• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Vibration Characteristic of Jacket Platform Considering the Structure-Pile-Fluid-Soil Interaction

    2018-03-28 12:30:29MaritimeResearchCentreSchoolofCivilandEnvironmentalEngineeringNanyangTechnologicalUniversitySingapore639798SingaporeStateKeyLaboratoryofStructuralAnalysisforIndustrialEquipmentSchoolofNavalArchitectureEngineeringDalianUnivers
    船舶力學(xué) 2018年3期

    (1.Maritime Research Centre,School of Civil and Environmental Engineering,Nanyang Technological University,Singapore 639798,Singapore;2.State Key Laboratory of Structural Analysis for Industrial Equipment,School of Naval Architecture Engineering,Dalian University of Technology,Dalian 116024,China)

    0 Introduction

    Fixed offshore platform is commonly deployed for offshore oil exploration.With the development of offshore industry,more platforms are designed at locations susceptible to rare and severe strong ductility level earthquake.In order to demonstrate that the offshore platform is stable and does not experience structure collapse,one may adopt the nonlinear soil-pile-structure interaction time history analysis as recommended by API RP 2A and ISO 19902.The analysis is used to evaluate whether the platform-foundation system meets structural reserve strength and energy dissipation requirements.In the case of a jacket offshore platform,the piles are typically founded at the bedrock deep below the water and soft soil.During an earthquake event,it is generally believed that the shock waves pass from the bedrock to the soil.The piles in the jacket structure are assumed being moved along with the bedrock are then moved through the soil and hydraulic,resulting in a complex Structure-Pile-Fluid-Soil interaction process.

    To achieve lateral stability of an offshore jacket structure foundation,one has to establish safe attachment of the structure to the ground and in particular how the loads applied to the structure could be safely transferred to the surrounding soil.An established practice is the utilization of appropriate grouted or un-grouted piling system.In a grouted system the certain level of adhesion between the grout and steel surfaces may be achieved and translational movement of pile in the leg will be fixed-fixed ended condition.It was also reported in mechanical tests carried out that the presence of grout improved the strength and fatigue performance of the structural systems(Dedi,2009)[1].Un-grouted piling system is another method of piling system.The top of the pile in the method is fixed to top of the jacket by welding the both members,so that the leg and pile are allowed to have finite axial strain relative to each other but in normal direction they are bound to each other by the aid of wishbone elements.

    Dynamic response of structures founded on soft soils is influenced by the soil properties,and the response is significantly different from that of the fixed base condition as a result of the interaction between the soil and the structure.Several studies(Gazetas,1991[2];Han and Cathrio,1997[3];Wu and Gan,1998[4];Inaba et al,2000[5];Hokmabadi et al,2011[6];Carbonari et al,2011[7])reported findings on seismic soil-pile-structure interactions and the effect of this phenomenon on the seismic response of the structures.There are three groups of analytical methods for studying the soil-pile-structure interaction,and they are:(1)Substructure Methods(or Winkler methods),in which a series of springs and dashpots are employed to represent the soil behaviour;(2)Elastic Continuum Methods;and(3)Numerical Methods based on a set of relevant governing equations.

    Mardfekri et al[8]studied the behavior of laterally loaded monopole foundations using linear and nonlinear approach and assessed the accuracy of different pile-soil interaction model as compared to the results obtained using finite element model.Cyrus et al[9]conducted feasibility study of an un-grouted offshore jacket structure using the endurance time method.Tabeshpour[10]assessed the requirements for accurate modeling of pile-soil interaction of an offshore jacket structure.Wang et al[11]summarized the developments in grouted pile and its performance under different loadings.Various engineering methods and equivalent simplified models and methods have been applied in order to facilitate application and save computation time (Zhou et al,2014&2016)[12-13].The phenomenon of pile-fluid-soil interactions is frequently not considered in detailed during preliminary design of a jacket platform.The equivalent-pile method is often used to account for the pile-soil interaction due to the lack of soil data.The fluid-structure interaction is replaced by treating the fluid as added mass to account for the effects of fluid on the vibrating structure.

    In the present study,finite element method using LS-DYNA software is employed to investigate the effects of piled foundation on the seismic response of offshore platform.For this purpose,the seismic behavior of the platform supported by two types of foundations including the Structure-Pile-Fluid-Soil interaction foundation is compared with the equivalent pile foundation with attached water.Secondly,the natural frequency of the jacket platform with these two foundation models is calculated respectively.By comparing the frequency result of the two models,the frequency of simplified equivalent pile model is modified,and then the modified coefficient relation curve is proposed in the paper.In association with the modified coefficient relation curve,the simplified equivalent pile model can be used to compute the vibration characteristic of an offshore platform effectively.In this way,the computing time will be saved and the precision of results will be improved.

    1 Modeling techniques

    The Structure-Pile-Fluid-Soil interaction is a complex phenomenon as it involves the nature of each element and the coupling relationship and interaction among the elements.In this study,the nonlinear finite element program LSDYNA was used to perform the numerical simulation.LS-DYNA is a fully functional explicit dynamic analysis software,which is used to solve all kinds nonlinear physics(geometry,material and interfacial contact)(Shi et al,2005[14],Bai,2005[15]).The software makes use of Arbitrary Lagrangian-Eulerian(ALE)algorithm which combines the advantages of the Lagrange algorithm and Euler algorithm,and is a real fluid-solid coupling algorithm.With regard to structural boundary motion,it has the characteristics of the Lagrange algorithm which can track the movement at the boundary of structure effectively.It also has the characteristics of Euler algorithm which can cause the inner grid to exist independently of the physical entity.Moreover,the location of grid can be modified in the process of solving according to the parameters defined,by which the grid will not suffer from severe distortion.This algorithm is very appropriate for handling the large deformation problem.The main characteristic of the fluid-solid coupling method in ALE algorithm is the model of structure and fluid which allows overlapping of the grid when building up and meshing the model(see Fig.1).The finite element meshes of the structure and fluid were constructed independently.ALE algorithm was used to perform the numerical simulation of fluid-solid coupling in this study①.

    The interfacial contact between different moving objects was achieved by defining the possible contact surface,contact type and contact parameters.In the process of calculation,the contact interface was guaranteed not to be penetrated.As a result of soil-pile interaction,non-slip condition was not enforced and the friction induced due to relative movement of the objects moving on the contact surface was taken into account②.

    Notes:①Fluid-solid coupling was achieved by using the key word*CONSTRAINED_LAGRANGE_N_SOLID in the LS-DYNA program;

    Fig.1 ALE algorithm in LS-DYNA

    ②Soil-pile coupling was done by using the key word*CONTACT_ERODING_SURFACE_TO_SURFACE in the LS-DYNA program.

    2 Analysis of three-dimensional(3D)finite element model

    The 3D finite element model of a jacket platform contained the following parameters:the height of platform was 68 m,and the platform was located in a 30 m-deep sea.The mass of three decks from bottom to top was 93 tons,2 670 tons and 1 231 tons,respectively.The length of pile above soil surface was 30 m;the length of pile embedded in the soil was 25 m.The dimension of the section for the piles was Ф 1 333×20 mm;the dimension of the stay bars was Ф 800×10 mm.The living quarters,piles and stay bars were modeled using shell element.Two finite element models were used to analyze the velocity and acceleration at the top of the platform.Model 1 was a 3D model considering the actual physics of Structure-Pile-Fluid-Soil interactions(see Fig.2).Model 2 was a 3D model with attached-water and equivalent-pile effect(see Fig.3).

    Fig.2 Model 1(Structure-Pile-Fluid-Soil interaction)

    Fig.3 Model 2(attached water and equivalent pile)

    In Model 1,the soil and fluid were modeled using solid element.Non-reflection domain boundary condition was applied to simulate infinite space.The bottom of piled foundation was simply supported.In Model 2,the equivalent-pile model was embedded by 6-times the pile diameter(according to the rule of China Classification Society).The mass of fluid was incorporated on the structure as added mass on the vibrating structure.

    Fig.4 shows the time history of seismic wave.Node 2231 refers to the top of jacket structure as shown in Fig.2 and Fig.3.Figs.5-8 show the comparison results at node 2231 when L/D=4.5 and 8.5,respectively,where L is the pile spacing and D is the pile diameter.The results of response extremum are tabulated in Tab.1 to Tab.4.

    Fig.4 Acceleration of seismic excitation

    Fig.5 Comparison of velocity at node 2231when L/D=4.5

    Fig.6 Comparison of acceleration at node 2231 when L/D=4.5

    Tab.1 Comparison for extremum value of velocity at node 2231 when L/D=4.5

    Tab.2 Comparison for extremum value of acceleration at node 2231 when L/D=4.5

    Tab.3 Comparison for extremum value of velocity at node 2231 when L/D=8.5

    Tab.4 Comparison for extremum value of acceleration at node 2231 when L/D=8.5

    Fig.7 Comparison of velocity at node 2231 when L/D=8.5

    Fig.8 Comparison of acceleration at node 2231 when L/D=8.5

    Model 1 reflects the actual physics of the structure-pile-fluid-soil interactions with the dynamic response well damped and modulated.Model 2 produces large magnitude responses.These behaviors are shown clearly by comparing the responses of the two models.Model 1 with Structure-Pile-Fluid-Soil interaction tends to modify the time-history of velocity and acceleration.This is due to the presence of stiff pile elements in the soil damping the dynamic properties of the whole system.The maximum velocity and acceleration of Model 1 are lower than those of Model 2.It should be noted that although the velocity and acceleration are increased due to Structure-Pile-Fluid-Soil interaction,the largest velocity and acceleration are smaller.When L/D is increased from 4.5 to 8.5,the largest amplitude of velocity is reduced by nearly 30%and the largest amplitude of acceleration is reduced by more than 20%.It could be concluded that increasing L/D leads to reduction in the magnitude of the structural response.

    One may conclude that the equivalent-pile model with attached water greatly simplifies the computational complexity and improves the computational efficiency at the expense of the accuracy of the dynamic response which may lead to unduly conservative engineering design of the platform.

    3 Proposed frequency modification for equivalent pile model

    With the wide-spread use of the finite element software,the emphasis has been set on full-physics 3D modeling of structures.Ideally the more comprehensive and more inclusive the models are,the more accurate are the simulation results.However,these comprehensive models are not readily adopted in engineering practice during the preliminary design stage.This is especially so for a jacket platform which poses a complex Structure-Pile-Fluid-Soil system.It is very complicated and time consuming to study its dynamic characteristics as a whole.A simpler and equivalent modeling approach with less computation resources is needed to establish the seismic response relatively quickly and economically.By comparing the frequency result of the 3D analysis of Model 1 and Model 2,one could note the frequency of the full-physics model(Model 1)and modify the equivalent model(Model 2)to achieve similar response through the use of a modified coefficient relation curve which is described herein.

    The coefficient relation curve is typically established based on a simpler platform which could easily be visualized as a structure with the bulk of the mass lumped to the floor deck.In this study,the two models shown in Fig.2 and Fig.3 in Chap.2 are still adopted here.Fig.9 shows the arrangement of platform legs.The response frequencies were computed for various ratio of pile spacing to pile diameter(L/D)ranging from 4.5,5.5,6.5,7.5 to 8.5 where D=1.3 m,1.5 m and 1.7 m,respectively.The coefficient relationship is defined as φi=fi/fˉi,where fiis the frequency response from the 3D model which included the full physics of the Structure-Pile-Fluid-Soil interaction,and fˉiis the frequency response from the simplified equivalent pile model;i is the order of vibration.The authors found that the coefficient correlates best with L1.25/D2.The first order of modified coefficient φ1relation curve is shown in Fig.10.

    Fig.9 Arrangement of piles

    Fig.10 Modified coefficient relation curve

    4 Conclusions

    The following conclusions can be achieved by the numerical computation and comparison.

    (1)The equivalent-pile model with attached water greatly simplifies the tedious calculation for dynamic response of offshore platforms and increases the calculation efficiency although the calculation results are a little bit rough.The equivalent calculation method is very convenient in engineering practice,especially in the preliminary design stage of offshore platforms.

    (2)The natural period will become larger,and the vibration velocity and acceleration will change smaller after considering the Structure-Pile-Fluid-Soil interactions.In the dynamic response analysis of an offshore platform,the actual working state can be truly reflected so that the structural design can be more economical and reasonable by means of considering the Structure-Pile-Fluid-Soil interaction.

    (3)Despite the advised models and computational method in large amount of literatures,the current engineering practice still prefers simplified structural calculation model and method in which a reasonable degree of precisions could be achieved.The modified coefficient relation curve proposed in the paper can be used to compute the vibration characteristic of an offshore platform effectively.Using the simplified equivalent pile model to compute the frequency of offshore platforms and amending the frequency result in association with the modified coefficient relation curve,the natural frequency after considering the Structure-Pile-Fluid-Soil interaction will be obtained.The computing time will be saved and the precision of results will be improved.

    (4)In the analysis of various geometric nonlinear,material nonlinear and contact nonlinear problems,the size of grid has a certain impact on the computational time and result accuracy.Although the result will be closer to the real situation through refining mesh,it also increases the computing time significantly.Therefore,it is practical and economic to choose a reasonable mesh size by which the accuracy of result can be guaranteed and the computing time can be saved at same time.

    Acknowledgements

    This work is supported by the Fundamental Research Funds for the Central Universities.

    [1]Dedi N.Analysis of grouted connection in monopile wind turbine foundations[M].LAP LAMBERT Academic publishing,2009.

    [2]Gazetas G.Formulas and charts for impedances of surface and embedded foundations[J].Journal of Geotechnical Engineering,1991,117:1363-1381.

    [3]Han Y C,Cathro D.Seismic behaviour of tall building supported on pile foundations.Seismic analysis and design for soilpile-structure interaction[J].Geotechnical Special publications,ASCE,1997(70):36-51.

    [4]Wu S M,Gan G.Dynamic soil-structure interaction for high-rise buildings[J].Developments in Geotechnical Engineering,1998,83:203-216.

    [5]Inaba T,Dohi H,Okuta K,Sato T,Akagi H.Nonlinear response of surface soil and NTT building due to soil-structure interaction during the 1995 Hyogo-ken Nanbu(Kobe)earthquake[J].Soil Dynamics and Earthquake Engineering,2000,20(5):289-300.

    [6]Hokmabadi A S,Fakher A,Fatahi B.Seismic strain wedge model for analysis of single piles under lateral seismic loading[J].Australian Geomechanics,2011,46:31-41.

    [7]Carbonari S,Dezi F,Leoni G.Linear soil-structure interaction of coupled wall-frame structures on pile foundations[J].Soil Dynamics and Earthquake Engineering,2011,31:1296-1309.

    [8]Mardfekri M,Gardoni P,Roesset J M.Modeling laterally loaded single piles accounting for nonlinear soil-pile interactions[J].Journal of Engineering,2013(5):29-38.

    [9]Cyrus M,Yazdi S R S,Javid A H.Utilization of endurance time method for seismic analysis of offshore structures[C]//The Fifth Iranian National Offshore Industry(OIC2013).Sharif University-Tehran,Iran,2012.

    [10]Tabeshpour M R.Conceptual interpretation(Chapter 2).2800 seismic building design regulation(In Farsi)[M].Ebrahimian H,2006.

    [11]Wang Z,Jiang S C,Zhang J.Structural performance of prestressed grouted pile-to-sleeve performance connection[J].Progress in Steel Building Structures,2010,14:304-311.

    [12]Zhou B,Han X S,Tan S.A simplified computational method for random seismic responses of a jacket platform[J].Ocean Engineering,2014,82:85-90.

    [13]Zhou B,Guo W,Han X S,Tan S.Random seismic response analysis of jacket structure with Timoshenko’s beam theory[J].Ships and Offshore Structures,2016,11(4):438-444.

    [14]Shi D Y,Li Y C,Zhang S M.The analysis method and engineering examples of ANSYS/LS-DYNA(In Chinese)[M].Beijing:Qinghua University Press,2005.

    [15]Bai J Z.Theoretical basis and example analysis of LS-DYNA3D(In Chinese)[M].Beijing:Science Press,2005.

    av在线蜜桃| 2022亚洲国产成人精品| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 免费看av在线观看网站| 国产伦理片在线播放av一区| 2022亚洲国产成人精品| 国产视频首页在线观看| 男人和女人高潮做爰伦理| 如何舔出高潮| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 国产成人91sexporn| 综合色丁香网| 免费黄色在线免费观看| 男女那种视频在线观看| 国产老妇女一区| 亚洲精品久久久久久婷婷小说| 国产欧美另类精品又又久久亚洲欧美| 美女cb高潮喷水在线观看| 国产爽快片一区二区三区| 熟女av电影| 在线看a的网站| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| 午夜免费观看性视频| 99视频精品全部免费 在线| 国产一区二区三区av在线| 精品久久国产蜜桃| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 白带黄色成豆腐渣| 国产精品一区二区性色av| 国产精品久久久久久精品电影| 久久影院123| 亚洲精品日本国产第一区| 亚洲美女搞黄在线观看| 少妇高潮的动态图| 国产一区二区在线观看日韩| 午夜福利视频精品| 久久久久久久久久久丰满| 十八禁网站网址无遮挡 | 国产乱人偷精品视频| 91狼人影院| 亚洲精品自拍成人| 国产黄频视频在线观看| 我要看日韩黄色一级片| 韩国高清视频一区二区三区| 日韩国内少妇激情av| 日产精品乱码卡一卡2卡三| 欧美少妇被猛烈插入视频| 五月天丁香电影| 在线观看人妻少妇| 午夜福利网站1000一区二区三区| 久久精品综合一区二区三区| 国产精品一二三区在线看| 成人午夜精彩视频在线观看| 国产极品天堂在线| 国产综合精华液| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 国产极品天堂在线| 免费大片18禁| 欧美极品一区二区三区四区| .国产精品久久| 国内揄拍国产精品人妻在线| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 成年版毛片免费区| 免费播放大片免费观看视频在线观看| 日韩欧美精品免费久久| 国产乱人偷精品视频| 国产男女超爽视频在线观看| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看| 国产欧美日韩精品一区二区| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 色综合色国产| 3wmmmm亚洲av在线观看| av国产久精品久网站免费入址| 欧美高清性xxxxhd video| 精品酒店卫生间| 精品久久久久久久久亚洲| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 内地一区二区视频在线| av天堂中文字幕网| 国产成人精品婷婷| 在线免费观看不下载黄p国产| 美女被艹到高潮喷水动态| 久久热精品热| 一级毛片久久久久久久久女| 秋霞在线观看毛片| 黄色配什么色好看| 国产精品一及| 国产 精品1| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 国产91av在线免费观看| h日本视频在线播放| 少妇人妻久久综合中文| 亚洲国产精品成人久久小说| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 免费看av在线观看网站| 国产老妇女一区| 爱豆传媒免费全集在线观看| 午夜激情福利司机影院| 一个人看视频在线观看www免费| 久久99精品国语久久久| 嫩草影院入口| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 国产v大片淫在线免费观看| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 一本久久精品| 国产精品人妻久久久久久| 只有这里有精品99| 王馨瑶露胸无遮挡在线观看| 青春草视频在线免费观看| 中文天堂在线官网| 免费观看无遮挡的男女| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级 | 另类亚洲欧美激情| 视频区图区小说| 插阴视频在线观看视频| 赤兔流量卡办理| av在线观看视频网站免费| 综合色丁香网| 国产 一区 欧美 日韩| 永久网站在线| 亚洲av一区综合| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 国产又色又爽无遮挡免| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 国产欧美亚洲国产| 精品午夜福利在线看| 亚洲成人久久爱视频| 日韩成人伦理影院| 中国三级夫妇交换| 国产69精品久久久久777片| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 少妇人妻 视频| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 亚洲精品色激情综合| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 亚洲美女视频黄频| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| av在线天堂中文字幕| 午夜精品国产一区二区电影 | 日本av手机在线免费观看| 女的被弄到高潮叫床怎么办| 纵有疾风起免费观看全集完整版| 深爱激情五月婷婷| 真实男女啪啪啪动态图| freevideosex欧美| 午夜老司机福利剧场| 秋霞伦理黄片| 中文欧美无线码| 麻豆国产97在线/欧美| 日本黄色片子视频| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 欧美高清性xxxxhd video| 两个人的视频大全免费| 男男h啪啪无遮挡| 精品久久久噜噜| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| 国产真实伦视频高清在线观看| 一本久久精品| 亚洲最大成人中文| 精品久久久久久久久av| 国产在线一区二区三区精| 永久免费av网站大全| 久久久久久久精品精品| 国产欧美日韩精品一区二区| 美女国产视频在线观看| 国产v大片淫在线免费观看| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 天堂网av新在线| av播播在线观看一区| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 看非洲黑人一级黄片| 国内精品宾馆在线| 亚洲成色77777| 91精品一卡2卡3卡4卡| 久久久久久久久久成人| 国产一区亚洲一区在线观看| 成年av动漫网址| 人妻夜夜爽99麻豆av| 偷拍熟女少妇极品色| 中文字幕免费在线视频6| 边亲边吃奶的免费视频| 天天躁日日操中文字幕| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| 一级毛片久久久久久久久女| 热re99久久精品国产66热6| 夫妻性生交免费视频一级片| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频 | 亚洲图色成人| 永久免费av网站大全| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 人妻 亚洲 视频| 久久久成人免费电影| 国产乱来视频区| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 黄色欧美视频在线观看| 草草在线视频免费看| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 免费少妇av软件| av国产免费在线观看| av女优亚洲男人天堂| 看免费成人av毛片| 青青草视频在线视频观看| videos熟女内射| 国产一区二区三区av在线| 一本一本综合久久| 美女脱内裤让男人舔精品视频| 在线观看国产h片| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 亚洲欧美中文字幕日韩二区| av.在线天堂| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| xxx大片免费视频| 91精品国产九色| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 国产欧美亚洲国产| 欧美另类一区| 男人添女人高潮全过程视频| 美女主播在线视频| 久久久久精品性色| 身体一侧抽搐| 国语对白做爰xxxⅹ性视频网站| 十八禁网站网址无遮挡 | 欧美激情久久久久久爽电影| 亚洲av电影在线观看一区二区三区 | 亚洲人成网站在线观看播放| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 精品视频人人做人人爽| 国产精品国产三级国产av玫瑰| 在线亚洲精品国产二区图片欧美 | 国产精品蜜桃在线观看| 国产黄频视频在线观看| 少妇 在线观看| 制服丝袜香蕉在线| 性色avwww在线观看| 亚洲欧美日韩东京热| 激情 狠狠 欧美| 国产淫语在线视频| 亚洲av福利一区| 国产在线一区二区三区精| 亚洲天堂av无毛| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 男人和女人高潮做爰伦理| av天堂中文字幕网| 大片免费播放器 马上看| 日韩国内少妇激情av| 97在线视频观看| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| www.av在线官网国产| 听说在线观看完整版免费高清| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 国产高清三级在线| 亚洲av免费在线观看| 亚洲图色成人| 亚洲怡红院男人天堂| 亚洲av不卡在线观看| 久久99精品国语久久久| 韩国高清视频一区二区三区| 日本与韩国留学比较| 亚洲精品第二区| 国产爱豆传媒在线观看| 色婷婷久久久亚洲欧美| 国产精品一区二区性色av| 一本久久精品| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 国产精品不卡视频一区二区| 一级毛片电影观看| 天堂网av新在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| 神马国产精品三级电影在线观看| 三级国产精品片| 国产乱人视频| 亚洲国产精品成人久久小说| 久久热精品热| 水蜜桃什么品种好| 亚洲精品亚洲一区二区| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 亚洲精品亚洲一区二区| 日韩一区二区三区影片| av播播在线观看一区| 久久99热6这里只有精品| 在线观看av片永久免费下载| 欧美xxxx性猛交bbbb| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产| 精品人妻偷拍中文字幕| 韩国av在线不卡| freevideosex欧美| 啦啦啦啦在线视频资源| 日本色播在线视频| 亚洲久久久久久中文字幕| 欧美bdsm另类| 精品亚洲乱码少妇综合久久| 丰满人妻一区二区三区视频av| 欧美成人午夜免费资源| 国产精品一及| 国产色婷婷99| 欧美另类一区| 91狼人影院| 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 国产永久视频网站| 少妇 在线观看| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 亚洲精品自拍成人| 热re99久久精品国产66热6| 国产午夜精品久久久久久一区二区三区| 日本黄色片子视频| 少妇被粗大猛烈的视频| 日日啪夜夜爽| 国产欧美另类精品又又久久亚洲欧美| 精品视频人人做人人爽| 国产视频首页在线观看| 欧美激情国产日韩精品一区| 一二三四中文在线观看免费高清| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 国产永久视频网站| 久久99热6这里只有精品| 国产精品无大码| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 亚洲欧美成人综合另类久久久| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 伊人久久国产一区二区| 亚洲av福利一区| 成人欧美大片| 美女xxoo啪啪120秒动态图| 十八禁网站网址无遮挡 | 国产高清国产精品国产三级 | 精品人妻视频免费看| 欧美丝袜亚洲另类| 2022亚洲国产成人精品| 亚洲精品中文字幕在线视频 | 一个人看视频在线观看www免费| av国产精品久久久久影院| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 老司机影院成人| 男的添女的下面高潮视频| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 天堂网av新在线| 久久久久久国产a免费观看| 欧美97在线视频| 男女国产视频网站| 亚洲欧美日韩东京热| 欧美成人a在线观看| 国产熟女欧美一区二区| 精品一区二区三区视频在线| 久久99精品国语久久久| 成年av动漫网址| 搡女人真爽免费视频火全软件| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 亚洲无线观看免费| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 麻豆久久精品国产亚洲av| 2021少妇久久久久久久久久久| 精品国产一区二区三区久久久樱花 | 亚洲av中文字字幕乱码综合| 亚洲自偷自拍三级| 国产在线一区二区三区精| 国产精品人妻久久久久久| 99久久精品热视频| 免费黄色在线免费观看| 永久网站在线| 久久久久九九精品影院| 国产精品99久久久久久久久| 在线观看国产h片| 免费av观看视频| 一级a做视频免费观看| 成人午夜精彩视频在线观看| 少妇的逼好多水| 免费播放大片免费观看视频在线观看| 97热精品久久久久久| 欧美激情国产日韩精品一区| 综合色av麻豆| 日韩电影二区| 亚州av有码| 亚洲国产精品国产精品| 在线观看一区二区三区| 国产一级毛片在线| 美女主播在线视频| 99热这里只有是精品50| 国产视频首页在线观看| 成年版毛片免费区| 中文乱码字字幕精品一区二区三区| 国产精品国产三级专区第一集| 中文字幕制服av| 久久久久久伊人网av| 男人添女人高潮全过程视频| 观看美女的网站| 亚洲成人av在线免费| 人妻少妇偷人精品九色| 五月伊人婷婷丁香| 国产日韩欧美在线精品| 免费大片18禁| 99精国产麻豆久久婷婷| 午夜激情福利司机影院| 亚洲欧洲国产日韩| 亚洲丝袜综合中文字幕| 啦啦啦中文免费视频观看日本| 高清午夜精品一区二区三区| 韩国av在线不卡| 视频区图区小说| 黄色欧美视频在线观看| 综合色丁香网| 肉色欧美久久久久久久蜜桃 | 国产午夜精品久久久久久一区二区三区| 欧美成人午夜免费资源| 亚洲国产欧美人成| 99久久九九国产精品国产免费| 春色校园在线视频观看| 亚洲精品,欧美精品| 亚洲精品一区蜜桃| 成人特级av手机在线观看| 大香蕉久久网| 国产精品久久久久久精品电影小说 | 久久久久精品久久久久真实原创| 欧美97在线视频| 观看美女的网站| 夜夜看夜夜爽夜夜摸| 亚洲精品第二区| 国产精品av视频在线免费观看| 国产淫语在线视频| 亚洲欧美日韩卡通动漫| 午夜福利网站1000一区二区三区| 蜜桃亚洲精品一区二区三区| 国产一区亚洲一区在线观看| 特级一级黄色大片| 免费观看的影片在线观看| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| 色哟哟·www| 国产成人freesex在线| 亚洲va在线va天堂va国产| 国产极品天堂在线| 新久久久久国产一级毛片| 精品一区在线观看国产| 老司机影院毛片| 亚洲精品第二区| 久久99热这里只有精品18| 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 97在线视频观看| h日本视频在线播放| 亚洲人与动物交配视频| 99久久精品热视频| 国产成人午夜福利电影在线观看| 天天躁日日操中文字幕| 午夜日本视频在线| av在线app专区| 嫩草影院精品99| 欧美日韩综合久久久久久| 久久久久性生活片| 色吧在线观看| 尾随美女入室| 国产在视频线精品| 黄片无遮挡物在线观看| 成人美女网站在线观看视频| 色视频在线一区二区三区| 亚洲欧美精品自产自拍| 特大巨黑吊av在线直播| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 丝袜脚勾引网站| 亚洲欧洲国产日韩| 国产精品人妻久久久久久| 精品久久久精品久久久| 国产亚洲5aaaaa淫片| 高清在线视频一区二区三区| 在线观看国产h片| 亚洲国产高清在线一区二区三| 又爽又黄无遮挡网站| 黑人高潮一二区| 不卡视频在线观看欧美| 在线 av 中文字幕| 亚洲欧洲国产日韩| 亚洲欧美成人精品一区二区| 午夜老司机福利剧场| 中文欧美无线码| 日韩视频在线欧美| 日韩欧美 国产精品| 亚洲精品国产av蜜桃| 麻豆国产97在线/欧美| 成人亚洲精品一区在线观看 | 国产在线一区二区三区精| 嫩草影院精品99| 精品熟女少妇av免费看| 国产精品伦人一区二区| 一级片'在线观看视频| 看十八女毛片水多多多| 久久精品国产亚洲网站| 亚洲自偷自拍三级| 五月开心婷婷网| 韩国av在线不卡| 亚洲精品色激情综合| 亚洲最大成人中文| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影| 人妻一区二区av| 精品一区二区三区视频在线| 日本wwww免费看| 波多野结衣巨乳人妻| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 久久国内精品自在自线图片| 日韩伦理黄色片| 亚洲人成网站在线观看播放| 婷婷色综合www| 欧美日韩精品成人综合77777| 午夜视频国产福利| 精品久久久精品久久久| 精华霜和精华液先用哪个| 看黄色毛片网站| 2021少妇久久久久久久久久久| 又大又黄又爽视频免费| 尾随美女入室| 国产片特级美女逼逼视频| 精品久久久久久电影网| 国产毛片在线视频| 国产精品一区www在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99re6热这里在线精品视频|