• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Vibration Characteristic of Jacket Platform Considering the Structure-Pile-Fluid-Soil Interaction

    2018-03-28 12:30:29MaritimeResearchCentreSchoolofCivilandEnvironmentalEngineeringNanyangTechnologicalUniversitySingapore639798SingaporeStateKeyLaboratoryofStructuralAnalysisforIndustrialEquipmentSchoolofNavalArchitectureEngineeringDalianUnivers
    船舶力學(xué) 2018年3期

    (1.Maritime Research Centre,School of Civil and Environmental Engineering,Nanyang Technological University,Singapore 639798,Singapore;2.State Key Laboratory of Structural Analysis for Industrial Equipment,School of Naval Architecture Engineering,Dalian University of Technology,Dalian 116024,China)

    0 Introduction

    Fixed offshore platform is commonly deployed for offshore oil exploration.With the development of offshore industry,more platforms are designed at locations susceptible to rare and severe strong ductility level earthquake.In order to demonstrate that the offshore platform is stable and does not experience structure collapse,one may adopt the nonlinear soil-pile-structure interaction time history analysis as recommended by API RP 2A and ISO 19902.The analysis is used to evaluate whether the platform-foundation system meets structural reserve strength and energy dissipation requirements.In the case of a jacket offshore platform,the piles are typically founded at the bedrock deep below the water and soft soil.During an earthquake event,it is generally believed that the shock waves pass from the bedrock to the soil.The piles in the jacket structure are assumed being moved along with the bedrock are then moved through the soil and hydraulic,resulting in a complex Structure-Pile-Fluid-Soil interaction process.

    To achieve lateral stability of an offshore jacket structure foundation,one has to establish safe attachment of the structure to the ground and in particular how the loads applied to the structure could be safely transferred to the surrounding soil.An established practice is the utilization of appropriate grouted or un-grouted piling system.In a grouted system the certain level of adhesion between the grout and steel surfaces may be achieved and translational movement of pile in the leg will be fixed-fixed ended condition.It was also reported in mechanical tests carried out that the presence of grout improved the strength and fatigue performance of the structural systems(Dedi,2009)[1].Un-grouted piling system is another method of piling system.The top of the pile in the method is fixed to top of the jacket by welding the both members,so that the leg and pile are allowed to have finite axial strain relative to each other but in normal direction they are bound to each other by the aid of wishbone elements.

    Dynamic response of structures founded on soft soils is influenced by the soil properties,and the response is significantly different from that of the fixed base condition as a result of the interaction between the soil and the structure.Several studies(Gazetas,1991[2];Han and Cathrio,1997[3];Wu and Gan,1998[4];Inaba et al,2000[5];Hokmabadi et al,2011[6];Carbonari et al,2011[7])reported findings on seismic soil-pile-structure interactions and the effect of this phenomenon on the seismic response of the structures.There are three groups of analytical methods for studying the soil-pile-structure interaction,and they are:(1)Substructure Methods(or Winkler methods),in which a series of springs and dashpots are employed to represent the soil behaviour;(2)Elastic Continuum Methods;and(3)Numerical Methods based on a set of relevant governing equations.

    Mardfekri et al[8]studied the behavior of laterally loaded monopole foundations using linear and nonlinear approach and assessed the accuracy of different pile-soil interaction model as compared to the results obtained using finite element model.Cyrus et al[9]conducted feasibility study of an un-grouted offshore jacket structure using the endurance time method.Tabeshpour[10]assessed the requirements for accurate modeling of pile-soil interaction of an offshore jacket structure.Wang et al[11]summarized the developments in grouted pile and its performance under different loadings.Various engineering methods and equivalent simplified models and methods have been applied in order to facilitate application and save computation time (Zhou et al,2014&2016)[12-13].The phenomenon of pile-fluid-soil interactions is frequently not considered in detailed during preliminary design of a jacket platform.The equivalent-pile method is often used to account for the pile-soil interaction due to the lack of soil data.The fluid-structure interaction is replaced by treating the fluid as added mass to account for the effects of fluid on the vibrating structure.

    In the present study,finite element method using LS-DYNA software is employed to investigate the effects of piled foundation on the seismic response of offshore platform.For this purpose,the seismic behavior of the platform supported by two types of foundations including the Structure-Pile-Fluid-Soil interaction foundation is compared with the equivalent pile foundation with attached water.Secondly,the natural frequency of the jacket platform with these two foundation models is calculated respectively.By comparing the frequency result of the two models,the frequency of simplified equivalent pile model is modified,and then the modified coefficient relation curve is proposed in the paper.In association with the modified coefficient relation curve,the simplified equivalent pile model can be used to compute the vibration characteristic of an offshore platform effectively.In this way,the computing time will be saved and the precision of results will be improved.

    1 Modeling techniques

    The Structure-Pile-Fluid-Soil interaction is a complex phenomenon as it involves the nature of each element and the coupling relationship and interaction among the elements.In this study,the nonlinear finite element program LSDYNA was used to perform the numerical simulation.LS-DYNA is a fully functional explicit dynamic analysis software,which is used to solve all kinds nonlinear physics(geometry,material and interfacial contact)(Shi et al,2005[14],Bai,2005[15]).The software makes use of Arbitrary Lagrangian-Eulerian(ALE)algorithm which combines the advantages of the Lagrange algorithm and Euler algorithm,and is a real fluid-solid coupling algorithm.With regard to structural boundary motion,it has the characteristics of the Lagrange algorithm which can track the movement at the boundary of structure effectively.It also has the characteristics of Euler algorithm which can cause the inner grid to exist independently of the physical entity.Moreover,the location of grid can be modified in the process of solving according to the parameters defined,by which the grid will not suffer from severe distortion.This algorithm is very appropriate for handling the large deformation problem.The main characteristic of the fluid-solid coupling method in ALE algorithm is the model of structure and fluid which allows overlapping of the grid when building up and meshing the model(see Fig.1).The finite element meshes of the structure and fluid were constructed independently.ALE algorithm was used to perform the numerical simulation of fluid-solid coupling in this study①.

    The interfacial contact between different moving objects was achieved by defining the possible contact surface,contact type and contact parameters.In the process of calculation,the contact interface was guaranteed not to be penetrated.As a result of soil-pile interaction,non-slip condition was not enforced and the friction induced due to relative movement of the objects moving on the contact surface was taken into account②.

    Notes:①Fluid-solid coupling was achieved by using the key word*CONSTRAINED_LAGRANGE_N_SOLID in the LS-DYNA program;

    Fig.1 ALE algorithm in LS-DYNA

    ②Soil-pile coupling was done by using the key word*CONTACT_ERODING_SURFACE_TO_SURFACE in the LS-DYNA program.

    2 Analysis of three-dimensional(3D)finite element model

    The 3D finite element model of a jacket platform contained the following parameters:the height of platform was 68 m,and the platform was located in a 30 m-deep sea.The mass of three decks from bottom to top was 93 tons,2 670 tons and 1 231 tons,respectively.The length of pile above soil surface was 30 m;the length of pile embedded in the soil was 25 m.The dimension of the section for the piles was Ф 1 333×20 mm;the dimension of the stay bars was Ф 800×10 mm.The living quarters,piles and stay bars were modeled using shell element.Two finite element models were used to analyze the velocity and acceleration at the top of the platform.Model 1 was a 3D model considering the actual physics of Structure-Pile-Fluid-Soil interactions(see Fig.2).Model 2 was a 3D model with attached-water and equivalent-pile effect(see Fig.3).

    Fig.2 Model 1(Structure-Pile-Fluid-Soil interaction)

    Fig.3 Model 2(attached water and equivalent pile)

    In Model 1,the soil and fluid were modeled using solid element.Non-reflection domain boundary condition was applied to simulate infinite space.The bottom of piled foundation was simply supported.In Model 2,the equivalent-pile model was embedded by 6-times the pile diameter(according to the rule of China Classification Society).The mass of fluid was incorporated on the structure as added mass on the vibrating structure.

    Fig.4 shows the time history of seismic wave.Node 2231 refers to the top of jacket structure as shown in Fig.2 and Fig.3.Figs.5-8 show the comparison results at node 2231 when L/D=4.5 and 8.5,respectively,where L is the pile spacing and D is the pile diameter.The results of response extremum are tabulated in Tab.1 to Tab.4.

    Fig.4 Acceleration of seismic excitation

    Fig.5 Comparison of velocity at node 2231when L/D=4.5

    Fig.6 Comparison of acceleration at node 2231 when L/D=4.5

    Tab.1 Comparison for extremum value of velocity at node 2231 when L/D=4.5

    Tab.2 Comparison for extremum value of acceleration at node 2231 when L/D=4.5

    Tab.3 Comparison for extremum value of velocity at node 2231 when L/D=8.5

    Tab.4 Comparison for extremum value of acceleration at node 2231 when L/D=8.5

    Fig.7 Comparison of velocity at node 2231 when L/D=8.5

    Fig.8 Comparison of acceleration at node 2231 when L/D=8.5

    Model 1 reflects the actual physics of the structure-pile-fluid-soil interactions with the dynamic response well damped and modulated.Model 2 produces large magnitude responses.These behaviors are shown clearly by comparing the responses of the two models.Model 1 with Structure-Pile-Fluid-Soil interaction tends to modify the time-history of velocity and acceleration.This is due to the presence of stiff pile elements in the soil damping the dynamic properties of the whole system.The maximum velocity and acceleration of Model 1 are lower than those of Model 2.It should be noted that although the velocity and acceleration are increased due to Structure-Pile-Fluid-Soil interaction,the largest velocity and acceleration are smaller.When L/D is increased from 4.5 to 8.5,the largest amplitude of velocity is reduced by nearly 30%and the largest amplitude of acceleration is reduced by more than 20%.It could be concluded that increasing L/D leads to reduction in the magnitude of the structural response.

    One may conclude that the equivalent-pile model with attached water greatly simplifies the computational complexity and improves the computational efficiency at the expense of the accuracy of the dynamic response which may lead to unduly conservative engineering design of the platform.

    3 Proposed frequency modification for equivalent pile model

    With the wide-spread use of the finite element software,the emphasis has been set on full-physics 3D modeling of structures.Ideally the more comprehensive and more inclusive the models are,the more accurate are the simulation results.However,these comprehensive models are not readily adopted in engineering practice during the preliminary design stage.This is especially so for a jacket platform which poses a complex Structure-Pile-Fluid-Soil system.It is very complicated and time consuming to study its dynamic characteristics as a whole.A simpler and equivalent modeling approach with less computation resources is needed to establish the seismic response relatively quickly and economically.By comparing the frequency result of the 3D analysis of Model 1 and Model 2,one could note the frequency of the full-physics model(Model 1)and modify the equivalent model(Model 2)to achieve similar response through the use of a modified coefficient relation curve which is described herein.

    The coefficient relation curve is typically established based on a simpler platform which could easily be visualized as a structure with the bulk of the mass lumped to the floor deck.In this study,the two models shown in Fig.2 and Fig.3 in Chap.2 are still adopted here.Fig.9 shows the arrangement of platform legs.The response frequencies were computed for various ratio of pile spacing to pile diameter(L/D)ranging from 4.5,5.5,6.5,7.5 to 8.5 where D=1.3 m,1.5 m and 1.7 m,respectively.The coefficient relationship is defined as φi=fi/fˉi,where fiis the frequency response from the 3D model which included the full physics of the Structure-Pile-Fluid-Soil interaction,and fˉiis the frequency response from the simplified equivalent pile model;i is the order of vibration.The authors found that the coefficient correlates best with L1.25/D2.The first order of modified coefficient φ1relation curve is shown in Fig.10.

    Fig.9 Arrangement of piles

    Fig.10 Modified coefficient relation curve

    4 Conclusions

    The following conclusions can be achieved by the numerical computation and comparison.

    (1)The equivalent-pile model with attached water greatly simplifies the tedious calculation for dynamic response of offshore platforms and increases the calculation efficiency although the calculation results are a little bit rough.The equivalent calculation method is very convenient in engineering practice,especially in the preliminary design stage of offshore platforms.

    (2)The natural period will become larger,and the vibration velocity and acceleration will change smaller after considering the Structure-Pile-Fluid-Soil interactions.In the dynamic response analysis of an offshore platform,the actual working state can be truly reflected so that the structural design can be more economical and reasonable by means of considering the Structure-Pile-Fluid-Soil interaction.

    (3)Despite the advised models and computational method in large amount of literatures,the current engineering practice still prefers simplified structural calculation model and method in which a reasonable degree of precisions could be achieved.The modified coefficient relation curve proposed in the paper can be used to compute the vibration characteristic of an offshore platform effectively.Using the simplified equivalent pile model to compute the frequency of offshore platforms and amending the frequency result in association with the modified coefficient relation curve,the natural frequency after considering the Structure-Pile-Fluid-Soil interaction will be obtained.The computing time will be saved and the precision of results will be improved.

    (4)In the analysis of various geometric nonlinear,material nonlinear and contact nonlinear problems,the size of grid has a certain impact on the computational time and result accuracy.Although the result will be closer to the real situation through refining mesh,it also increases the computing time significantly.Therefore,it is practical and economic to choose a reasonable mesh size by which the accuracy of result can be guaranteed and the computing time can be saved at same time.

    Acknowledgements

    This work is supported by the Fundamental Research Funds for the Central Universities.

    [1]Dedi N.Analysis of grouted connection in monopile wind turbine foundations[M].LAP LAMBERT Academic publishing,2009.

    [2]Gazetas G.Formulas and charts for impedances of surface and embedded foundations[J].Journal of Geotechnical Engineering,1991,117:1363-1381.

    [3]Han Y C,Cathro D.Seismic behaviour of tall building supported on pile foundations.Seismic analysis and design for soilpile-structure interaction[J].Geotechnical Special publications,ASCE,1997(70):36-51.

    [4]Wu S M,Gan G.Dynamic soil-structure interaction for high-rise buildings[J].Developments in Geotechnical Engineering,1998,83:203-216.

    [5]Inaba T,Dohi H,Okuta K,Sato T,Akagi H.Nonlinear response of surface soil and NTT building due to soil-structure interaction during the 1995 Hyogo-ken Nanbu(Kobe)earthquake[J].Soil Dynamics and Earthquake Engineering,2000,20(5):289-300.

    [6]Hokmabadi A S,Fakher A,Fatahi B.Seismic strain wedge model for analysis of single piles under lateral seismic loading[J].Australian Geomechanics,2011,46:31-41.

    [7]Carbonari S,Dezi F,Leoni G.Linear soil-structure interaction of coupled wall-frame structures on pile foundations[J].Soil Dynamics and Earthquake Engineering,2011,31:1296-1309.

    [8]Mardfekri M,Gardoni P,Roesset J M.Modeling laterally loaded single piles accounting for nonlinear soil-pile interactions[J].Journal of Engineering,2013(5):29-38.

    [9]Cyrus M,Yazdi S R S,Javid A H.Utilization of endurance time method for seismic analysis of offshore structures[C]//The Fifth Iranian National Offshore Industry(OIC2013).Sharif University-Tehran,Iran,2012.

    [10]Tabeshpour M R.Conceptual interpretation(Chapter 2).2800 seismic building design regulation(In Farsi)[M].Ebrahimian H,2006.

    [11]Wang Z,Jiang S C,Zhang J.Structural performance of prestressed grouted pile-to-sleeve performance connection[J].Progress in Steel Building Structures,2010,14:304-311.

    [12]Zhou B,Han X S,Tan S.A simplified computational method for random seismic responses of a jacket platform[J].Ocean Engineering,2014,82:85-90.

    [13]Zhou B,Guo W,Han X S,Tan S.Random seismic response analysis of jacket structure with Timoshenko’s beam theory[J].Ships and Offshore Structures,2016,11(4):438-444.

    [14]Shi D Y,Li Y C,Zhang S M.The analysis method and engineering examples of ANSYS/LS-DYNA(In Chinese)[M].Beijing:Qinghua University Press,2005.

    [15]Bai J Z.Theoretical basis and example analysis of LS-DYNA3D(In Chinese)[M].Beijing:Science Press,2005.

    亚洲欧美日韩高清在线视频| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 免费看光身美女| 女人高潮潮喷娇喘18禁视频| 天堂√8在线中文| 免费看十八禁软件| 精品久久久久久久久久久久久| 小蜜桃在线观看免费完整版高清| 精品国产亚洲在线| 天堂√8在线中文| 久久久久九九精品影院| 国产成人a区在线观看| 日韩国内少妇激情av| 亚洲电影在线观看av| 欧美bdsm另类| 九九热线精品视视频播放| 一边摸一边抽搐一进一小说| 99热这里只有精品一区| 在线十欧美十亚洲十日本专区| 好男人电影高清在线观看| 亚洲精品色激情综合| 狠狠狠狠99中文字幕| 亚洲五月婷婷丁香| 女人高潮潮喷娇喘18禁视频| 欧美日韩国产亚洲二区| 国产亚洲精品久久久久久毛片| 精品一区二区三区视频在线观看免费| 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| av欧美777| 日韩成人在线观看一区二区三区| 国产不卡一卡二| 在线视频色国产色| 国产欧美日韩一区二区三| 欧美在线黄色| 12—13女人毛片做爰片一| 久久精品国产自在天天线| 久久精品国产清高在天天线| 九色成人免费人妻av| 天堂动漫精品| 久久精品影院6| 午夜福利免费观看在线| а√天堂www在线а√下载| 欧美xxxx黑人xx丫x性爽| av女优亚洲男人天堂| 欧美3d第一页| av黄色大香蕉| 色综合婷婷激情| 婷婷亚洲欧美| 久久久久久人人人人人| 美女免费视频网站| 88av欧美| а√天堂www在线а√下载| 国产美女午夜福利| 亚洲av电影不卡..在线观看| netflix在线观看网站| 亚洲精品亚洲一区二区| 国产一区二区三区在线臀色熟女| 一边摸一边抽搐一进一小说| av片东京热男人的天堂| 97超级碰碰碰精品色视频在线观看| 国产精品美女特级片免费视频播放器| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合久久99| 亚洲国产中文字幕在线视频| 亚洲男人的天堂狠狠| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久国产av精品| 久久精品亚洲精品国产色婷小说| 久久精品国产自在天天线| 51午夜福利影视在线观看| 少妇的丰满在线观看| 一个人看视频在线观看www免费 | 亚洲人成网站高清观看| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| svipshipincom国产片| 久久6这里有精品| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 日本黄色视频三级网站网址| 久久精品综合一区二区三区| 欧美丝袜亚洲另类 | 久久久久久久亚洲中文字幕 | 亚洲精品美女久久久久99蜜臀| 给我免费播放毛片高清在线观看| 亚洲人成网站高清观看| 亚洲真实伦在线观看| 九九热线精品视视频播放| 国产日本99.免费观看| 国产aⅴ精品一区二区三区波| 中文字幕av在线有码专区| 18禁美女被吸乳视频| 免费观看的影片在线观看| 给我免费播放毛片高清在线观看| 51国产日韩欧美| 国产精品久久久久久久久免 | 久久久久久久久中文| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 国产成人av教育| 成人精品一区二区免费| www日本黄色视频网| 女人十人毛片免费观看3o分钟| 亚洲av电影不卡..在线观看| 99视频精品全部免费 在线| 香蕉av资源在线| 男人的好看免费观看在线视频| xxx96com| 亚洲专区中文字幕在线| а√天堂www在线а√下载| 国产久久久一区二区三区| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 热99re8久久精品国产| 欧美日本视频| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 色av中文字幕| av在线蜜桃| 国产一区二区亚洲精品在线观看| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 有码 亚洲区| 日本撒尿小便嘘嘘汇集6| 亚洲无线观看免费| www.色视频.com| 日本一二三区视频观看| 午夜日韩欧美国产| 搡女人真爽免费视频火全软件 | 国内精品一区二区在线观看| 国产精品一及| 久久久久性生活片| 亚洲av二区三区四区| 97超视频在线观看视频| 99久久精品国产亚洲精品| 久久精品国产亚洲av涩爱 | 俺也久久电影网| 99热精品在线国产| 午夜福利在线在线| 俺也久久电影网| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 桃红色精品国产亚洲av| 欧美日本视频| 精品乱码久久久久久99久播| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| av国产免费在线观看| 高清毛片免费观看视频网站| 免费av观看视频| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 99热精品在线国产| 国产不卡一卡二| 午夜福利视频1000在线观看| 人人妻人人看人人澡| 在线视频色国产色| 亚洲成av人片免费观看| 国产探花极品一区二区| 国产精品一区二区三区四区久久| 美女 人体艺术 gogo| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久一区二区三区 | 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 香蕉av资源在线| 国产成人av教育| 又黄又爽又免费观看的视频| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 全区人妻精品视频| 欧美日韩乱码在线| 免费人成在线观看视频色| 午夜福利18| 亚洲精华国产精华精| av专区在线播放| 亚洲成人中文字幕在线播放| 亚洲国产色片| 国产精品99久久99久久久不卡| 床上黄色一级片| 成年女人毛片免费观看观看9| 免费av不卡在线播放| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 不卡一级毛片| 亚洲七黄色美女视频| 观看免费一级毛片| 五月伊人婷婷丁香| 老鸭窝网址在线观看| 中出人妻视频一区二区| 国产激情偷乱视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 1000部很黄的大片| 男女下面进入的视频免费午夜| 成年女人永久免费观看视频| 高清毛片免费观看视频网站| 国内久久婷婷六月综合欲色啪| 精品久久久久久久末码| 女人被狂操c到高潮| 久久久久免费精品人妻一区二区| 国产三级在线视频| 久久久精品欧美日韩精品| 一级作爱视频免费观看| 怎么达到女性高潮| 亚洲电影在线观看av| 88av欧美| 国产成人影院久久av| 少妇的丰满在线观看| 99久久九九国产精品国产免费| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 人人妻,人人澡人人爽秒播| www.www免费av| 看黄色毛片网站| 午夜a级毛片| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 色在线成人网| 亚洲av免费高清在线观看| 一个人看视频在线观看www免费 | 色综合婷婷激情| 免费av毛片视频| 日本撒尿小便嘘嘘汇集6| 在线天堂最新版资源| 黄色视频,在线免费观看| 午夜久久久久精精品| 最好的美女福利视频网| 99精品久久久久人妻精品| 国产精品国产高清国产av| 有码 亚洲区| 亚洲精品乱码久久久v下载方式 | 黄色丝袜av网址大全| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 国产探花极品一区二区| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| 日本 av在线| 99热6这里只有精品| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 手机成人av网站| 亚洲国产精品999在线| 美女 人体艺术 gogo| 中文字幕久久专区| 两个人的视频大全免费| 亚洲av成人av| 麻豆国产av国片精品| 日韩大尺度精品在线看网址| 动漫黄色视频在线观看| 亚洲精品456在线播放app | 国产高清有码在线观看视频| 老司机福利观看| 麻豆成人av在线观看| 在线播放国产精品三级| 国语自产精品视频在线第100页| 精品国产三级普通话版| 午夜福利在线观看吧| www.熟女人妻精品国产| 在线观看美女被高潮喷水网站 | 天堂动漫精品| 亚洲最大成人手机在线| 亚洲不卡免费看| 午夜两性在线视频| www.999成人在线观看| 午夜激情福利司机影院| 好男人在线观看高清免费视频| 色尼玛亚洲综合影院| 一级黄色大片毛片| 亚洲片人在线观看| 日本a在线网址| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 香蕉av资源在线| 最近在线观看免费完整版| 看黄色毛片网站| 亚洲精品日韩av片在线观看 | 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 波多野结衣高清作品| 老司机午夜十八禁免费视频| 国产精品乱码一区二三区的特点| 免费av毛片视频| 亚洲人与动物交配视频| 18+在线观看网站| 搡老岳熟女国产| 夜夜爽天天搞| 好男人在线观看高清免费视频| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 色综合站精品国产| 老鸭窝网址在线观看| 中文在线观看免费www的网站| 九九在线视频观看精品| 久久精品国产亚洲av香蕉五月| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 久久国产精品影院| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 成年版毛片免费区| 在线免费观看的www视频| 美女cb高潮喷水在线观看| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 搡老妇女老女人老熟妇| 熟女少妇亚洲综合色aaa.| 婷婷亚洲欧美| 亚洲中文字幕一区二区三区有码在线看| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 国产av不卡久久| 成年人黄色毛片网站| xxx96com| 一区二区三区激情视频| 久久香蕉国产精品| 国产69精品久久久久777片| 白带黄色成豆腐渣| 中文字幕人妻丝袜一区二区| 国内精品久久久久久久电影| 久久久久免费精品人妻一区二区| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 欧美日韩一级在线毛片| 麻豆久久精品国产亚洲av| 欧美成人a在线观看| 国产探花极品一区二区| 深爱激情五月婷婷| 窝窝影院91人妻| 岛国视频午夜一区免费看| 精品人妻一区二区三区麻豆 | 非洲黑人性xxxx精品又粗又长| 老熟妇仑乱视频hdxx| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 亚洲成av人片免费观看| 国产高潮美女av| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 午夜免费激情av| 在线观看免费视频日本深夜| 成人无遮挡网站| 婷婷精品国产亚洲av| 免费搜索国产男女视频| 国产乱人伦免费视频| av视频在线观看入口| 国内精品一区二区在线观看| 91久久精品国产一区二区成人 | 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 欧美日韩精品网址| 亚洲欧美日韩卡通动漫| 内射极品少妇av片p| 午夜亚洲福利在线播放| 亚洲最大成人中文| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 国产亚洲精品久久久com| 国产一区二区三区视频了| 男人和女人高潮做爰伦理| av福利片在线观看| 最后的刺客免费高清国语| 女同久久另类99精品国产91| 国产亚洲av嫩草精品影院| 精品国产亚洲在线| 成人性生交大片免费视频hd| 人人妻,人人澡人人爽秒播| 99久久精品国产亚洲精品| 国产午夜精品久久久久久一区二区三区 | 99久久精品一区二区三区| 国产亚洲欧美在线一区二区| 中文资源天堂在线| 午夜亚洲福利在线播放| 少妇高潮的动态图| 一本久久中文字幕| 12—13女人毛片做爰片一| 日韩有码中文字幕| 午夜免费成人在线视频| 国产精品久久久久久久久免 | 亚洲精品美女久久久久99蜜臀| 精品人妻一区二区三区麻豆 | 久久久久久人人人人人| 一夜夜www| 精品一区二区三区av网在线观看| 国产av在哪里看| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 国产一区二区三区视频了| 欧美日韩乱码在线| 精品人妻一区二区三区麻豆 | 免费看a级黄色片| 国产精华一区二区三区| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 一本精品99久久精品77| 国产成人系列免费观看| 一进一出抽搐动态| 小说图片视频综合网站| 观看美女的网站| 亚洲av中文字字幕乱码综合| 精品乱码久久久久久99久播| 精品99又大又爽又粗少妇毛片 | 国产激情偷乱视频一区二区| 亚洲成人精品中文字幕电影| 变态另类丝袜制服| 成人无遮挡网站| 亚洲国产欧美网| 亚洲18禁久久av| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| 老司机在亚洲福利影院| 偷拍熟女少妇极品色| 日本一本二区三区精品| 久久精品国产自在天天线| 亚洲成a人片在线一区二区| 老汉色∧v一级毛片| 亚洲欧美日韩卡通动漫| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 欧美乱码精品一区二区三区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 久久九九热精品免费| 国产高潮美女av| aaaaa片日本免费| 日本与韩国留学比较| 精品一区二区三区视频在线 | 成年女人毛片免费观看观看9| 国产不卡一卡二| 精品人妻一区二区三区麻豆 | 国产精品久久久久久久久免 | 亚洲精品粉嫩美女一区| netflix在线观看网站| 日日干狠狠操夜夜爽| 亚洲人成网站在线播放欧美日韩| 操出白浆在线播放| 国产男靠女视频免费网站| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 天堂av国产一区二区熟女人妻| 欧美一区二区亚洲| 亚洲av二区三区四区| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 亚洲在线观看片| 午夜福利免费观看在线| 老熟妇乱子伦视频在线观看| 青草久久国产| 午夜福利在线在线| 欧美极品一区二区三区四区| 精品乱码久久久久久99久播| 国产亚洲精品av在线| 成人午夜高清在线视频| 日本黄色视频三级网站网址| 在线免费观看不下载黄p国产 | 日韩免费av在线播放| 桃色一区二区三区在线观看| 久久这里只有精品中国| 中文字幕久久专区| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 久久久国产成人免费| 色在线成人网| 久久国产精品人妻蜜桃| 嫩草影院精品99| 国产精品1区2区在线观看.| 国产亚洲精品久久久com| 波多野结衣高清无吗| 精品99又大又爽又粗少妇毛片 | 我的老师免费观看完整版| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av在线| 亚洲久久久久久中文字幕| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 精品午夜福利视频在线观看一区| 99精品欧美一区二区三区四区| 一级毛片女人18水好多| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 国产视频内射| 免费av毛片视频| 小蜜桃在线观看免费完整版高清| 久久亚洲真实| 中文字幕av成人在线电影| 午夜福利成人在线免费观看| www.999成人在线观看| 国产伦一二天堂av在线观看| 午夜福利视频1000在线观看| 亚洲精品一区av在线观看| 久久伊人香网站| 国产av不卡久久| 老司机深夜福利视频在线观看| 国产精华一区二区三区| 亚洲美女黄片视频| 99热这里只有是精品50| 免费观看人在逋| 久久香蕉精品热| av片东京热男人的天堂| 免费电影在线观看免费观看| 国产午夜精品论理片| www.www免费av| 久久欧美精品欧美久久欧美| av黄色大香蕉| 国产精品自产拍在线观看55亚洲| 中文亚洲av片在线观看爽| 精品无人区乱码1区二区| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 叶爱在线成人免费视频播放| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站| 成人一区二区视频在线观看| 亚洲av成人av| 夜夜躁狠狠躁天天躁| 亚洲精品色激情综合| 久久国产精品人妻蜜桃| 亚洲激情在线av| 亚洲第一电影网av| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 欧美bdsm另类| 人妻久久中文字幕网| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 夜夜躁狠狠躁天天躁| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线av高清观看| 国内精品一区二区在线观看| 日韩有码中文字幕| 国产精品久久久久久精品电影| 色综合婷婷激情| 中亚洲国语对白在线视频| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 日本 av在线| 国产aⅴ精品一区二区三区波| 日本精品一区二区三区蜜桃| 国产色爽女视频免费观看| 99热只有精品国产| 99热这里只有是精品50| 国产高清视频在线观看网站| 脱女人内裤的视频| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 69人妻影院| 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产黄片美女视频| 亚洲精品影视一区二区三区av| 麻豆成人av在线观看| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 在线观看日韩欧美| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 97超视频在线观看视频| 欧美绝顶高潮抽搐喷水| 成人av在线播放网站| 搡女人真爽免费视频火全软件 | 我的老师免费观看完整版| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| 亚洲精品456在线播放app | 国产精品永久免费网站| 欧美黄色片欧美黄色片| xxx96com| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 亚洲黑人精品在线| 免费av不卡在线播放| 亚洲人成电影免费在线| 波多野结衣高清无吗| 色av中文字幕| 国产免费av片在线观看野外av| 亚洲在线自拍视频| а√天堂www在线а√下载|