• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Simulation of the Slamming Loads Using the Hybrid Two-Step Solution

    2018-03-28 12:30:27StateKeyLaboratoryofHydraulicEngineeringSimulationandSafetyTianjinUniversityTianjin300072ChinaDepartmentofNavalArchitectureandOceanEngineeringTianjinUniversityTianjin300350ChinaChinaShipScientificResearchCenterWuxi214082Ch
    船舶力學(xué) 2018年3期

    (1.State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China;2.Department of Naval Architecture and Ocean Engineering,Tianjin University,Tianjin 300350,China;3.China Ship Scientific Research Center,Wuxi 214082,China)

    0 Introduction

    When the ship sails in rough seas,the bow structures will encounter the hydrodynamic slamming due to the large relative motion between structures and waves.The impulsive slamming loads acted on the bow will threaten the safety of the local structures.It will also cause the ship whipping,which will affect the ship hull structures globally.Design against slamming load is the concern of ship designers from the view point of strength[1].

    Prediction of local slamming loads usually involves two steps with different time scales.Firstly,relative motions between the ship and waves are predicted by the time domain simulations using the linear or nonlinear ship motions theories,such as Guedes Soares,1989[2]and Luo et al,2007[3].Once the impact velocity is obtained,the local slamming loads are determined by different variations of formulations based on Wagner theory,1932[4],such as Ochi and Motter,1973[5],Hu et al,2005[6],Hermundstad and Moan,2005[7].For the local slamming problem,due to the complexity of the 3D flow around the 3D bow structures,it is always simplified as 2D section problem in the simulations.More efforts are encouraged to be devoted on the second step in order to capture both the peak and also the time history of the slamming pressures.

    As part of the MARSTRUCT network of excellence,Brizzolara et al,2008[8]carried out investigations to compare pressures and resultant forces predicted by BEM,SPH and commercial software packages LS-DYNA,FLOW-3D and FLUENT,with experimental measurements obtained from drop tests for a bow section(Aarsnes,1996)[9].Luo et al,2011[10]carried out simulation on water entry of 2D wedge using the LS-DYNA code.Yue,2016[11]predicted the impact pressures of one wedge and the bow section with heel angles using CFD code FLUENT and compared with experimental results.It shows that the CFD type approach has the potential to predict the slamming pressure accurately in time domain.

    One hybrid two-step method is proposed in this paper to investigate the local slamming loads.The CFD method using the Finite Volume method(FVM)and dynamic mesh technology is applied as the second step.3D segment model is possible to be built for the local structures instead of the transverse section.Water entry of this model is simulated using the obtained relative motion and then the slamming pressures are obtained in time domain.This method is applied to predict the bow slamming of one VLCC in ballast condition.Numerical results are compared with those from model tests in irregular waves.Fair well agreements are achieved.

    1 Hybrid two-step method

    1.1 Investigation of relative motion using the potential flow theory

    The global velocity potential for the ship advancingdecomposed into two parts,the potential of steady flowand that of unsteady flowin the linear theory[12].It is defined as,

    where φSis the wave-making velocity potential associated with the ship advancing in calm water,and φTis the unsteady velocity potential which may be decomposed into independent components φIfor the incident waves, φDfor the diffracted waves,and φRfor the radiated waves.a is the wave amplitude,and j is the number of ship motion degrees.

    The linear problem satisfies the following conditions,the Laplace equation,the linear free surface boundary conditions,the linear body radiation and diffraction boundary conditions and bottom boundary conditions.Three dimensional panel method using the Rankine source is usually applied to solve the problem for φ,such as the WASIM code.

    The six-degree ship motions can be predicted once the velocity potential is obtained.Then the relative motion between the ship and the wave for the ship section with coordinate x along longitudinal direction is defined as

    where zGis the heave motion, θyis the pitch motion(positive if clockwise),andis the wave height on ship section x.

    where t0is the time instant when the body impacts the water.is the impact velocity.

    1.2 Investigation of slamming loads using the CFD method

    As the second step,the slamming process is simplified as the water entry of the local structures using the relative motions between the ship and the obtained wave.The CFD method is applied to simulate the water entry problem in the scaled-size model,but not the real size ship model.The 3D segment model instead of 2D transverse section of the ship is possible to be used.Symmetrical water entry or asymmetrical water entry with one heel angle can be simulated.In this paper,the symmetrical problem is discussed.The bow structures are built as one segment of the transverse section.

    The FLUENT code is used for the slamming problem.The incompressible flow is governed by Navier-Stokes equations,i.e.,the mass and momentum conservation equations.The Volume of Fluid(VOF)multiphase flow model is applied to capture the air and water interface.Then the complex and nonlinear free surface phenomena during the water entry,such as the water-jet,can be simulated.

    The Dynamic Mesh method is used to simulate the movement of the grids around the body during the water entry process.The hexahedron grids used in the computing domain are renewed for each iterative step using the Smoothing and Layering method.The movement of the boundary is specified by Profile file or UDF(User Defined Functions).The UDF defines the initial conditions,such as initial velocity of the model,the density of water,and the output data,such as the pressure,accelerated velocity,and the velocity at the specified location.

    The Finite Volume method is used to disperse the governing equations into a series of algebraic equations.The discretization of the density and moment is carried out using the second order upwind scheme,while that of the turbulent kinetic energy and turbulent dissipation rate is carried out using the first order upwind scheme.The PISO(Pressure Implicit Split Operator)algorithm is applied to solve the algebraic equations,and then the velocity and pressure distributions in the flow field are obtained.So the simulation efficiency is improved and much accurate results will be obtained.

    2 VLCC ship model

    The proposed hybrid two-step method is applied to predict the bow slamming loads of one VLCC in ballast condition.The main particulars of the VLCC[13]are shown in Tab.1.Fig.1 shows the curve of the cross section where the number of station is 19.5.Point B is the position where the slamming loads is to be predicted and point O is at the bottom of the section.The coordinate values are listed in Tab.2.Figs.2 and 3 show the ship model used in WASM code.

    Fig.1 The slamming position on cross section S2

    Fig.2 The ship hull surface of the VLCC

    Fig.3 The model meshes of the ship and water around

    Tab.1 The main particulars of one VLCC

    Tab.2 Slamming position

    3 Prediction of the relative motions

    Wave loads model tests of this VLCC was carried out in the tank of China Ship Scientific Research Center.The model scale is 1:77.Slamming pressures are measured at the position point B.Results in one irregular wave at the ballast condition are selected in this paper to compare with those from numerical simulations.ITTC spectrum is used,

    The ship velocity is 17kns in the heading waves.The significant wave height is 15.0 m,and the period is 12.0 s.

    The WASIM code is applied to predict the ship motions.The relative motions between the cross section S2 and the wave are obtained as shown in Fig.4.Dr_O means the relative displacement between point O and the wave.Vr means the relative velocity between the cross section S2 with the wave.As the ship hull is set as rigid,so the velocity on this cross section is the same as Vr.When Dr≤0,the slamming will occur on point O.Assuming the water uprise is ignored,then the slamming will occur on Point B

    Fig.4 Relative motions of cross section S2

    The statistical analysis is carried out for the motion responses in 3 600 seconds time.Slamming occurs 349 times on point O.Tabs.3 and 4 list the most severe three slamming events on points O and B.The slamming pressure will be predicted in the second step using the scaled-size model,not the real size ship.So results for the model are also listed.The scale is set as that in the model test. ‘t’ is the time instant when the slamming occurs on points O or B.‘v’ is the impact velocity.The subscript‘s’,‘m’ mean the data for the ship and the model,respectively.Figs.5,7 and 8 show the time histories of relative motions for slamming events 1,2 and 3 respectively in the model scale.

    Tab.3 Relative motions on point O

    Continue Tab.3

    Tab.4 Relative motions on point B

    Fig.5 Relative motions for slamming event 1

    Fig.6 Zoomed relative motions for slamming event 1

    Fig.7 Relative motions for slamming event 2

    Fig.8 Relative motions for slamming event 3

    It is shown in Fig.5 that the slamming occurs on point O when t=309.94 s.It is observed that Dr_O=0 and Vr=-1.717 m/s.If the time is set to 0 when the slamming occurs,then the next 0.5 s time history of the motions are shown in Fig.6.Dr_B means relative displacement between point B and the wave when the water uprise of the slamming is ignored.It is shown that the wave reaches the point B at time around 0.05 s.The predicted relative velocity of section S2 in this 0.5 s time period is fitted into one function as follows:

    The similar fitted velocity formula can be obtained for slamming events 2 and 3.

    4 Prediction of the slamming pressures

    The CFD code FLUENT is used to predict the slamming loads on section S2 of the VLCC.The Finite Volume Method is applied using the PISO algorithm,Volume of Fluid(VOF)multiphase flow model and dynamic mesh method.The water entry of one segment formed by this transverse section S2 is carried out using the relative motions obtained above.The 3D flow on the 3D bow structures is ignored in the longitudinal direction.

    The segment model is set up using the scale in the model test.Fig.9 shows the model setup in FLULENT.The width,height of the section is 0.52 m,0.39 m.The length of the segment is set as 1.00 m,which is around 2 times of the width in order to reduce the 3D slamming effect in the longitudinal direction.The width,height and length of the water domain is 3.00 m,1.4 m and 1.60 m.The height of the air domain is 0.60 m.

    Fig.9 The global model setup in FLUENT

    Fig.10 Local meshes around the segment

    Fig.11 Relative motions(zoom)for slamming event 1

    Fig.12 The time history of the pressure B for slamming event 1

    The total fluids(air and water)domains are not uniformly meshed for the consideration of computational efficiency.Only the domain near the segment and also that segment will pass through are meshed with finer meshes.The finest mesh size is 0.006 m.Fig.10 shows the meshes near the segment.Total number of the meshes is 2.15 million.

    The symmetric water entry is simulated using the relative motion obtained above.Only vertical velocity is considered.At first,the apex of the segment is located on the interface of the air and water domain.The initial velocity is-1.717 m/s for slamming event 1.The UDF is used to define the impact velocity described in formula(7).Then the segment will impact the calm water using this velocity time history.

    Fig.12 shows the time history of the slamming pressure on point B predicted for slamming event 1.The time instant 0 here is 309.94 s in Fig.5 correspondently.The pressure starts to increase on about 0.02 s,and then increases quickly to the peak on about 0.05 s,and finally decreases to zero slowly.

    In Fig.11,it is found that the slamming on points B occurs on about 0.05 s from relative motions predicted by WASIM,which is different from the results of FLENT.The reason is that the water uprise during the slamming can be obtained in CFD simulation,while that is not considered in the potential flow seakeeping code WASIM.The maximum pressure on point B is PB1=3 468.6 Pa.

    Fig.13 shows the pressure contour on the segment surface and water uprise at different time instant during the water entry process.

    Fig.13 The pressure contour and water uprise during the water entry process

    (1)The movement of the pressure contour on the segment surface is clearly observed.At the first instant,the maximum pressure is located near the apex of the segment.Then the pressures move up along profile of the transverse section with the movement of the water uprise.3D effect of the slamming pressures on the longitudinal direction is found.Assuming the segment length is L,it is divided into three parts, ‘1/4L’+‘1/2L’+‘1/4L’.The pressures in the middle part‘1/2L’is larger,and they do not change much along the longitudinal direction.But pressures decrease quickly in parts ‘1/4L’ moving toward the section ends.The pressure results in the middle part of the segment are chosen as shown in Fig.12.

    (2)The movement of the water uprise along the section profile is clearly observed.When t=0.03 s,the uprise reaches point B closely.So the slamming pressure on point B shown in Fig.12 starts to increase sharply.When t=0.05 s,the water entry depth is almost equal to the draught of point B.The pressure on point B reaches the peak.And then the slamming pressure on point B decreases slowly when the uprise continues to move up.

    Simulations are carried out for the slamming events 2 and 3,too.Figs.13 and 14 show the slamming pressures predicted for events 2 and 3.Peak values of the pressure are,PB2=3 165.4 Pa,PB3=2 698.2 Pa.The mean peak value of three slammings is Paver=3 110.7 Pa.Then the slamming pressure on the real ship is PB=3.11 kPa×77=239.5 kPa.

    Fig.14 The time history of pressure B for slamming event 2

    Fig.15 The time history of pressure B for slamming event 3

    5 Comparison of the slamming pressure results

    Tab.5 shows the comparison with pressure results in the irregular waves.The numerical simulation time on motions is 3 600 s as described in part 3 which is 410.26 s for the scaled-size model,which is almost equal to the tests time 397.07 s.The maximum statistical value is set as the 1/100 value,which is the maximum one among 100 samples.The average value of the three maximum slamming pressures among 349 samples in part 5 is regarded as the maximum one.The significant value is not simulated and is absent.

    Tab.5 Comparison on statistical results of slamming pressures on point B

    Formula using Wagner theory,1932 is also applied to predict the slamming pressure as follows:

    It shows that the maximum value from CFD is 11%larger than that from tests.Fair well agreement is achieved between results of CFD and tests,the pressure value from Wagner formula is much larger than others.

    6 Conclusions

    One hybrid two-step solution is proposed to predict the local slamming loads on ship structures,which is the compromise of the numerical efficiency and the accuracy between the potential flow theory and the CFD method.The relative motions between the ship and the wave surface are predicted using the potential flow theory for the advancing ship in waves.Water entry of 3D segment model using the obtained relative motion is carried out.The local slamming pressures are predicted using CFD method based on FVM and dynamic mesh technology.The ship is of the real size scale in the first step while the structure is of the model size scale in the second step.The up-rise of the water jet and the local slamming pressures of the model during the water entry are captured.So the slamming loads of the ship in time domain can be predicted.

    This solution has the potential to simulate the slamming pressure for the ships advancing both in heading and oblique waves.It is used to predict the bow slamming loads of one Very Large Crude Carrier(VLCC)in ballast condition.Relative motions on one bow section are studied and the slamming events are determined using the SESAM code.Slamming pressures of the most severe events in the 3D segment model are simulated using the FLUENT code.Water upsise and pressure contours are discussed.The predicted pressure results are compared with those from model tests in irregular waves.Fair well agreements are achieved.

    [1]Luo Hanbing,Xu Hui,Yu Jianxin,Wan Zhengquan.Review of the state art of dynamic responses induced by slamming loads on ship structures[J].Journal of Ship Research,2010,14(4):439-450.(in Chinese)

    [2]Guedes Soares C.Transient response of ship hulls to wave impact[J].Int.Shipbuilding Progr.,1989,36:137-156.

    [3]Luo Hanbing,Qiu Qiang,Wan Zhenquan.Experimental study of whipping responses induced by stern slamming loads[C]//In:Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures(PRADS).Houston,USA.2007,1:535-542.

    [4]Wagner H.Uber stoss-und gleitvergange an der oberflache von flussig-keiten[J].Z.Angew.Math.Mech.,1932,12:193-215.

    [5]Ochi M K,Motter L E.Prediction of slamming characteristics and hull responses for ship design[J].Trans.Soc.Naval Archit.Mar.Eng.,1973,81:144-176.

    [6]Hu Jiajun,Cai Xingang.A forecast method of slamming pressure acting on the ship outside plates[J].Journal of Ship Research,2005,01:63-70.(in Chinese)

    [7]Ole Andreas Hermundstad,Torgeir Moan.Numerical and experimental analysis of bow flare slamming on[J].Journal of Marine Science and Technology,2005,10:105-122.

    [8]S.Brizzolara N Couty,Hermundstad O,Ioan A,Kukkanen T,Viviani M,Temarel P.Comparison of experimental and numerical loads on an impacting bow section[J].Ships and Offshore Structures,2008,3(4):305-324.

    [9]Aarsnes J V.Drop test with ship sections-effect of roll angle[R].Marintek Report No.603834.00.01,1996.

    [10]Luo Hanbing;Wang Shan,Guedes Soares C.Numerical prediction of slamming loads on a rigid wedge subjected to water entry using an explicit finite element method[C]//MARSTRUCT 2011.Hamburg,Germany,2011:41-48.

    [11]Yue zhang.Numerical simulation of slamming induced loads on three dimensional structures with various angles[D].Tianjin:Tianjin University,2016.(in Chinese)

    [12]Faltinsen O M.Sea loads on ships and offshore structures[M].Cambridge,UK:Cambridge University Press,1990.

    [13]Gen Yanchao,Hu Jiajun.Wave loads model tests for one VLCC[R].Wuxi:China Ship Scientific Research Center,2015.(in Chinese)

    videos熟女内射| 少妇熟女aⅴ在线视频| 久久久久免费精品人妻一区二区| 三级经典国产精品| 日韩欧美在线乱码| 全区人妻精品视频| 亚洲最大成人av| 国产精品福利在线免费观看| 亚洲人成网站在线观看播放| 亚洲欧美中文字幕日韩二区| 国产成年人精品一区二区| 国产极品天堂在线| kizo精华| 国产亚洲精品久久久com| 长腿黑丝高跟| 国产亚洲5aaaaa淫片| 日本熟妇午夜| 熟女人妻精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久精品国产自在天天线| 国产国拍精品亚洲av在线观看| 波野结衣二区三区在线| 亚洲在线自拍视频| 亚洲精品456在线播放app| 亚洲国产精品成人久久小说| 97人妻精品一区二区三区麻豆| 国产成人a区在线观看| 亚洲五月天丁香| 我要看日韩黄色一级片| 天堂√8在线中文| 麻豆国产97在线/欧美| 汤姆久久久久久久影院中文字幕 | av线在线观看网站| 成人午夜高清在线视频| 综合色丁香网| 国产亚洲91精品色在线| 国产精品综合久久久久久久免费| 国产成人a区在线观看| 日本一二三区视频观看| 99热网站在线观看| av在线观看视频网站免费| av.在线天堂| 亚洲色图av天堂| 小说图片视频综合网站| 国产精品乱码一区二三区的特点| 黄色日韩在线| 欧美激情国产日韩精品一区| 国产伦理片在线播放av一区| 中国美白少妇内射xxxbb| 成人美女网站在线观看视频| 如何舔出高潮| 少妇熟女欧美另类| 久99久视频精品免费| 精品一区二区三区视频在线| 免费播放大片免费观看视频在线观看 | 人人妻人人澡欧美一区二区| 日本五十路高清| 久久亚洲精品不卡| 成人特级av手机在线观看| 一边摸一边抽搐一进一小说| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 能在线免费看毛片的网站| 久久久色成人| videos熟女内射| 伊人久久精品亚洲午夜| 国产黄片美女视频| 汤姆久久久久久久影院中文字幕 | 91精品国产九色| 国产91av在线免费观看| 男人狂女人下面高潮的视频| 国产69精品久久久久777片| 免费在线观看成人毛片| 国产视频内射| 久久精品国产99精品国产亚洲性色| 在线免费十八禁| 最后的刺客免费高清国语| 白带黄色成豆腐渣| 精品人妻一区二区三区麻豆| 国产又黄又爽又无遮挡在线| 成人二区视频| 七月丁香在线播放| 欧美日韩精品成人综合77777| 3wmmmm亚洲av在线观看| 久久婷婷人人爽人人干人人爱| 日本wwww免费看| 免费不卡的大黄色大毛片视频在线观看 | 日本三级黄在线观看| 欧美高清性xxxxhd video| 亚洲三级黄色毛片| 日韩成人伦理影院| 欧美激情国产日韩精品一区| 大香蕉久久网| 我的老师免费观看完整版| 深夜a级毛片| 亚洲av中文av极速乱| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 欧美bdsm另类| av免费在线看不卡| 日本av手机在线免费观看| 成人无遮挡网站| 中文乱码字字幕精品一区二区三区 | 七月丁香在线播放| 国产欧美另类精品又又久久亚洲欧美| 午夜a级毛片| 爱豆传媒免费全集在线观看| 国产高清视频在线观看网站| 99久久无色码亚洲精品果冻| 国产精品美女特级片免费视频播放器| 秋霞在线观看毛片| videos熟女内射| 成人综合一区亚洲| 一个人看视频在线观看www免费| 日韩成人伦理影院| 99视频精品全部免费 在线| 国产午夜精品论理片| 国产免费福利视频在线观看| 日本与韩国留学比较| 日本猛色少妇xxxxx猛交久久| 18禁在线播放成人免费| 国内精品宾馆在线| 欧美极品一区二区三区四区| 久久久国产成人免费| 美女高潮的动态| 国产探花在线观看一区二区| 网址你懂的国产日韩在线| 22中文网久久字幕| 在线免费观看的www视频| 91久久精品国产一区二区成人| 成人二区视频| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 少妇被粗大猛烈的视频| 国产黄a三级三级三级人| av国产久精品久网站免费入址| 中文乱码字字幕精品一区二区三区 | 欧美日韩在线观看h| 少妇丰满av| 我要看日韩黄色一级片| 免费观看的影片在线观看| 久久人人爽人人片av| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 青春草视频在线免费观看| 天天一区二区日本电影三级| 久久热精品热| 男女下面进入的视频免费午夜| 中国国产av一级| 午夜免费激情av| 在线播放国产精品三级| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 精品人妻视频免费看| 黑人高潮一二区| 久久久久久久久大av| 日韩欧美三级三区| 久久精品影院6| 亚洲国产欧美人成| 国产成人a∨麻豆精品| 毛片女人毛片| 中文乱码字字幕精品一区二区三区 | 男人的好看免费观看在线视频| 卡戴珊不雅视频在线播放| av在线播放精品| 性插视频无遮挡在线免费观看| 久久精品国产亚洲网站| 日本一本二区三区精品| 麻豆精品久久久久久蜜桃| 国产成人a区在线观看| 国产熟女欧美一区二区| 亚洲欧美成人综合另类久久久 | 精品人妻一区二区三区麻豆| 18+在线观看网站| 日韩一本色道免费dvd| 国产高清国产精品国产三级 | 日韩 亚洲 欧美在线| 成年av动漫网址| 精品人妻一区二区三区麻豆| 亚洲人成网站在线观看播放| 22中文网久久字幕| 国产不卡一卡二| 国产亚洲最大av| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 国产 一区 欧美 日韩| 欧美+日韩+精品| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 欧美xxxx黑人xx丫x性爽| 一级黄片播放器| 久久这里有精品视频免费| 全区人妻精品视频| www.色视频.com| 亚洲婷婷狠狠爱综合网| 成年av动漫网址| 伦理电影大哥的女人| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影| 久久综合国产亚洲精品| 亚洲一区高清亚洲精品| 麻豆一二三区av精品| 国产午夜福利久久久久久| 久久99热这里只有精品18| 狂野欧美激情性xxxx在线观看| 三级毛片av免费| 波多野结衣巨乳人妻| 国产乱人视频| 国产成年人精品一区二区| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 可以在线观看毛片的网站| 黄色日韩在线| 日韩精品有码人妻一区| 国产视频首页在线观看| 欧美xxxx性猛交bbbb| 18+在线观看网站| 欧美日本亚洲视频在线播放| 天堂√8在线中文| 男插女下体视频免费在线播放| 国产av一区在线观看免费| 人妻夜夜爽99麻豆av| or卡值多少钱| 免费在线观看成人毛片| 91狼人影院| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 淫秽高清视频在线观看| 国产黄色视频一区二区在线观看 | 人体艺术视频欧美日本| 久久这里只有精品中国| 嫩草影院入口| 成人亚洲精品av一区二区| 免费看光身美女| 日本色播在线视频| 性插视频无遮挡在线免费观看| 极品教师在线视频| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 老师上课跳d突然被开到最大视频| 国产精品乱码一区二三区的特点| eeuss影院久久| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 特级一级黄色大片| av在线播放精品| 日本欧美国产在线视频| 亚洲人成网站高清观看| 大香蕉久久网| 亚洲成人精品中文字幕电影| 岛国在线免费视频观看| 国产精品永久免费网站| 特级一级黄色大片| 国产成人91sexporn| av国产久精品久网站免费入址| 亚洲在线观看片| 国产高潮美女av| 嫩草影院精品99| 久久精品国产99精品国产亚洲性色| 日韩成人伦理影院| 免费看a级黄色片| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 国产一区二区三区av在线| 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的 | 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久久av| 一级黄片播放器| 黄色一级大片看看| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 乱码一卡2卡4卡精品| 1000部很黄的大片| 久久久精品94久久精品| 国产69精品久久久久777片| 黄色一级大片看看| 村上凉子中文字幕在线| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 偷拍熟女少妇极品色| 午夜激情欧美在线| 精品99又大又爽又粗少妇毛片| 99热这里只有是精品50| 少妇的逼水好多| 看免费成人av毛片| 亚洲国产高清在线一区二区三| 亚洲av中文av极速乱| 3wmmmm亚洲av在线观看| 国产一区二区亚洲精品在线观看| 日日干狠狠操夜夜爽| 午夜精品在线福利| 亚洲国产成人一精品久久久| 久久久久久久亚洲中文字幕| 国产精品人妻久久久久久| 黄色配什么色好看| 寂寞人妻少妇视频99o| 村上凉子中文字幕在线| 精品久久久久久电影网 | 能在线免费观看的黄片| 亚洲不卡免费看| 国产v大片淫在线免费观看| 狂野欧美激情性xxxx在线观看| 少妇熟女欧美另类| 特级一级黄色大片| 免费观看a级毛片全部| 亚洲婷婷狠狠爱综合网| 欧美潮喷喷水| 最新中文字幕久久久久| 97在线视频观看| 精品午夜福利在线看| 国产真实乱freesex| 国产伦在线观看视频一区| 在线观看一区二区三区| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 日日啪夜夜撸| av视频在线观看入口| 国产成人a区在线观看| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 看黄色毛片网站| 村上凉子中文字幕在线| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 寂寞人妻少妇视频99o| 综合色av麻豆| 老女人水多毛片| 国产不卡一卡二| 国产真实乱freesex| 亚洲av二区三区四区| 有码 亚洲区| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 久久精品国产99精品国产亚洲性色| 国产精品一区二区性色av| 国产黄片视频在线免费观看| 黄色欧美视频在线观看| 精华霜和精华液先用哪个| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 乱人视频在线观看| 韩国高清视频一区二区三区| 1000部很黄的大片| 亚洲国产精品成人综合色| 国产激情偷乱视频一区二区| 97人妻精品一区二区三区麻豆| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 大香蕉97超碰在线| a级一级毛片免费在线观看| 免费观看a级毛片全部| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 自拍偷自拍亚洲精品老妇| 三级国产精品片| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 纵有疾风起免费观看全集完整版 | 天美传媒精品一区二区| 岛国毛片在线播放| 好男人视频免费观看在线| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 在线a可以看的网站| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 久久久久九九精品影院| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| 天堂中文最新版在线下载 | 少妇的逼好多水| 青春草视频在线免费观看| 九色成人免费人妻av| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在| 日韩欧美三级三区| 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久| 99热精品在线国产| 亚洲国产精品专区欧美| 如何舔出高潮| 人人妻人人澡欧美一区二区| 熟女人妻精品中文字幕| 精品熟女少妇av免费看| 日韩av在线大香蕉| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 国产欧美日韩精品一区二区| av播播在线观看一区| 日本一二三区视频观看| 日韩,欧美,国产一区二区三区 | 国产伦在线观看视频一区| 国产黄色小视频在线观看| 黄色配什么色好看| 一区二区三区乱码不卡18| 熟女电影av网| 精品人妻熟女av久视频| 中文欧美无线码| 欧美成人免费av一区二区三区| 男女下面进入的视频免费午夜| 久久久久久久久久久丰满| 免费av毛片视频| 国产综合懂色| 国国产精品蜜臀av免费| 内射极品少妇av片p| av在线播放精品| 国产精品一区二区在线观看99 | 中文字幕精品亚洲无线码一区| 日本五十路高清| 亚洲精品456在线播放app| 午夜a级毛片| 中文在线观看免费www的网站| 久久久久久久久久黄片| av专区在线播放| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 亚洲国产色片| 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 欧美潮喷喷水| 国产伦精品一区二区三区视频9| 国产乱来视频区| 国产女主播在线喷水免费视频网站 | 免费看a级黄色片| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 舔av片在线| 18+在线观看网站| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| 日本五十路高清| 精品一区二区三区视频在线| 伊人久久精品亚洲午夜| 亚洲最大成人av| 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放 | 国产伦在线观看视频一区| 国产精品福利在线免费观看| 久久亚洲精品不卡| av女优亚洲男人天堂| 精品酒店卫生间| 成人特级av手机在线观看| 淫秽高清视频在线观看| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看 | 久久99精品国语久久久| 国产真实乱freesex| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 国产高清不卡午夜福利| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 国产亚洲午夜精品一区二区久久 | 精品国产一区二区三区久久久樱花 | 我要搜黄色片| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 色5月婷婷丁香| av在线播放精品| av在线亚洲专区| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 免费不卡的大黄色大毛片视频在线观看 | 最近2019中文字幕mv第一页| 久久久久久九九精品二区国产| 久99久视频精品免费| 国产三级中文精品| 毛片女人毛片| 午夜福利在线观看免费完整高清在| 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站 | 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 亚洲精品国产成人久久av| 联通29元200g的流量卡| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 亚洲精品国产成人久久av| 赤兔流量卡办理| 麻豆国产97在线/欧美| 老师上课跳d突然被开到最大视频| 国产精品,欧美在线| 天堂影院成人在线观看| 亚洲av成人精品一二三区| 美女高潮的动态| 欧美又色又爽又黄视频| 亚洲最大成人手机在线| 中文字幕av成人在线电影| 午夜精品国产一区二区电影 | 午夜福利在线观看免费完整高清在| 三级国产精品片| 美女国产视频在线观看| 91精品一卡2卡3卡4卡| 一区二区三区免费毛片| 亚洲精品乱码久久久久久按摩| 亚洲av电影不卡..在线观看| 国产成人福利小说| 色综合色国产| 亚洲国产精品成人久久小说| 欧美bdsm另类| a级一级毛片免费在线观看| 色播亚洲综合网| 国内少妇人妻偷人精品xxx网站| 中文字幕制服av| 少妇的逼好多水| 看免费成人av毛片| 简卡轻食公司| 搡女人真爽免费视频火全软件| 久久精品熟女亚洲av麻豆精品 | 午夜精品在线福利| 日本色播在线视频| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩高清专用| 久久99精品国语久久久| 久久人妻av系列| 深爱激情五月婷婷| 精品熟女少妇av免费看| 免费看日本二区| 国产男人的电影天堂91| 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看| 日本五十路高清| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| 晚上一个人看的免费电影| 久久精品影院6| 岛国毛片在线播放| 亚洲欧美一区二区三区国产| 精品久久久久久电影网 | АⅤ资源中文在线天堂| 99久久九九国产精品国产免费| 午夜爱爱视频在线播放| 亚洲美女视频黄频| 日韩在线高清观看一区二区三区| 一区二区三区乱码不卡18| 日本与韩国留学比较| 国产一区有黄有色的免费视频 | 97热精品久久久久久| av在线观看视频网站免费| 国产色爽女视频免费观看| 日本av手机在线免费观看| 人妻夜夜爽99麻豆av| 国产91av在线免费观看| 男女国产视频网站| 熟女电影av网| 99久国产av精品| 精品久久久久久久久av| 免费av不卡在线播放| 国产乱来视频区| 日韩三级伦理在线观看| 国产探花极品一区二区| 国产人妻一区二区三区在| 亚洲成人中文字幕在线播放| 久久这里有精品视频免费| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 99久国产av精品| 我的女老师完整版在线观看| 久久久久久久久中文| 春色校园在线视频观看| 美女大奶头视频| 精品国内亚洲2022精品成人| 嫩草影院入口| 亚洲乱码一区二区免费版| 亚洲三级黄色毛片| 亚洲精品影视一区二区三区av| 人人妻人人澡欧美一区二区| 日韩视频在线欧美| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 国产淫语在线视频| 欧美成人a在线观看| 久久99蜜桃精品久久| 大又大粗又爽又黄少妇毛片口| 性插视频无遮挡在线免费观看| 久久99精品国语久久久| 亚洲三级黄色毛片| 久久午夜福利片| 亚洲国产精品sss在线观看| 日韩一区二区视频免费看| 性色avwww在线观看| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 亚洲av免费高清在线观看| 热99在线观看视频| 欧美+日韩+精品| 亚洲成人久久爱视频| 美女国产视频在线观看| 日本熟妇午夜| 精品无人区乱码1区二区| 精品午夜福利在线看| 人人妻人人澡人人爽人人夜夜 |