogue wave and the sinusoidal wave becomes more obvious duo to the increase of the nonlinearity as the order of the super rogue wave grows.

    Acknowledgement

    This work was financially supported by the National Natural Science Foundation of China(Grant No.51239007).The authors would also like to acknowledge the support of the Sino-UK Higher Education Research Partnership for PhD Studies funded by the British Council in China and the China Scholarship Council.

    Nomenclature

    [1]Adcock T A A,Taylor P H.The physics of anomalous(‘rogue’)ocean waves[J].Rep.Prog.Phys.,2014,77(10):105901.

    [2]Onorato M,Residori S,Bortolozzo U,Montina A,Arecchi F T.Rogue waves and their generating mechanisms in different physical contexts[J].Physics Reports,2013,528(2):47-89.

    [3]Slunyaev A,Didenkulova I,Pelinovsky E.Rogue waters[J].Contemp Phys.,2011,52(6):571-590.

    [4]Dysthe K,Krogstad H E,Müller P.Oceanic rogue waves[J].Annual Review of Fluid Mechanics,Davis,and Moin,eds.,2008:287-310.

    [5]Kharif C,Pelinovsky E.Physical mechanisms of the rogue wave phenomenon[J].European Journal of Mechanics,B/Fluids,2003,22(6):603-634.

    [6]Onorato M,Osborne A R,Serio M,Cavaleri L,et al.Extreme waves,modulational instability and second order theory:Wave flume experiments on irregular waves[J].European Journal of Mechanics,B/Fluids,2006,25(5):586-601.

    [7]Onorato M,Osborne A R,Serio M,Bertone S.Freak waves in random oceanic sea states[J].Phys Rev Lett,2001,86(25):5831-5834.

    [8]Zakharov V E.Stability of periodic waves of finite amplitude on the surface of a deep fluid[J].J Appl Mech Tech Phys,1968,9(2):190-194.

    [9]Mei C C.The applied dynamics of ocean surface waves[J].World Scientific,Singapore,1989.

    [10]Dysthe K B.Note on a modification to the nonlinear Schr?dinger equation for application to deep water waves[J].Proceedings of the Royal Society of London.Mathematical and Physical Sciences,1979,369(1736):105-114.

    [11]Shemer L,Alperovich L.Peregrine breather revisited[J].Physics of Fluids,2013,25(5):287-433.

    [12]Shrira V I,Geogjaev V V.What makes the Peregrine soliton so special as a prototype of freak waves?[J].J Eng.Math.,2010,67(1):11-22.

    [13]Peregrine D.Water waves,nonlinear Schr?dinger equations and their solutions[J].The Journal of the Australian Mathematical Society,Series B,Applied Mathematics,1983,25(01):16-43.

    [14]Akhmediev N,Ankiewicz A,Soto-Crespo J M.Rogue waves and rational solutions of the nonlinear Schr?dinger equation[J].Phys.Rev.E Stat.Nonlinear Soft Matter Phys.,2009,80(2):026601.

    [15]Ma Y C.Perturbed plane-wave solutions of the cubic Schr?dinger equation[J].Stud.Appl.Math.,1979,60(1):43-58.

    [16]Akhmediev N,Eleonskii V,Kulagin N.Exact first-order solutions of the nonlinear Schr?dinger equation[J].Theoretical and Mathematical Physics,1987,72(2):809-818.

    [17]Gaillard P.Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[J].Scientific Advances,2012,13(2):71-153.

    [18]Dubard P,Gaillard P,Klein C,Matveev V B.On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation[J].Eur.Phys.J:Spec.Top.,2010,185(1):247-258.

    [19]Akhmediev N,Ankiewicz A,Taki M.Waves that appear from nowhere and disappear without a trace[J].Phys Lett Sect A Gen At Solid State Phys,2009,373(6):675-678.

    [20]Chabchoub A,Hoffmann N P,Akhmediev N.Observation of rogue wave holes in a water wave tank[J].J Geophys.Res.-Oceans,2012,117:5.

    [21]Chabchoub A,Hoffmann N,Onorato M,Slunyaev A,Sergeeva A,Pelinovsky E,Akhmediev N.Observation of a hierarchy of up to fifth-order rogue waves in a water tank[J].Phys.Rev.E,2012,86(5):6.

    [22]Chabchoub A,Hoffmann N,Onorato M,Akhmediev N.Super roguewaves:Observation of a higher-order breather in waterwaves[J].Phys.Rev.X,2012,2(1).

    [23]Chabchoub A,Hoffmann N P,Akhmediev N.Rogue wave observation in a water wave tank[J].Phys Rev Lett,2011,106(20):204502.

    [24]Lo E,Mei C C.Numerical study of water-wave modulation based on a higher-order nonlinear Schr?dinger equation[J].Journal of Fluid Mechanics,1985,150:395-416.

    [25]Muslu G M,Erbay H A.Higher-order split-step Fourier schemes for the generalized nonlinear Schr?dinger equation[J].Math Comput Simul,2005,67(6):581-595.

    [26]Slunyaev A,Pelinovsky E,Sergeeva A,Chabchoub A,Hoffmann N,Onorato M,Akhmediev N.Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations[J].Phys.Rev.E Stat.Nonlinear Soft Matter Phys.,2013,88(1):012909.

    国产毛片在线视频| 咕卡用的链子| 看非洲黑人一级黄片| 亚洲,欧美精品.| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品成人久久小说| 可以免费在线观看a视频的电影网站 | 亚洲精品第二区| 成人漫画全彩无遮挡| 免费高清在线观看视频在线观看| 99香蕉大伊视频| 国产探花极品一区二区| 国产精品不卡视频一区二区| 免费少妇av软件| 蜜桃国产av成人99| 香蕉精品网在线| 美女xxoo啪啪120秒动态图| 日本色播在线视频| 精品国产露脸久久av麻豆| 色94色欧美一区二区| 国产成人一区二区在线| 国产一级毛片在线| 大码成人一级视频| 亚洲第一区二区三区不卡| 岛国毛片在线播放| 国产av精品麻豆| 伦理电影大哥的女人| 国产精品二区激情视频| 久久人人97超碰香蕉20202| 亚洲,一卡二卡三卡| 精品久久久久久电影网| 日韩中字成人| 亚洲成人av在线免费| 午夜免费男女啪啪视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看人妻少妇| 97在线人人人人妻| 最近2019中文字幕mv第一页| 国产成人免费无遮挡视频| 亚洲,一卡二卡三卡| 激情五月婷婷亚洲| av福利片在线| 日本-黄色视频高清免费观看| 亚洲在久久综合| 亚洲欧美成人精品一区二区| 秋霞伦理黄片| 一区二区三区激情视频| 欧美少妇被猛烈插入视频| 中文欧美无线码| av网站免费在线观看视频| 电影成人av| 久久久久久久久久久久大奶| 亚洲精品久久久久久婷婷小说| 亚洲成人av在线免费| 一区福利在线观看| 一区二区三区激情视频| 好男人视频免费观看在线| 熟女少妇亚洲综合色aaa.| 国产 一区精品| 国产有黄有色有爽视频| 精品视频人人做人人爽| 性色av一级| 国产精品久久久久久av不卡| 亚洲 欧美一区二区三区| 亚洲综合色惰| 亚洲av欧美aⅴ国产| 亚洲精品美女久久久久99蜜臀 | 亚洲国产看品久久| 少妇熟女欧美另类| 国产成人免费无遮挡视频| 国产男人的电影天堂91| 亚洲美女黄色视频免费看| 叶爱在线成人免费视频播放| 久久狼人影院| 国产1区2区3区精品| 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| 人妻系列 视频| 成人国语在线视频| 男女啪啪激烈高潮av片| 成年人免费黄色播放视频| av视频免费观看在线观看| 黄色 视频免费看| 一本久久精品| 亚洲欧洲精品一区二区精品久久久 | 亚洲成国产人片在线观看| 久久人妻熟女aⅴ| 免费大片黄手机在线观看| 欧美激情极品国产一区二区三区| 国产一区二区激情短视频 | a级片在线免费高清观看视频| 另类亚洲欧美激情| 老女人水多毛片| 一边摸一边做爽爽视频免费| 国产免费一区二区三区四区乱码| 亚洲欧美清纯卡通| 国产精品嫩草影院av在线观看| 我要看黄色一级片免费的| 观看美女的网站| 99热国产这里只有精品6| 久久免费观看电影| 久久99一区二区三区| 制服丝袜香蕉在线| 亚洲av欧美aⅴ国产| 电影成人av| 99国产综合亚洲精品| 午夜福利一区二区在线看| 国产一区有黄有色的免费视频| 高清在线视频一区二区三区| 成人二区视频| 97人妻天天添夜夜摸| 亚洲欧美精品综合一区二区三区 | 侵犯人妻中文字幕一二三四区| 久久99热这里只频精品6学生| 亚洲情色 制服丝袜| 久久久久久久久免费视频了| 久久精品久久久久久噜噜老黄| 街头女战士在线观看网站| 两性夫妻黄色片| 男人操女人黄网站| 国产精品偷伦视频观看了| 中文字幕人妻丝袜制服| 日韩精品免费视频一区二区三区| 少妇精品久久久久久久| 午夜影院在线不卡| 另类亚洲欧美激情| 免费看不卡的av| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线| 精品人妻偷拍中文字幕| 国产一区二区激情短视频 | 久久久久精品性色| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| av女优亚洲男人天堂| 9191精品国产免费久久| 日韩av免费高清视频| 亚洲综合色惰| 久久精品国产自在天天线| 欧美精品人与动牲交sv欧美| 香蕉丝袜av| 精品酒店卫生间| 宅男免费午夜| 亚洲国产看品久久| 日日啪夜夜爽| 18禁动态无遮挡网站| 侵犯人妻中文字幕一二三四区| 99久国产av精品国产电影| 精品卡一卡二卡四卡免费| 国产综合精华液| 黑人猛操日本美女一级片| 久久久久视频综合| 性少妇av在线| 人人妻人人澡人人看| av免费观看日本| 成人手机av| 免费人妻精品一区二区三区视频| 免费女性裸体啪啪无遮挡网站| 精品酒店卫生间| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 国产成人精品在线电影| 熟女电影av网| 捣出白浆h1v1| 免费观看av网站的网址| 亚洲国产精品999| 日韩欧美一区视频在线观看| 久久久久久久亚洲中文字幕| 久久婷婷青草| 国产在线视频一区二区| 免费不卡的大黄色大毛片视频在线观看| av在线观看视频网站免费| 国产黄频视频在线观看| 成人毛片a级毛片在线播放| 亚洲精品久久久久久婷婷小说| 亚洲伊人久久精品综合| 黑人猛操日本美女一级片| 亚洲国产精品一区三区| 最近中文字幕高清免费大全6| 人人妻人人添人人爽欧美一区卜| 亚洲成国产人片在线观看| 多毛熟女@视频| 观看美女的网站| av电影中文网址| 一级黄片播放器| 最近的中文字幕免费完整| 日韩 亚洲 欧美在线| 久久久久网色| 国产精品嫩草影院av在线观看| 一本久久精品| 午夜91福利影院| 亚洲婷婷狠狠爱综合网| 精品国产国语对白av| videossex国产| 国语对白做爰xxxⅹ性视频网站| 欧美日韩国产mv在线观看视频| 99九九在线精品视频| 午夜老司机福利剧场| 亚洲综合精品二区| 久久久久国产精品人妻一区二区| 999精品在线视频| 黄色 视频免费看| 成人午夜精彩视频在线观看| 女性生殖器流出的白浆| 看十八女毛片水多多多| 国产免费现黄频在线看| 亚洲中文av在线| 黄色配什么色好看| 九草在线视频观看| 黄色配什么色好看| 大香蕉久久网| 久久女婷五月综合色啪小说| 国产高清不卡午夜福利| 最近中文字幕2019免费版| 精品国产乱码久久久久久男人| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 狠狠婷婷综合久久久久久88av| 免费观看av网站的网址| 在线看a的网站| 中文天堂在线官网| 亚洲精品视频女| 欧美日韩成人在线一区二区| freevideosex欧美| 香蕉国产在线看| av免费观看日本| 国产精品秋霞免费鲁丝片| 视频区图区小说| 99久久中文字幕三级久久日本| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕视频在线看片| 国产亚洲欧美精品永久| 亚洲欧洲日产国产| 丰满迷人的少妇在线观看| 看免费av毛片| 精品卡一卡二卡四卡免费| 老司机影院成人| 高清欧美精品videossex| 国产精品免费视频内射| 欧美成人午夜免费资源| 亚洲精品一二三| 久久人妻熟女aⅴ| 亚洲欧美成人综合另类久久久| 国产精品女同一区二区软件| 一级a爱视频在线免费观看| 亚洲精品一区蜜桃| 亚洲,欧美,日韩| 久久女婷五月综合色啪小说| 在线看a的网站| 国产精品一国产av| 欧美少妇被猛烈插入视频| av女优亚洲男人天堂| 亚洲国产精品国产精品| 日韩精品免费视频一区二区三区| 久久女婷五月综合色啪小说| 汤姆久久久久久久影院中文字幕| 看非洲黑人一级黄片| 十分钟在线观看高清视频www| 欧美国产精品一级二级三级| 丝袜美足系列| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 久久人妻熟女aⅴ| 亚洲国产av影院在线观看| 国产高清国产精品国产三级| 黑人欧美特级aaaaaa片| 久久午夜福利片| 最近2019中文字幕mv第一页| av在线app专区| 老汉色av国产亚洲站长工具| 亚洲av欧美aⅴ国产| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 黄网站色视频无遮挡免费观看| 尾随美女入室| 国产成人精品无人区| 国产精品一国产av| 亚洲欧洲精品一区二区精品久久久 | 午夜福利影视在线免费观看| 丰满饥渴人妻一区二区三| h视频一区二区三区| 国产免费福利视频在线观看| 少妇的丰满在线观看| 久久韩国三级中文字幕| 欧美日韩精品网址| 婷婷成人精品国产| 一个人免费看片子| 伦精品一区二区三区| 大陆偷拍与自拍| 亚洲国产av新网站| 一二三四中文在线观看免费高清| a 毛片基地| 18禁观看日本| 久久狼人影院| 久久久久久久久久久免费av| 人成视频在线观看免费观看| 欧美bdsm另类| 一边亲一边摸免费视频| 热re99久久国产66热| 亚洲av综合色区一区| h视频一区二区三区| 男女啪啪激烈高潮av片| 久久午夜综合久久蜜桃| 九色亚洲精品在线播放| 狠狠精品人妻久久久久久综合| 美女中出高潮动态图| 国产欧美亚洲国产| 最近最新中文字幕大全免费视频 | 三级国产精品片| 日日啪夜夜爽| 伦精品一区二区三区| av.在线天堂| 免费观看a级毛片全部| 国产精品人妻久久久影院| 综合色丁香网| av女优亚洲男人天堂| 久久人人97超碰香蕉20202| 午夜福利一区二区在线看| 国产高清不卡午夜福利| 免费人妻精品一区二区三区视频| 99久久中文字幕三级久久日本| 青青草视频在线视频观看| 欧美 亚洲 国产 日韩一| 蜜桃国产av成人99| 日韩精品免费视频一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲精品aⅴ在线观看| 日韩精品有码人妻一区| 国产亚洲最大av| 免费在线观看视频国产中文字幕亚洲 | 色吧在线观看| 国产成人av激情在线播放| 欧美精品亚洲一区二区| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 熟女少妇亚洲综合色aaa.| 国产精品嫩草影院av在线观看| 日韩电影二区| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| 性色av一级| 国产精品.久久久| 亚洲伊人久久精品综合| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 欧美97在线视频| 大陆偷拍与自拍| 大码成人一级视频| 国产精品99久久99久久久不卡 | 在线观看www视频免费| 日韩欧美一区视频在线观看| 国产免费福利视频在线观看| 99热国产这里只有精品6| 少妇人妻 视频| 国产成人av激情在线播放| 成人二区视频| 亚洲成av片中文字幕在线观看 | 高清黄色对白视频在线免费看| 日韩人妻精品一区2区三区| 精品一区二区三区四区五区乱码 | 一二三四中文在线观看免费高清| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 欧美激情高清一区二区三区 | 亚洲av国产av综合av卡| 搡老乐熟女国产| 18禁动态无遮挡网站| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 激情五月婷婷亚洲| 少妇熟女欧美另类| 亚洲在久久综合| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 晚上一个人看的免费电影| 国产探花极品一区二区| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 日本欧美视频一区| 最新的欧美精品一区二区| 久久热在线av| 欧美成人午夜精品| 亚洲视频免费观看视频| 免费观看av网站的网址| 桃花免费在线播放| 夜夜骑夜夜射夜夜干| 日本欧美视频一区| 男的添女的下面高潮视频| 97在线视频观看| 九色亚洲精品在线播放| 两个人免费观看高清视频| 人成视频在线观看免费观看| 亚洲综合色网址| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 久久久久久久精品精品| 飞空精品影院首页| www.av在线官网国产| 最黄视频免费看| av电影中文网址| 午夜福利乱码中文字幕| 免费观看在线日韩| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 久久久久久久久久久久大奶| 国产男女内射视频| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 国产精品av久久久久免费| 多毛熟女@视频| 亚洲av在线观看美女高潮| 亚洲av日韩在线播放| 天堂8中文在线网| 国产在线一区二区三区精| 国产成人精品无人区| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| 五月开心婷婷网| 日韩制服骚丝袜av| 美女国产高潮福利片在线看| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 在现免费观看毛片| 18禁国产床啪视频网站| 搡女人真爽免费视频火全软件| 9191精品国产免费久久| 久久久精品免费免费高清| 日韩中字成人| 五月天丁香电影| 久久鲁丝午夜福利片| 成人国产av品久久久| 免费观看无遮挡的男女| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 国产 精品1| 99re6热这里在线精品视频| 又大又黄又爽视频免费| 99久久精品国产国产毛片| 午夜福利一区二区在线看| 极品人妻少妇av视频| 老司机影院成人| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 性色av一级| av.在线天堂| 久久热在线av| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 亚洲国产精品一区三区| 97在线人人人人妻| 国产黄频视频在线观看| av电影中文网址| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| www日本在线高清视频| h视频一区二区三区| 国产精品成人在线| 国产1区2区3区精品| 亚洲第一av免费看| 2022亚洲国产成人精品| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 久久99蜜桃精品久久| 午夜激情av网站| 免费观看av网站的网址| 亚洲色图综合在线观看| 秋霞伦理黄片| 极品人妻少妇av视频| 最近的中文字幕免费完整| 欧美+日韩+精品| 七月丁香在线播放| 欧美精品亚洲一区二区| 精品一区二区三卡| freevideosex欧美| 少妇猛男粗大的猛烈进出视频| 久久久久久久亚洲中文字幕| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 丝袜喷水一区| 亚洲精品,欧美精品| 亚洲成人手机| 日韩精品免费视频一区二区三区| 国产一区二区三区av在线| 亚洲国产最新在线播放| 久久这里有精品视频免费| 五月伊人婷婷丁香| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 精品国产一区二区久久| 国产 精品1| 欧美日本中文国产一区发布| av网站在线播放免费| 欧美日韩亚洲高清精品| 欧美精品人与动牲交sv欧美| 日本爱情动作片www.在线观看| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 日韩欧美精品免费久久| 免费在线观看完整版高清| 精品一区在线观看国产| 国产又爽黄色视频| 五月伊人婷婷丁香| 日韩一区二区三区影片| 在线天堂最新版资源| 久久精品国产综合久久久| 91精品三级在线观看| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 亚洲成人手机| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 精品国产一区二区三区四区第35| 日本wwww免费看| 精品国产超薄肉色丝袜足j| 电影成人av| 超碰成人久久| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 国产老妇伦熟女老妇高清| 伦理电影大哥的女人| 久久ye,这里只有精品| 少妇精品久久久久久久| 人人妻人人澡人人看| 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品日本国产第一区| 国产av精品麻豆| 高清不卡的av网站| 亚洲精品一二三| 亚洲内射少妇av| 波多野结衣av一区二区av| 中文字幕人妻熟女乱码| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 精品酒店卫生间| 久久热在线av| 热99久久久久精品小说推荐| 亚洲综合色网址| 99久久人妻综合| 免费在线观看黄色视频的| 亚洲精品在线美女| 2022亚洲国产成人精品| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av高清一级| 色播在线永久视频| 国产探花极品一区二区| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 人妻 亚洲 视频| 伦理电影免费视频| 两个人免费观看高清视频| 在线观看三级黄色| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 中文字幕亚洲精品专区| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 制服丝袜香蕉在线| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看| 久久午夜福利片| 亚洲人成77777在线视频| 国产成人a∨麻豆精品| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| av一本久久久久| 少妇的逼水好多| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区| 各种免费的搞黄视频| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 韩国精品一区二区三区| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 日韩中字成人| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 自线自在国产av| 免费播放大片免费观看视频在线观看| 蜜桃国产av成人99| 欧美日韩视频精品一区| 久久精品久久久久久久性| 国产黄频视频在线观看| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 少妇 在线观看| 精品福利永久在线观看| 人妻少妇偷人精品九色| 国产成人精品无人区| 9热在线视频观看99| 1024视频免费在线观看| 韩国av在线不卡| 久久精品亚洲av国产电影网| 飞空精品影院首页| 一区二区av电影网|